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Glucagon-like peptide 1 receptor (GLP-1R) agonists ef-
fectively improve glycemia and body weight in patients
with type 2 diabetes and obesity but have limited weight-
lowering efficacy and minimal insulin sensitizing action.
In preclinical models, peripherally restricted cannabinoid
receptor type 1 (CB1R) inhibitors, which are devoid of the
neuropsychiatric adverse effects observed with brain-
penetrant CB1R blockers, ameliorate obesity and its
multiple metabolic complications. Using mouse models
with genetic loss of CB1R or GLP-1R, we demonstrate
that these twometabolic receptors modulate food intake
and body weight via reciprocal functional interactions. In
diet-induced obese mice, the coadministration of a pe-
ripheral CB1R inhibitor with long-actingGLP-1R agonists
achieves greater reduction in body weight and fat mass
than monotherapies by promoting negative energy bal-
ance. This cotreatment also results in larger improve-
ments in systemic and hepatic insulin action, systemic
dyslipidemia, and reduction of hepatic steatosis. Thus,
peripheral CB1R blockade may allow safely potentiating
the antiobesity and antidiabetic effects of currently avail-
able GLP-1R agonists.

Few, and often subeffective, drugs are available to address
the increasing prevalence of obesity and type 2 diabetes
(1). Glucagon-like peptide 1 receptor (GLP-1R) agonists
improve glycemic control (2) but show suboptimal efficacy
against adiposity and insulin resistance (2–4). The first
generation of brain-penetrant cannabinoid receptor type

1 (CB1R) antagonists displayed relevant body weight
(BW)-lowering action but also caused neuropsychiatric
adverse effects (5,6). Recently developed peripherally re-
stricted CB1R inhibitors overcome these safety concerns,
while potently lowering BW in animal models of obesity
(7,8). These compounds also improve systemic and tissue-
specific metabolic complications, including insulin and lep-
tin resistance, dyslipidemia, nonalcoholic fatty liver disease,
inflammation, b-cell loss, and diabetic nephropathy (6–10).
Notably, GLP-1 secretion is modulated by changes in CB1R
signaling (11), while the insulinotropic action of GLP-1R
agonism is enhanced in mice lacking CB1R (12), suggesting
the existence of reciprocal functional interactions between
GLP-1R and CB1R.

Here we demonstrate that a cross talk between GLP-1R
and peripheral CB1R signaling modulates food intake
and BW. Coadministration of the peripheral CB1R blocker
JD-5037 with GLP-1R agonists to diet-induced obese (DIO)
mice has greater efficacy to lower BW than monotherapies,
with superior and greater beneficial effects on insulin re-
sistance, dyslipidemia, and hepatic steatosis. This combi-
natorial strategy may be used to correct obesity and its
comorbidities and warrants further clinical investigation.

RESEARCH DESIGN AND METHODS

Animals and Treatments
The experiments were in compliance with European Union
Directives (2010/63/EU), the University of Bordeaux Eth-
ical Committee (DIR1354), and the University of Cincinnati
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Animal Care Committee. Male mice were housed at 22 6
2°C (12 h dark/light cycle). CB1-knockout (CB1-KO) mice
(13) were fed a regular chow diet (SAFE A03; SAFE diets).
Eight-week-old male C57BL/6J mice (Janvier Laborato-
ries, Le Genest-Saint-Isles, France) were fed a chow diet
(SAFE A03) or a high-fat diet (HFD, D12492 or D12331;
Research Diets) for 6 months before the study. GLP-1R-
knockout (GLP-1R-KO) mice (14) were fed a HFD (D12331;
Research Diets) for 16 weeks before the study. JD-5037
(#530481; MedKoo Biosciences) and rimonabant (9000484;
Cayman Chemical) were given i.p., and IUB48 (14) or
semaglutide (synthetized at Novo Nordisk Research Center
of Indianapolis, IN) were given subcutaneously. JD-5037
was prepared in 0.9% NaCl with Tween 80 (1%) and DMSO
(4%). Semaglutide was prepared in 50 mmol/L phosphate
buffer (pH 7.4) with 0.05% Tween 80. Mice were ran-
domly assigned to pharmacological treatment groups, and
the experimenters were not blinded to the intervention
groups. Animals were single housed or group housed, as
specified in the figure legends.

Energy Expenditure
Energy expenditure was calculated using an energy balance
technique (total energy expenditure balance [TEEbal]) (15).

Plasma and Tissues Analysis
Plasma insulin and leptin was determined by ELISA kit
(Mercodia 10-1132-01 and 10-1113-01, andMillipore EZML-
82K, respectively) and plasma and hepatic triglycerides by
Thermo Scientific TR22421. For hepatic triglycerides ex-
traction, livers (200 mg) were incubated overnight at 55°C
in 30% ethanolic KOH. After 50% ethanol was added, they
were centrifuged (13,000 rpm, 5 min), and 100 mL of
MgCl2 (1 mol/L) was added to 100 mL of supernatant.
Samples were centrifuged again (13,000 rpm, 5 min) be-
fore quantification. Unknown triolein equivalents were
interpolated using logistic regression. Triglycerides con-
tent was calculated in mg/g tissue by triolein equivalents ∗
2 ∗ 0.012/(tissue weight in grams).

Body Composition Analysis
Body composition analysis was performed with an
EchoMRI-900 (Echo Medical Systems).

Glucose Metabolism
Glucose tolerance, insulin tolerance, and glucose-induced
insulin release were performed as previously described (14)
using fasting durations and glucose/insulin concentrations
detailed in the figure legends. The glucose disappearance
rate (KITT) was calculated as the slope of the decreasing
line of blood glucose levels over 30 min from insulin ad-
ministration, as previously described (16).

Quantitative Real-time PCR
RNA tissue extraction and quantitative (q)PCR were per-
formed as previously reported (17). Primers are provided
in Supplementary Table 1.

Statistical Analyses
Data are mean 6 SD and were analyzed using Prism 8
(GraphPad). ANOVA, followed by the appropriate post hoc
test, was used as specified in the figure legends.

Data and Resource Availability Statement
All data and resources are available from the corresponding
authors upon request.

RESULTS

CB1R and GLP-1R Interact to Control Food Intake but
Not Glucose Tolerance
To explore possible functional interactions between CB1R
and GLP-1R, we analyzed short-term changes in food in-
take and glycemic control in chow-fed CB1-KO or wild-type
(WT) littermates acutely treated with multiple doses of
a GLP-1R agonist (IUB48) (14) after 18 h of fasting, which
activates the endocannabinoid system (18). At 10 nmol/kg,
IUB48 suppressed food intake in both WT and CB1-KO
mice, with a greater effect in the KO (Fig. 1A). A lower dose
(0.5 nmol/kg) of IUB48 still reduced food intake in CB1-
KO mice but not in WT controls (Fig. 1B). No genotype-
dependent changes in systemic glucose tolerance were
observed after testing several doses of IUB48 (Fig. 1C and
Supplementary Fig. 1A). Accordingly, no changes in glucose-
induced insulin release were observed after treatment
with a low (0.1 nmol/kg) IUB48 dose (Supplementary
Fig. 1B).

Next, we probed the effects of the coadministration of
different doses of IUB48 and the CB1R antagonist rimo-
nabant on fasting-induced food intake in chow-fed BL6
mice. Coadministration of appetite-suppressant doses of
IUB48 and rimonabant reduced food intake to a greater
extent relative to monotherapies (Fig. 1D and E). A greater
hypophagic effect was also observed after cotreatment
with an effective dose of IUB48 and a noneffective dose of
rimonabant (Fig. 1F). Similarly, the combination of non-
effective doses for both molecules reduced food intake in
both refed (Fig. 1G) and free-fed (Supplementary Fig. 1D)
animals. Thus, functional comodulation of CB1R and GLP-
1R synergistically reduced food intake but did not impact
acute changes in glycemic control.

Cotargeting of GLP-1R and CB1R Ameliorates DIO
Because peripheral CB1R antagonists have promising an-
tiobesity and antidiabetes action (8), we tested the anti-
obesity effects of the combined chronic administration of
IUB48 and the peripherally restricted CB1R inhibitor
JD-5037 (7) in DIO mice. To uncover possible synergistic
effects, we used a dose of JD-5037 (1 mg/kg) with sub-
threshold weight-lowering and hypophagic action (Supple-
mentary Fig. 2A) and a dose of IUB48 (100 nmol/kg) with
clear effects on insulin secretion but minimal efficacy
against BW loss (14). As expected, 2 weeks of IUB48
monotherapy did not alter BW, food intake, or fat mass,
whereas JD-5037 significantly reduced these parameters
(7) (Fig. 2A–C and Supplementary Fig. 2B). The cotreatment
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Figure 1—A: Fasting-induced cumulative food intake in WT and CB1-KO mice treated with vehicle or IUB48 (10 nmol/kg) 3 h before food
access. The animals were fasted for 18 h before refeeding with regular chow diet. All mice were singly housed for at least 4 weeks before the
start of the study and during the actual study (n 5 11 per genotype or treatment, using a cross-over pharmacological design). Data were
initially analyzed by three-way ANOVA. Genotype effect was F(1, 60)5 34.31, P, 0.0001; treatment3 genotype effect was F(1, 60)5 9.765,
P5 0.0027; and time3 treatment3 genotype effect was F(2, 60)5 6.477, P5 0.0028. Based on these results, we then performed two-way
ANOVA analysis, followed by the Sidakmultiple comparison test, at each individual time point. No genotype3 treatment effect was observed
at 1 h and 2 h of refeeding. However, a significant genotype3 treatment effect was observed at 4 h (F[1, 20]5 11.35, P5 0.0030). Posttest:
***P , 0.001 comparing IUB48/WT vs. IUB48/CB1-KO. B: Fasting-induced cumulative food intake in WT and CB1-KO mice treated with
vehicle or IUB48 (0.5 nmol/kg) 3 h before food access. The animals were fasted for 18 h before refeeding with regular chow diet. All mice were
singly housed for at least 4 weeks before the start of the study and during the actual study (n5 7 per genotype or treatment, using a cross-
over design). Data were initially analyzed by three-way ANOVA. Genotype effect was F(1, 36) 5 91.54, P , 0.0001; treatment 3 genotype
effect was F(1, 36)5 27.11, P, 0.0001; and time3 treatment3 genotype effect was F(2, 36)5 8.279; P5 0.0011. Based on these results,
we then performed two-way ANOVA analysis, followed by the Sidak multiple comparison test, at each individual time point. No genotype3
treatment effect was observed at 1 h. A significant genotype3 treatment effect was observed at 2 h (F[1, 12]5 9.210; P5 0.0104) and 4 h of
refeeding (F[1, 12]5 31.55; P5 0.0001). Posttest: ***P, 0.001 comparing IUB48/WT vs. IUB48/CB1-KO. C: Glucose tolerance test in 15 h-
fastedWT orCB1-KOmice pretreated with vehicle or with different doses of IUB48, as indicated in the graph. All mice were singly housed for
at least 4 weeks before the start of the study and during the actual study. Glucose (2 g/kg of lean mass) was injected i.p. The drug was
administered 1 h before the glucose challenge. Data were obtained from three different cohorts of age-matchedWT vs. CB1-KO littermates,
and values relative to vehicle-treated mice were pooled to increase readability (n5 7/12 WT or CB1-KO mice were treated with the different
doses of IUB48, n5 30WTmice were treated with vehicle [pool of three cohorts], and n5 27CB1-KOmice were treated with vehicle [pool of
three cohorts]). D: Fasting-induced cumulative food intake in normal-weight C57BL/6J mice pretreated with vehicle, IUB48 (10 nmol/kg),
rimonabant (3 mg/kg), or the combination of the two drugs 3 h before access to regular chow diet. Animals were fasted for 18 h before food
access. All mice were singly housed for at least 4 weeks before the start of the study and during the actual study (n 5 6/9 per group). Data
were analyzed by two-way ANOVA repeated measurements with the Tukey multiple comparison test for individual time points. Treatment
effect was F(3, 27)5 93.31, P, 0.0001, and time3 treatment effect was F(6, 54)5 23.68, P, 0.0001. Posttest:11P, 0.01 and111P,
0.001 comparing vehicle vs. rimonabant; &&&P , 0.001 comparing vehicle vs. IUB48; ###P , 0.001 comparing vehicle vs. IUB48 1
rimonabant; ***P , 0.001 comparing IUB48 1 rimonabant vs. monotherapies. E: Fasting-induced cumulative food intake in normal-weight
C57BL/6J mice pretreated with vehicle, IUB48 (10 nmol/kg), rimonabant (1 mg/kg), or the combination of the two drugs 3 h before access to
regular chow diet. Animals were fasted for 18 h before food access. All mice were singly housed for at least 4 weeks before the start of the
study and during the actual study (n 5 5/6 per group). Data were analyzed by two-way ANOVA repeated measurements with the Tukey
multiple comparison test for individual time points. Treatment effect was F(3, 18)5 23.40, P, 0.0001, and time3 treatment effect was F(6,
36) 5 7.512, P , 0.0001. Posttest: 1P , 0.05 and 11P , 0.01 comparing vehicle vs. rimonabant; &P , 0.05, &&&P , 0.001 comparing
vehicle vs. IUB48; ###P , 0.001 comparing vehicle vs. IUB48 1 rimonabant; ***P , 0.001 comparing IUB48 1 rimonabant vs.
monotherapies. F: Fasting-induced cumulative food intake in normal-weight C57BL/6J mice pretreated with vehicle, IUB48 (10 nmol/
kg), rimonabant (0.5 mg/kg), or the combination of the two drugs 3 h before access to regular chow diet. Animals were fasted for 18 h before
food access. All mice were singly housed for at least 4 weeks before the start of the study and during the actual study (n5 6 per group). Data
were analyzed by two-way ANOVA repeated measurements with the Tukey multiple comparison test for individual time points. Treatment
effect was F(3, 20) 5 45.02, P , 0.0001, and time 3 treatment effect was F(6, 40) 5 16.49, P , 0.0001. Posttest: &&P , 0.01 and &&&P ,
0.001 comparing vehicle vs. IUB48; ###P, 0.001 comparing vehicle vs. IUB481 rimonabant; **P, 0.01 comparing IUB481 rimonabant vs.
monotherapies. G: Fasting-induced cumulative food intake in normal-weight C57BL/6J mice pretreated with vehicle, IUB48 (0.5 nmol/kg),
rimonabant (0.5 mg/kg), or the combination of the two drugs 3 h before access to regular chow diet. Animals were fasted for 18 h before food
access. All mice were singly housed for at least 4 weeks before the start of the study and during the actual study (n 5 8/9 per group). Data
were analyzed by two-way ANOVA repeated measurements with the Tukey multiple comparison test for individual time points. Treatment
effect was F(3, 31) 5 27.26, P , 0.0001, and time 3 treatment effect was F(6, 62) 5 6.543, P , 0.0001. Posttest: ###P , 0.001 comparing
vehicle vs. IUB48 1 rimonabant, **P , 0.01 and ***P , 0.001 comparing IUB48 1 rimonabant vs. monotherapies. All data are mean 6 SD.
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caused even greater reductions than monotherapies (Fig.
2A–C), without affecting lean mass (Fig. 2C), and also had
greater hypophagic action than the monotherapies at day
1 and during week 2 (Fig. 2B), in agreement with our
previous findings (Fig. 1).

JD-5037 reduced plasma leptin levels (Fig. 2D) and
leptin mRNA expression in brown and white adipose tissues
(Fig. 2E). The cotreatment caused similar or even greater
reduction in these markers (Fig. 2D and E). No changes in
systemic insulin action were found among treatments at day

Figure 2—One cohort of C57BL6/J DIO mice treated with daily injections of vehicle (saline with 1% Tween and 4% DMSO i.p.1 saline s.c.),
JD-5037 (1 mg/kg of JD-5027 i.p. 1 saline s.c.), IUB48 (saline with 1% Tween and 4% DMSO i.p. 1 100 nmol/kg of IUB48 s.c.), or the
combination JD-5037 1 IUB48 (1 mg/kg of JD-5037 i.p. 1 100 nmol/kg of IUB48 s.c.) for 15 days (n 5 8/9 mice per group). All mice were
singly housed for at least 4 weeks before the start of the study and during the actual study. Effects on BW change (% change from day 0) (A)
and daily food intake (grams) (B). Data were analyzed by two-way ANOVA repeated measurements with the Tukey multiple comparison test
for individual time points. In A, treatment effect was F(3, 31) 5 57.97, P , 0.0001 and time 3 treatment effect was F(42, 434) 5 22.04, P ,
0.0001. In B, treatment effect was F(3, 31)5 47.55, P , 0.0001, and time 3 treatment effect was F(42, 434)5 4.692, P , 0.0001. Posttest:
##P , 0.01 when comparing vehicle vs. IUB481 JD-5037;1P , 0.05 and11P , 0.01 when comparing vehicle vs. JD-5037; &&P , 0.01
when comparing vehicle vs. IUB48; *P, 0.05, **P, 0.01, and ***P, 0.001 when comparing IUB481 JD-5037 vs. monotherapies.C: Effects
on body composition at day 13 of treatment. Data were analyzed by one-way ANOVA (fat mass: F[3, 31] 5 43.12, P , 0.0001; lean mass
F[3, 31]5 0.7254, P5 0.5446], followed by the Tukey posttest. Posttest: *P, 0.05 and ***P, 0.001 as indicated in the graphs. D: Effects on
plasma leptin level at day 15 of treatment. Data were analyzed by one-way ANOVA (F[3, 31] 5 33.52, P , 0.0001) with the Tukey multiple
comparison test. Posttest: ***P , 0.001 as indicated in the graph. E: Effects on leptin mRNA expression in brown adipose tissue (BAT),
epididymal white adipose tissue (eWAT), and inguinal adipose tissue (iWAT). Data were analyzed by one-way ANOVA (BAT: F[3, 28]5 4.223,
P5 0.0139; eWAT: F[3, 30]5 18.07, P, 0.0001; iWAT: F[3, 31]5 25.49, P, 0.0001) with the Tukeymultiple comparison test. Posttest: *P,
0.05 and ***P, 0.001 as indicated in the graph. F: Effects on insulin sensitivity (% change from basal glucose levels) at day 14 of treatment.
The test was performed using 0.75 units/kg leanmass of insulin (Humulin, Eli Lilly) after 5 h of fasting. Data were analyzed by two-way ANOVA
repeated measurements with the Tukey multiple comparison test for individual time points. Treatment effects was F(3, 31) 5 5.560, P 5
0.0036 and time 3 treatment effect was F(12, 124) 5 2.215, P 5 0.0147. Posttest: ###P , 0.001 and ##P , 0.01 comparing vehicle vs.
IUB48 1 JD-5037; *P , 0.05 comparing IUB48 1 JD-5037 vs. monotherapies. G: Effects on KITT from the analysis of insulin tolerance
described in F. Data were analyzed by one-way ANOVA (F[3, 31]5 5.224,P5 0.0049) with the Tukeymultiple comparison test. Posttest: *P,
0.05 and **P , 0.01 as indicated in the graph. H: Effects on SPTLC3 mRNA levels analyzed by qPCR in livers collected at the end of the
treatment. Data were analyzed by one-way ANOVA (F[3, 26] 5 10.98, P , 0.0001) with the Tukey multiple comparison test. Posttest: *P ,
0.05, **P, 0.01 and ***P, 0.001 as indicated in the graph. I: Effects on IRS-1mRNA levels analyzed by qPCR in livers collected at the end of
the treatment. Data were analyzed by one-wayANOVA (F[3, 31]5 5.022,P5 0.0059) with the Tukeymultiple comparison test. Posttest: **P,
0.01 as indicated in the graph. J: Effects on tissue triglycerides content (mg of triglycerides/g of tissue) quantified in liver samples collected at
the end of the treatment. Data were analyzed by one-way ANOVA (F[3, 31] 5 5.522, P 5 0.0037) with the Tukey multiple comparison test.
Posttest: *P , 0.05, **P , 0.01 as indicated in the graph. K: Representative image showing fat deposition in the liver during necropsy after
15 days of the different treatments. L: Effects on plasma triglycerides levels (mg/dL) at day 15 of treatment. Data were analyzed by one-way
ANOVA (F[3, 30]5 3.3014, P5 0.0332) with the Tukey multiple comparison test. Posttest: *P, 0.05 as indicated in the graph.M: Effects on
estimated total energy expenditure (TEE) from days 0 to 13 of treatment using TEEbal analysis. Data were analyzed by one-way ANOVA
(F[3, 30]5 4.419,P5 0.0109) with the Tukeymultiple comparison test. Posttest: *P, 0.05 as indicated in the graphs. All data aremean6SD.
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8, as assessed by the analysis of the percentage blood
glucose changes (Supplementary Fig. 2C) and by the KITT
(Supplementary Fig. 2D). However, after 14 days, the
cotreatment, but not monotherapies, significantly im-
proved systemic insulin sensitivity (Fig. 2F and G). JD-
5037–mediated effects on hepatic insulin resistance involve
reduced hepatic content of ceramide via the lowered ex-
pression of the ceramide-producing enzyme SPTLC3 (9).
Likewise, JD-5037 and JD-5037 1 IUB48, but not IUB48
alone, reduced hepatic SPTLC3 mRNA expression after 2
weeks (Fig. 2H). This was paralleled by the increased hepatic
expression of the insulin sensitivity marker IRS1 (Fig. 2I)
and by a marked reduction in hepatic and systemic triglyc-
eride levels in mice receiving the cotreatment (Fig. 2J–L).

The antiobesity action of the cotreatment was due
to both food intake-dependent and -independent effects,
since mice treated with IUB48 1 JD-5037 had higher
estimated energy expenditure relative to the vehicle (Fig.
2M). Consequently, animals pair-fed to the intake of mice
receiving IUB48 1 JD-5037 (Supplementary Fig. 2E) had
less pronounced reductions in BW and fat mass than the
cotreatment group (Supplementary Fig. 2F and G).

However, pair-feeding and the cotreatment similarly
improved systemic insulin tolerance (Supplementary Fig.
2H and I). Thus, in response to combination therapy,
compound-induced hypophagia is implicated in the observed
ameliorations in insulin sensitivity, while mechanisms in-
dependent from food intake contribute to weight loss.

GLP-1R IsNecessary for theWeight-Lowering Action of
the Peripheral CB1R Blocker JD-5037
Our data suggest that loss of CB1R function potentiates
the hypophagic effects of GLP-1R agonism. However, the
opposite relationship (i.e., a GLP-1R–mediated influence
on CB1R signaling) could also be true. To address this
second possibility, we tested the pharmacological efficacy
of JD-5037 in GLP-1R-KO or WT littermates fed a HFD.
After acute administration, JD-5037 did not modify the
glycemic response to intraperitoneal or oral glucose load-
ing in either WT or GLP-1R-KO mice (Fig. 3A–C). This is in
agreement with the lack of functional interaction observed
on acute glucose responses (Fig. 1C). However, the BW-
lowering effect of JD-5037 was blunted in GLP-1R-KO
animals (Fig. 3D), and this was reflected in a decreased
hypophagic action of this molecule in GLP-1R-KO mice
relative to WT controls (Fig. 3E). These results were not
influenced by the initial BW differences between GLP-1R-KO
andWTmice at day 0 of the study, since no correlations were
found between these initial BW values and the BW changes
induced by the drug (Fig. 3F). Thus, GLP-1R partially medi-
ates the weight-lowering and hypophagic effects of JD-5037,
which highlights the existence of a bidirectional cross talk
between GLP-1R and CB1R signaling.

Pharmacological Potentiation of Semaglutide Efficacy
Using Peripheral CB1-R Blockade
The long-acting GLP-1R agonist semaglutide shows greater
glycemic benefits and a superior weight-lowering action

than cognate molecules (2). To further investigate the
therapeutic potential of GLP-1R and CB1R cotargeting, we
assessed the efficacy of different doses of JD-5037 com-
bined with one dose of semaglutide having submaximal
BW-lowering effects (data not shown) in DIO mice. Sem-
aglutide lowered BW, but it did not improve systemic
insulin sensitivity relative to the vehicle, albeit it signif-
icantly lowered fasting blood glucose levels (Fig. 4 and
Supplementary Fig. 3). Accordingly, the glycemic effects of
GLP-1R agonists are not due to direct effects on systemic
insulin action and are mainly due to improved insulin
secretion and inhibition of glucagon production (3,4).
When semaglutide was coadministeredwith a subthreshold
dose of JD-5037 (0.3 mg/kg), which does not affect insulin
sensitivity, this led to BW loss and to a significant im-
provement in insulin sensitivity relative to vehicle treat-
ment, as assessed by the analysis of percentage blood
glucose changes (Fig. 4A). Cotreatment of semaglutide
with higher doses of JD-5037 (1 mg/kg and 3 mg/kg)
caused greater BW loss than monotherapies (Fig. 4B and
C). At these higher doses, the cotreatment and JD-5037
monotherapy, but not semaglutide, improved insulin sen-
sitivity, as assessed by both the analysis of percentage
blood glucose changes and by KITT analysis (Fig. 4B and C).
The cotreatment at the higher doses also lowered basal
blood glucose levels relative to vehicle administration
(Supplementary Fig. 3B and C). Thus, the combination of
JD-5037 with semaglutide causes superior weight loss
and greater insulin-sensitizing effects than semaglutide
monotherapy.

DISCUSSION

We report that GLP-1R and peripheral CB1R signaling
interact in a bidirectional manner to control energy ho-
meostasis. Blockade of CB1R potentiates GLP-1–mediated
effects on food intake and fat mass, whereas GLP-1R
signaling is partially required for endocannabinoid-medi-
ated actions on energy balance, because the weight loss
induced by peripheral CB1 blockade is blunted in GLP-
1R-KO mice. Such a cross talk can be pharmacologically
manipulated to achieve potent antiobesity and antidiabetic
solutions, and this may have clinical implications. Based
on our data, the addition of peripheral CB1R inhibitors
to currently available GLP-1R mimetics may allow potent
weight loss and larger improvements in insulin resistance,
systemic dyslipidemia, and nonalcoholic fatty liver disease,
relative to monotherapies, without inducing the neuro-
psychiatric alterations observed with brain-penetrant CB1R
antagonists (6,7). This approach could be also effective
against nonalcoholic steatohepatitis, which still lacks ad-
equate medical treatments, a possibility supported by the
potent reduction in hepatic lipid accumulation observed
herein, by the known ability of JD-5037 to attenuate liver
fibrosis in preclinical models (19) and by on-going or
recently terminated clinical trials investigating the use
of both CB1R inhibitors and semaglutide on this liver
dysfunction.
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The greater efficacy observed with GLP-1R and CB1R
comodulation likely results from multiple mechanisms
that involve both food intake reduction and increased
energy dissipation. JD-5037 may amplify the anorectic
activity of GLP-1 (or vice versa) via periphery-to-brain
signals involving the vagus nerve, which coexpress CB1R
and GLP-1R (20) thus contributing to the hypophagic
effects of CB1R inhibitors (18). The antiobesity effects of
JD-5037 derive from changes in both food intake and

energy expenditure (6,7), and these changes are due to
restoration of endogenous leptin sensitivity (7,21,22) and
lowered leptin production from adipocytes (7,22) via
blockade of adipocytes CB1R (6,23). These same processes
may be implicated in the antiobesity effects observed
herein, since our cotreatment led to profound reductions
in both circulating leptin levels and production. JD-5037
ameliorates insulin resistance via inhibition of hepatic
CB1R (9) and via reduced accumulation of hepatic

Figure 3—A: Effects on glucose tolerance (oral glucose tolerance test [o.GTT]) in one cohort of DIO-WT or DIO-GLP-1R-KO mice acutely
treated with JD-5037 (3 mg/kg) 30 min before glucose administration. The dose of glucose injected during the test was 1.5 g/kg BW for
GLP-1R-KOmice and 2.5 g/kg BW for WTmice. The animals were housed as n5 2 per cage during the test. Such a housing paradigmwas
setup at least 4 weeks before the start of the study (n 5 8 per treatment or genotype). B: Effects on glucose tolerance (i.p. glucose
tolerance test [i.p.GTT]) in one cohort of DIO-WT or DIO-GLP-1R-KO mice acutely treated with JD-5037 (3 mg/kg) 30 min before glucose
administration. The dose of glucose injected during the test was 1.5 g/kg BW for GLP-1R-KO mice and 2.5 g/kg BW for WT mice. The
animals were housed as n 5 2 per cage during the study, using an equal number of cages (n5 4) per genotype or treatment group. Such
a housing paradigm was setup at least 4 weeks before the start of the study and was maintained throughout the entire duration of the
study (n 5 8 per treatment or genotype). C: Glucose area under the curve (AUC) relative to the experiments described in A and B. Data
were analyzed by two-way ANOVA. For i.p.GTT, genotype effect was F(1, 28) 5 14.05, P 5 0.0008, but no significant changes were
detected in treatment effect (F[1, 28] 5 2.114, P 5 0.1570) or genotype 3 treatment effect (F[1, 28] 5 0.1107, P 5 0.7418). For o.GTT,
genotype effect was F(1, 28) 5 61.01, P , 0.0001, but no significant changes were detected in treatment effect (F[1, 28] 5 0.01105, P 5
0.9170) or genotype 3 treatment effect (F[1, 28]5 3.861, P5 0.0594). D: Effects on BW (% of change) in the DIO WT or DIO GLP-1R-KO
mice described in B. B: After the GTT (day 0), the animals were chronically treated for the subsequent 14 days with vehicle or JD-5037
(3 mg/kg) once daily. Data were analyzed by three-way ANOVA. Treatment 3 genotype effect was significant: F(1, 224) 5 6.961, P 5
0.0089; genotype effect was significant: F(1, 224) 5 47.98, P , 0.0001; and treatment effect was significant: F(1, 224) 5 891.3, P ,
0.0001. Time3 treatment3 genotype effect was not significant: F(7, 224)5 0.8274, P5 0.5655, preventing further post hoc analysis. E:
Effects on daily food intake in the same cohort of DIO WT or DIO GLP-1R-KO mice in B. Data were analyzed by three-way ANOVA (n 5
4 independent food intake measures per group were obtained by the average amount of food daily consumed in each cage divided by the
number of animals per cage [n5 2]). Treatment3 genotype effect was significant: F(1, 96)5 15.47, P5 0.0002. Genotype effect was not
significant: F(1, 96)5 3.203, P5 0.0767; treatment effects was significant: F(1, 96)5 118.0, P, 0.0001; and time3 genotype3 treatment
effect was not significant: F(7, 96)5 1.118, P5 0.3583, preventing further post hoc analysis. F: Correlation analysis between the initial BW
values (day 0 of treatment) of the animals indicated in D and E and the percentage of BW change at day 14 (D14) of treatment. No
significant correlations were found in any of the groups analyzed, as assessed by the Pearson correlation. All data (except F ) are mean6
SD.
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ceramide species interfering with insulin action (9,21).
This mechanism, which involves an inhibitory effect on
the ceramide-producing enzyme SPTLC3 (9), may be engaged
by our cotreatment, which lowers hepatic SPTLC3 expression
and improves markers of systemic and hepatic insulin action.

Thus, multiple neuronal and nonneuronal peripheral
cell types expressing CB1R and GLP-1R may be involved in
the antiobesity effects observed. A limitation of our work is
that we do not dissect the exact identity of these peripheral
sites of actions, which will require follow-up investigations.

Obesity is a heterogeneous disease requiring pharma-
cological approaches able to target multiple pathways.
Unimolecular GLP-1R–based multiagonists affecting mul-
tiple metabolic targets have exceptional preclinical efficacy
(4,14) and are being investigated in clinical studies. Chem-
ical coupling of these newly developed molecules with
a growing number of peripheral CB1R inhibitors (8) may
have a transformative impact in obesity and diabetes
pharmacotherapy, an exciting perspective given the struc-
tural and functional plasticity of CB1R (24) and the

Figure 4—One cohort of DIO mice was treated daily with vehicle, semaglutide (1 nmol/kg), different does of JD-5037 (as indicated in the
panels), or with the combination of the two drugs for 14 days. We analyzed the effect of these treatments on BW change (%) over time and
insulin tolerance at day 14 of the study. Insulin tolerance was expressed as blood glucose change (% of t0) or as KITT. During the insulin
tolerance test, we injected 0.75 units/kg BW of insulin (Humulin, Eli Lilly) in animals fasted for 5 h (n 5 8 mice per group). The visual and
statistical representation of the different groups have been separated in different panels (A–C) corresponding to different doses of JD-5037
(0.3 mg/kg, 1 mg/kg, 3 mg/kg) to increase the readability of the results. BW changes were analyzed by two-way ANOVA repeated
measurements with the Tukey multiple comparison test for individual time points (treatment effect: F[7, 56] 5 74.60, P , 0.0001; time 3
treatment effect: F[49, 392]5 38.39, P, 0.0001). Blood glucose (% of t0) values were analyzed by two-way ANOVA repeated measurements
with the Dunnett test for the comparisons between treatments vs. vehicle at individual time points (treatment effect: F[7, 58] 5 2.560, P 5
0.0228; time 3 treatment effect: F[35, 290] 5 2.588, P , 0.0001). KITT values were analyzed by one-way ANOVA (F[7, 56] 5 3.484, P 5
0.0036) with the Dunnett test for comparisons between treatments vs. vehicle. Posttest results were #P , 0.05 and ##P , 0.01 comparing
vehicle vs. semaglutide 1 JD-5037; &&P , 0.01 comparing vehicle vs. semaglutide; 1P , 0.05 and 11P , 0.01 comparing vehicle vs.
JD-5037; *P, 0.05, **P, 0.01, and ***P, 0.001 comparing semaglutide1 JD-5037 vs. monotherapies (n5 8 mice per group). All data are
mean 6 SD.
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emergence of novel generations of “fusion” peripheral CB1R
inhibitors (8).
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