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Chapter

Use of Natural Safiot Clay for the
Removal of Chemical Substances
From Aqueous Solutions by
Adsorption: A Combined
Experimental and Theoretical
Study
Aziz El Kassimi, Mohammadine El Haddad, Rachid Laamari,

Mamoune El Himri, Youness Achour and Hicham Yazid

Abstract

The main objective of this work was to investigate the potential of Natural Safiot
Clay (NSC), as an adsorbent for the removal of two cationic dyes such as Basic Blue 9
(BB9) and Basic Yellow 28 (BY28) from single and binary systems in aqueous solu-
tions. For this, the effects of three factors controlling the adsorption process, such as
initial dye concentration, adsorbent dose, and initial pH on the adsorption extent,
were investigated and examined. The natural safiot clay was characterized using the
following technique: energy-dispersive X-ray spectroscopy (EDX), scanning electron
microscopy (SEM), DRX, and Fourier transform infrared (FT-IR) and pH of the point
of zero charge (pHZPC). Energy-dispersive X-ray spectroscopy results indicate high
percentages of Silica and Alumina. FT-IR spectrum identified kaolinite as the major
mineral phase in the presence of quartz, calcite, and dolomite. The quantum theoret-
ical study confirms the experimental results, through the study of the global and local
reactivity and the electrophilicity power of the dyes. The electrophilicity power of
dyes affects the removal efficiency. The theoretical study proves that BB9 (ω = 6.178)
is more electrophilic than BY28 (ω = 2.480) and more interactions with surface sites.
The results of the molecular dynamics simulation indicate that the dyes are adsorbed
parallel to the surface of natural Safi clay (kaolinite), implying the strong interaction
with the kaolinite atoms. All the results of quantum chemistry calculations and simu-
lations of molecular dynamics are in perfect agreement with the results of the exper-
imental study.

Keywords: adsorption, dyes; natural safiot clay, characterization, density functional
theory
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1. Introduction

The growth of humanity and the development of science and technology are
causing an environmental disorder due to the pollution of water by a number of
pollutants including synthetic dyes, which have a complex molecular structure, which
makes them more stable and difficult. These dyes are discharged with the liquid
effluents, which are most of the time directly discharged into watercourses without
prior treatment [1]. These colored discharges pose a great threat to human health and
the environment because many of the dyes are toxic. Therefore, it is very important to
develop efficient methods for the removal of dyes from aqueous media.

Traditional processes such as biological processes give unsatisfactory results due to
the composition of these releases of toxic and dyestuffs, which are difficult to biode-
grade; on the other hand, physicochemical processes, which include coagulation-
flocculation, oxidation, and membrane filtration, have been widely studied and have
revealed a high efficiency in water discoloration [2, 3]. These techniques have proven
to be very effective, but their high cost has prompted many researchers to try other
cheaper and abundant materials. Adsorption, as a flexible, simple, and inexpensive
approach, can be used for the removal of pollutant chemical species. Every day
researchers describe new ways and elaborate a new adsorbent on the basis of good
selectivity for a chemical species or for the low cost of the process. The elimination of
dyes in aqueous solutions by adsorption on different solid materials, in particular on
activated carbon, has been the subject of much work [4–6]. The adsorption of dyes on
activated carbon has been found to be very effective, but its use remains limited due
to the difficulties of its regeneration and its high cost [7].

For this reason, the use of clay as an adsorbent is of great interest because of its
effectiveness, its accessible cost, and its abundance. From this perspective, lot of
research has been done on clays and all have shown their depollution efficiency
toward dyes [8, 9]. The importance given to these materials is granted to their abun-
dant availability in nature and their great capacity of retention of various pollutants,
which is offered by their structure in sheets, which gives a large specific surface
toward the adsorption [10, 11].

In this context, our choice focused on clay, which is an adsorbent material found
in abundance in Morocco, is effective and more economical. The use of clays for
the depollution of waters contaminated by dyes requires a good knowledge of their
mineralogical characteristics and of the mechanism of adsorption of these pollutants.
On the other hand, Natural Safiot Clay (NSC) materials could be an attractive
alternative for the adsorption of various pollutants from wastewater due to their
low cost, their lamellar structure, which provides high specific surface areas,
thermal stability, high cation exchange capacity, abundance, and high adsorption
capacity [12–14].

Generally, most of the studies carried out to eliminate cationic dyes are carried out
on single dyes [15], which lead us to study the possibility of eliminating a mixture of
two dyes at the same time, close to the real conditions of effluents in the environment,
because industrial discharges are a complex mixture of several pollutants.

Recently and with computer development, quantum chemistry calculations are
widely used in studies of dye adsorption [16, 17]. A lot of research has been carried out
on this theoretical approach; in particular since the appearance of their efficiencies in
the study of adsorption mechanisms on the one hand, and the study of behavior of
dyes with respect to the adsorbent surface on the other hand [18, 19]. The theoretical
reactivity indices based on density functional theory (DFT) have become a powerful
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and informative tool for studying organic reactivity and for describing intermolecular
interactions [20, 21].

The purpose of this study was to demonstrate the ability of Natural Safiot Clay to
remove some mixture industrial dyes such as Basic blue 9 and Basic yellow 28 from
single and binary aqueous solutions. This allows optimizing the cost of the process and
the quantity of the adsorbent used in the adsorption process to have a multiple
removal efficiencies of different pollutants instead of one [22, 23]. In this study, the
possibility of adsorption of Basic blue 9 (BB9) and Basic yellow 28 (BY28) in the single
and binary system has been studied experimentally and theoretically using density
functional theory (DFT) and molecular dynamics simulations (MDS), In order to
explain the competitiveness between the two dyes on active sites and their reactivity,
check if the experimental results are in good correlation with the theoretical results.

2. Materials and methods

2.1 Preparation of natural safiot clay

The Natural Safiot Clay (NSC) used in this work is collected from a natural basin in
the region of Safi in Morocco for removal of Basic blue 9 and Basic yellow 28 from
aqueous solutions and used without any prior activation. Samples were ground and
sieved to obtain very fine particle sizes and washed with distilled water to ensure the
removal of dust and any soluble impurities may exist.

2.2 Preparation of dyes solutions mixture

Basic blue 9 (BB9) and Basic yellow 28 (BY28) as representative cationic dyes were
purchased from Sigma-Aldrich with a purity of 99% and used without further purifi-
cation. The chemical structures of the studied dyes are given in Figure 1.

2.3 Experimentation conditions of adsorption studies

For single and binary system, several stock solutions 100 mg/L of BB9 and BY28
dyes have been prepared by mixing calculated volumes of the stock solutions of each
dye and accurately diluting it with distilled water. The NSC and mixture of dyes are
shaken in batch experiments at various parameters such as the amount of natural
safiot clay (5 mg–35 mg), initial dye concentration (10 mg–40 mg/L), and initial
solution pH (2–12). The working solutions’ pH was adjusted to the desired values with
dilute HCl (0.1 M) or NaOH (0.1 M) using a pH-Meter HANNA 5222. After stirring of
a prescribed contact time, the solution is filtrated using filter syringe, and the maxi-
mum absorbance value of BB9 and BY28 is measured using spectrophotometer UV–
Visible (JENWAY 6300) at 663 and 438 nm, respectively, as shown in Figure 2.

The percentage removal and the quantity adsorbed qe (mg/g) of dye on NSC were
calculated using the following equation:

%Removaldye ¼ C0 � Ce

C0
∗ 100 (1)

qe mg=gð Þ ¼ C0 � Ce

m
∗V (2)
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Where C0 (mg/L) and Ce (mg/L) represent the concentration of BB9 and BY28 at
initial and equilibrium, respectively, V (L) is the volume of solution, and W (g) is the
weight of adsorbent used.

2.4 Surface characterization

The surface morphology, chemical composition, and the nature of functional
groups responsible for adsorption of dyes onto the NSC adsorbent were studied by
Scanning Electron Microscopy (SEM), Energy Dispersive X-ray spectroscopy (EDX),
X-Ray Diffraction (XRD), and Fourier Transform Infrared (FT-IR).

2.5 Computational details

Density functional theory (DFT) is one of the most important tools of quantum
chemistry of understanding popular qualitative chemical concepts such as energy of
highest occupied molecular orbital (EHOMO) and the lowest unoccupied molecular

Figure 1.
Chemical structures of BB9 and BY28.
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orbital (ELUMO), dipole potential (μ), hardness (η), softness (S), electrophilicity index
(ω), and local reactivity descriptors such as Parr function P(r) [24, 25]. All computa-
tions are carried out with the Gaussian 09 program. The geometries of dyes, BB9 and
BY28, are optimized using density functional theory (DFT) at the B3LYP/6 G-31G (d)
level. Optimizations are carried out using the Berny analytical gradient optimization
method. The geometries optimized are characterized by positive vibrational fre-
quency definite Hessian matrices [26].

When the values of EHOMO and ELUMO are known, one can determine through the
following expressions [27] the values of the electronic chemical potential μ, the abso-
lute hardness η, and the softness S as:

μ ¼ EH þ EL

2
(3)

η ¼ EL � EHð Þ (4)

The global softness (S) introduced is the inverse of the global hardness [28]:

S ¼ 1
η

(5)

Using Parr’s definition [29], the electrophilicity ω index is given by:

ω ¼ μ
2

2η
(6)

Based on this idea, Domingo et al. [30] have introduced an empirical (relative)
nucleophilicity index N, based on the HOMO energies obtained within the Kohn–
Sham scheme and defined as:

Figure 2.
Absorption spectra of BB9, BY28, and their mixture.
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N ¼ EHOMO Nuð Þ � EHOMO TCE:ð Þ (7)

The HOMO energy of Tetracyanoethylene is�0.3351 a.u. at the same level of theory.
The electrophilic Pþ

K and nucleophilic P�
K Parr functions, which allow for the

characterization of the electrophilic and nucleophilic centers of a molecule, were
obtained through the analysis of the Mulliken ASD (Atomic Spin Density) of the
radical anion and the radical cation, respectively. These indices were obtained by
single-point energy calculations over the optimized neutral geometries using the
restricted B3LYP formalism for radical species. The results obtained will be compared
with the experimental data.

The adsorption progress of the studied dyes on kaolinite surface is performed using
Materials Studio (MS) 8.0 software developed by Accelrys Inc. The kaolinite crystal
was optimized (a = 5.196 Å, b = 9.007 Å, c = 7.372 Å, and α = 93.029°, β = 105.983°,
γ = 89.866) and cleaved along the (001) plane, a vacuum slab with 10 Å thickness was
built. The final structure was enlarged to (4 � 2 � 1) to provide a large surface for the
interaction of the dyes [31].

3. Results and discussion

3.1 Characterization of natural safiot clay

3.1.1 Energy-dispersive X-ray spectroscopy

The spectrum of chemical constitution of natural safiot clay adsorbent is given in
Figure 3. The EDX spectrum of Figure 2 presents well-defined peaks, confirms the
presence of the following chemical elements: Si, Al, Mg, Fe, K, P, S, O, Ca, C. These
results confirm those found by the analysis XRF (Table 1), which also reveals the
presence of these elements in the form of oxides: SiO2, Al2O3, Fe2O3, MgO, Na2O,
CaO, K2O, TiO2. The atomic and mass percentages of the elements are summarized in
Table 2. The predominance of silicon and oxygen peaks is clearly observed, which
confirms the majority presence of kaolinite and quartz in the sample studied.

Figure 3.
EDX spectrum of natural safiot clay.
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3.1.2 Fourier transform infrared spectroscopy

Fourier transform infrared (FTIR) analysis was applied to determine the func-
tional groups present on the surface of natural safiot clay and understand its adsorp-
tion mechanism. FT-IR spectra of NS clay in the range of 400 cm–4000 cm�1 are
taken to obtain information on the nature of functional groups at the surface of the
adsorbent. The spectrum of natural safiot clay is shown in Figure 4. The band that
stretches between 3200 and 3700 cm�1 shows a peak with two shoulders at 3407 cm�1

and 3610 cm�1 corresponding to the vibrations of elongation of the hydroxyl group –

OH linked to the water of constitution. In addition to the vibrations of deformation of
the O-H bond due to the water molecules adsorbed between the sheets located at
1639 cm�1. The bands that appear approximately around 3430 cm�1 and 1630 cm�1

correspond respectively to the vibrations of elongation and deformation of the OH
group of the adsorbed water [32]. While the characteristic bands of carbonates are
detected at 1436 cm�1 and 2521 cm�1 [33].

An intense absorption band at 900 cm–1200 cm�1 is centered on 1030 cm�1, it
characterizes the valence vibrations of the Si-O bond [34]. The bands between 795 and
748 cm�1, coming from the Si-O-Al bond, also give way to a band around 778.4 cm�1

[35]. The absorption band located at 1030 cm�1 is in agreement with the X-ray

Eléments % atomique % massique

O 57.87 46.70

C 12.96 7.85

Na 0.59 0.68

Mg 1.25 1.53

Al 7.50 10.20

Si 13.78 19.52

K 2.18 4.30

Ca 1.70 3.43

Ti 0.19 0.47

Fe 1.72 4.85

Table 2.
Atomic and mass percentage of the natural safiot clay constituents.

Dyes Langmuir Freundlich Dubinin–Radushkevich

qmax RL R2 KF 1/n R2 qmax KD-R E R2

BB9 (S) 68.49 0.038 0.992 37.89 0.314 0.852 59.03 1 10�7 2236 0.925

BB9 (B) 41.15 0.015 0.996 25.71 0.222 0.566 44.78 1 10�7 2236 0.897

BY28 (S) 166.67 0.363 0.761 10.50 0.976 0.955 75.33 2 10�6 500 0.994

BY28 (B) 21.32 0.064 0.986 10.07 0.260 0.718 18.18 6 10�7 912.8 0.512

Table 1.
Isotherm constants for BB 9 and BY28 in single and binary systems.
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fluorescence indicating the presence of kaolinite in natural clay. However, the
absorption bands at 423, 480, 534, 694, and 797 cm�1 correspond to quartz [36]. These
results are in agreement with those found from XRF. They confirm the presence of
quartz, carbonate, kaolinite, and dolomite in the clay studied.

3.1.3 Scanning electronic microscopy analysis

Scanning electronic microscopy (SEM) technique was carried out in order to
observe the morphology, structure, and distribution of the grains of our adsorbent
material studied. Figure 5a and b show the SEM micrographs of natural safiot clay
before and after adsorption. The scanning electron microscope image (Figure 5a)
shows aggregates of kaolin grains in spherical form and of heterogeneous size, the
interstices between the grains form pores. We also observe large irregularly shaped
cavities; this confirms the heterogeneous composition of our clay revealed by the XRD
(kaolinite + calcite + vermiculite). In contrast, Figure 5b shows that the NSC surface is
more homogeneous and saturated after adsorption.

3.1.4 XRD analysis

X-ray diffraction analysis allows us to identify the different mineralogical phases
contained in our material. The X-ray diffraction patterns of NSC adsorbent are
illustrated in Figure 6. This result demonstrated the principal presence of kaolinite
characterized by an intense peak at 2θ = 26.63° (2θ = 26.63°; d = 3.343 A°) and a series
of peaks with varying intensities at 12.33°, 19.75°, 40.85° and those of quartz at 20.87°,
37.92°, and 42. 440°. In addition, the reflections spectrum at 2θ = 8.62°, 29.47°, and
30.81° confirm the presence of illite, calcite, and dolomite, respectively. We see that
the diagram also shows the presence of the peak corresponding to the following

Figure 4.
FT-IR spectrum of natural safiot clay.
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minerals: kaolinite, calcite, and vermiculite, which implies that our clay is
heterogeneous.

3.1.5 Determination of pH zero-point charge

The pH zero-point charge (pHzpc) plays an important role in the adsorption
process. The point of zero charge (PZC) of our clay was determined using the pH drift
method [37]. Six vials containing solutions of pH in the range of 2–12 (pHi) and 50 mg
of NSC are shaken for 24 h at room temperature, and the final pH was measured.
The difference between the initial and final pH (ΔpH = pHi � pHf) was plotted against
the initial pH (pHi) and the point where ΔpH = 0 was taken as the point of zero
charge. As shown in Figure 7, the pHpzc of NSC was determined to be 7.2.

(a)

(a)

Figure 5.
SEM micrograph of the natural Safi clay before (a) and after (b) adsorption.
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3.2 Experimental setup: single and binary adsorption studies

3.2.1 Effect of adsorbent dose

It is recognized that the effect of the adsorbent dose on the adsorption process is
also considered to be one of the most important parameters that must be optimized,

Figure 6.
X-ray diffraction of natural safiot clay.
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since the mass of adsorbent has an effect on the adsorption capacity for a given
initial concentration of the adsorbate under the operating conditions. The adsorption
of BB9 and BY28 in single and mixture on natural safiot clay is studied by varying
the mass of adsorbent from 5 to 35 mg in 50 mL solution of 20 mg/L dye concentration
at a constant stirring rate of 60 minutes. From Figure 8, it can be observed that
removal efficiency of the dye increases from 49.17% to 97.03% for BB9 and from
59.97% to 85.32% for BY28 as adsorbent dose is an increase from 5 to 35 mg. This is
because of the extra number of adsorption sites accessible with an increase in the
adsorbent dose. On the other hand, the dye uptake capacity reduces from 98.34 to
27.72 mg/g and from 119.9 to 24.38 mg/g for BB9 and BY28, respectively. This can be
attributed to the unsaturation of adsorption sites through the adsorption reaction
with increasing adsorbent dosage [38, 39]. Another important reason is that at
high adsorbent dosage, the available dye molecules are deficient to completely cover
the available binding sites on the natural safiot clay, which results in low solute
uptake [40, 41]. Similar results have been reported previously by other researchers
for the adsorption of dyes by different material [42–44]. The optimum adsorbent
dose is fixed conveniently at 30 mg per 50 mL of solution dye for the following
studies.

3.2.2 Effect of initial dye concentration

The effect of initial concentrations of BB9 and BY28 dyes is examined at
different initial concentrations ranging from 10 to 40 mg/L on the adsorption
capacity and removal efficiency onto natural safiot clay. As seen from Figure 9, the
adsorption capacity increases from 22.58 to 58.45 mg/g for BB9 and of 12.68 to
58.89 mg/g for BY28. In this case, the % removal decreases from 98.97% to 87.67%
and from 87.67% to 70.08% for BB9 and BY28, respectively. These results indicate
that the adsorption sites of NSC adsorbent for dyes adsorption are still unsaturated
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within the dye concentration range. In addition, increasing initial dyes’ concentrations
increases the number of collisions between dyes ions and the surface area of NSC
adsorbent, which enhances the adsorption process [45]. Similar results had been
reported by Auta and Hameed [46] for MB dye removal onto modified ball clay
chitosan composite.

3.2.3 Effect of initial dye pH

The initial pH of the aqueous solution is important parameter controlling
the adsorption process, where it affects both the degree of ionization of the dye
and the surface properties of the adsorbent. The effect of initial pH of dye solution on
the percentage removal of dye is studied by varying the initial pH from 2 to 12
under constant process parameters onto NSC, and results are presented in Figure 10.
It is revealed that pH has practically a small effect on the percentage removal of
the two basic dyes in simple system. In binary system, BY28 percentage removal is
increased from 34.74% to 71.14% when pH is varied from 2 to 12 and also for
BB9 percentage removal increase from 90.86% to 96.75%. These results are explained
by pH zero-point charge pHZPC, the pHzpc of any adsorbent is a very important
characteristic that determines the pH at which the surface has net electrical
neutrality. In explaining this behavior by the fact that the negative charge
dominates the adsorbent’s surface in the basic medium. Thus, an electrostatic
attraction exists between the negative charges of OH deposited on the clay surface
and the positive charges of the dyes. Moreover, an electrostatic attraction between
BB9 and BY28 dyes and the positive charge on the surface of NSC at low pH are
evident [47, 48].
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Consequently, the mechanism proposed can be described by the following equation.

Si‐OHþOH� $ Si‐O� þH2O (8)
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Si‐OH� þ BB9þ or BY28þ $ Si‐O� þ BB9 or Si‐OH� þ BY28 (9)

Similarly, the montmorillonite, bentonite clay, and montmorillonite/CoFe2O4

composite adsorption capacities were studied as a function of pH, and it was observed
that maximum basic blue 9 dye adsorption was in acidic pH range [49–51].

3.2.4 Competitive adsorption between BB9 and BY28

BB9 and BY28 adsorption in single and binary adsorption systems onto NSC is
studied and is illustrated in Figure 11. The removal efficiency decreased in binary
systems (as compared with single dye systems), the reduction was from 96.20% to
95.57% and from 85.32% to 61.48% for BB9 and BY28, respectively. For these results it
is clear in the binary system, BB9 dye is most dominant and BY28 is most recessive
dye. The values of R% also show that adsorption of BB9 and BY28 is reduced by the
presence of other dyes in solutions within reduction percentage of 0.66% and 27.94%
for BB9 and BY28, respectively. This behavior can be explained by the competitive
adsorption between BB9 and BY28 for active sites with that BB9 dye is the first to be
adsorbed in the active sites and by that BB9 is more electrophilic than BY28. This
result will be demonstrated by following quantum chemicals study.

3.3 Adsorption isotherms

Adsorption isotherms play an important role in the determination of the maximum
adsorption capacity and the identification of the type of adsorption. The results of the
adsorption experiments were analyzed per the well-known models of Langmuir,
Freundlich, and Dubinin–Radushkevich (D-R):

The Langmuir isotherm is valid for monolayer adsorption on surface containing a
finite number of identical sites [52]. The linear form of the Langmuir isotherm can be
represented by the following equation:
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Ce

qe
¼ 1

qmKL
þ 1
qm

Ce (10)

Where Ce (mg/L) represents the equilibrium concentration of the adsorbate, qe
the amount adsorbed at equilibrium (mg/g), KL (L/mg) and qm (mg/g) are the
Langmuir constant and the maximum amount of adsorbate, respectively.

To confirm the favorability of the adsorption process, the separation factor RL was
calculated by the following Equation [53]:

RL ¼ 1
1þ KLC0

(11)

where the adsorption process is unfavorable (RL > 1), linear (RL = 1), favorable
(0 < RL < 1), or irreversible (RL = 0). Here, RL values for the adsorption of dyes are
less than 1 and greater than 0, indicating favorable adsorption.

Freundlich isotherm model is an empirical equation based on sorption on a het-
erogeneous surface or surface supporting sites of varied affinities [54]. The linearized
Freundlich model is represented by the following equation:

log qe
� �

¼ log K f

� �

þ 1
n
log Ceð Þ (12)

where Kf (mg/g) is the measurement of adsorption capacity, and 1/n is the
adsorption intensity of the adsorbent.

The Dubinin–Radushkevich model is a more generalized model as compared with
the Langmuir isotherm and often used to estimate the characteristic porosity and the
apparent free energy of adsorption [55]. The linearized Dubinin–Radushkevich (D-R)
isotherm model is represented by the following equation:

ln qe
� �

¼ ln qm
� �

� Bε2 (13)

where qm is the theoretical saturation capacity (mg/g), B is the D-R constant
related to the sorption energy (mol2/kJ2), and ε represents the Polanyi potential
(J/mol), which is determined by:

ε ¼ RTLn 1þ 1
ce

� �

(14)

R is the universal gas constant (8.314 J mol�1 K�1), and T is the absolute temper-
ature (K). The mean free energy of adsorption E calculated from B using the following
relation:

E ¼ 1
ffiffiffiffiffiffi

2B
p (15)

The main parameters, characterizing each model as well as the coefficients of
determination (R2), are grouped in Table 1. Comparison with Freundlich and
Dubinin–Radushkevich model shows the high correlation coefficient of Langmuir
isotherm for both dyes in single and mixture systems. This result suggests that the dye
was homogeneously adsorbed on a monolayer surface of the adsorbent.

15

Use of Natural Safiot Clay for the Removal of Chemical Substances From Aqueous Solutions…
DOI: http://dx.doi.org/10.5772/intechopen.101605



The value of parameter 1/n of the Freundlich equation gives an indication of the
validity of the adsorption of the adsorbent adsorbate system. The values of 1/n
presented in Table 1 are between 0 and 1 indicating that the adsorption of the two
dyes on our prepared adsorbent material (NSC) is favorable.

The magnitude of E is useful for estimating the type of adsorption process. The
found values of E for BB9 and BY28 in the single and binary system are less than
8 kJ mol�1, knowing that energy values less than 8 kJ mol�1 indicate physisorption and
energy values varying from 8 to 16 kJ mol�1 indicate chimisorption. Therefore, the
adsorption type of BB9 and BY28 onto NSC has been defined as physical adsorption
(physisorption). This confirms the results following the study of the influence of pH.

3.4 Kinetics of adsorption

The kinetic of adsorption is an important characteristic in evaluating the efficiency
of adsorption process. Three kinetics models (pseudo-first order, pseudo-second
order, and intraparticle diffusion) were utilized to test the experimental data and
predict the controlling mechanism of dye adsorption process.

3.4.1 Pseudo-first-order model

The linearized form of pseudo-first-order rate expression is given as:

log qe � qt
� �

¼ log qe
� �

� k1
2:303

t (16)

Where qe and qt are the amount of dye adsorbed on sorbent (mg/g) at equilibrium
and time t, respectively, k1corresponds to the reaction rate constant of pseudo-first-
order (min�1), and t is time (min) [56]. The values of qe and k1 were calculated from
the slope and intercept of the plots of the log (qe-qt) vs. t.

3.4.2 Pseudo-second-order model

Pseudo-second-order rate expression reaction model is expressed as (linearized
form) [57]:

t

qt
¼ 1

k2q2e
þ 1
qe
t (17)

Where k2 is the pseudo-second-order rate constant (g/mg.min). A plot of t/qt and t
should give a linear relationship if the biosorption follows pseudo-second-order
model. The qe and k2 can be calculated from the slope and intercept of the plot.

3.4.3 Intraparticle diffusion model

The intraparticle diffusion model is based on the theory proposed by Weber and
Morris [58]. The Weber and Morris equation is (18):

qt ¼ kidt
1=2 þ C (18)
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Where qt is the adsorption capacity (mg/g) at time t (min), kid is the intraparticle
diffusion rate constant (mg/g.min), and C (mg/g) is a constant, which provides the
information regarding the thickness of the boundary layer. The values of Kid and C
were calculated from the slope and intercept of the plots of the qt against t

1/2.
The conformity between the experimental data and the predicted model is based on

the values of the correlation coefficients (R2), hence the value R2 closest to unity will
indicate the adequate model to correctly describe the kinetics of adsorption of the dye.

Table 3 summarizes the rate constants and correlation coefficients (R2) of the
three kinetic models. The fitting of the kinetic data in the pseudo-second-order equa-
tion showed excellent linearity with high correlation coefficient (R2

> 0.999), and the
good agreement between the experimental and calculated equilibrium adsorption for
the pseudo-second-order model confirms that this one describes correctly the
adsorption kinetics. Similar results have been observed in the adsorption of basic dyes
onto Moroccan Clay [59] and in the adsorption of Methylene Blue (MB) by montmo-
rillonite clay [60].

3.5 Quantum chemical studies

3.5.1 Global reactivity descriptors

The global chemical reactivity descriptors, energy gap (ΔE), dipole moment (μ),
hardness (η), softness (S), nucleophilicity (N), and electrophilicity index (ω) witch

Dyes concentration

(mg/l)

Pseudo-first order Pseudo-second

order

Intraparticle

diffusion

qe,exp qe,cal K1 R2 qe,cal K2 R2 Ki C R2

BB9 (S) 10 15.48 7.998 0.028 0.752 15.78 0.198 0.999 0.095 16.20 0.965

20 32.07 0.857 0.037 0.668 31.34 0.156 1.000 0.114 30.24 0.976

30 47.72 1.795 0.074 0.403 47.85 0.109 1.000 0.306 45.66 0.794

40 58.45 8.707 0.061 0.783 58.82 0.022 0.999 0.927 51.51 0.971

BY28(S) 10 12.69 0.129 0,112 0,485 12.73 0,470 1.000 0,100 12.04 0,542

20 28.39 0.823 0,070 0,826 28.49 0,246 1.000 0,098 27.72 0,798

30 43.14 2.960 0,023 0,913 42.37 0,071 0,999 0,316 39.86 0,905

40 58.89 96.11 0,285 0,858 59.88 0,020 0,999 1.499 49,17 0,825

BB9(B) 10 15.80 23.22 0.041 0.484 15.82 1.051 1.000 0.036 15.54 0.756

20 32.01 1.376 0.054 0.892 32.05 0.191 1.000 0.217 30.45 0.843

30 43.82 8.586 0.064 0.937 44.05 0.031 0.999 0.881 37.27 0.982

40 48.00 51.54 0.059 0.812 50.76 0.003 0.960 4.923 9.712 0.954

BY28(B) 10 12.08 3.088 0.177 0.813 12.16 0.209 0.999 0.131 11.19 0.873

20 14.37 12.58 0.217 0.851 14.45 0.200 0.999 0.112 13.58 0.879

30 19.49 12.36 0.165 0.898 19.68 0.087 0.999 0.423 16.69 0.649

40 20.49 1.173 0.170 0.756 20.57 0.332 1.000 0.167 19.42 0.502

Table 3.
Kinetics parameters for the adsorptive removal onto NSC adsorbent of BB9 and BY28 dyes and their mixture.
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calculated from HOMO and LUMO energies and are obtained at the level of theory
B3LYP/6 G-31G(d) and summarized in Table 4.

Energy gap (ΔEgap = EHOMO – ELUMO): The energy gap between the HOMO and
LUMO is very important in determining the chemical reactivity of the molecule dyes
toward the adsorption on the adsorbent surface. On the other hand, the decrease in
the value of ∆Egap increases the reactivity of the molecule, which facilitates adsorp-
tion and increases the adsorption efficiency. It can be seen from Figure 12 that the
BB9 dye shows a lower ΔEgap (ΔEgap = 1.163 eV) compared with the BY28 dye,
which has a difference of 3.198 eV, which clearly means that the molecule of BB9 is
more reactive than BY28, Therefore, the BB9 dye will be adsorbed firstly. This con-
clusion is in agreement with the experimental results.

Dipole moment (μ): The dipole moment (μ) is another important electronic
parameter, provides information on the polarity of the whole molecule. The high

Dyes BB9 BY28

ET (u.a) �1643.18 �1754.96

μ (Debye) 11.351 7.573

EHOMO (eV) �4.373 �5.585

ELUMO (eV) �3.210 �2.387

μ (eV) �3.791 �3.986

η (eV) 1.163 3.198

S (eV) 0.859 0.312

ω (eV) 6.178 2.480

N (eV) 4.747 3.535

Table 4.
Quantum chemical parameters of the studied dyes calculated at B3LYP/6 G-31G (d).

(a)

   ELUMO= - 3.210 eV                                                                                               

                                                   

   ΔE gap=1.163 eV

   EHOMO= - 4.373 eV

(b)

   ELUMO= - 2.387 eV                                                                                          

                                                   

   ΔE gap=3.198 eV

   EHOMO= - 5.585 eV

     

  

Figure 12.
Highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) density of
BB9 (a) and BY28 (b) BY DFT at the B3LYP/6 G-31G(d).
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molecular polarity probably gives rise to great chemical reactivity. It is clearly
established in the literature that molecules with high dipole moments are more reac-
tive, and their action results in a significant elimination efficiency. In our case the high
dipole moment value of BB9 (11.351 D) probably increases the adsorption between the
BB9 dye and the surface of natural clay compared with BY28 (7.573 D), which explains
the adsorption efficiency higher than BB9 when compared with BY28 and confirms
the experimental results.

Hardness (η) and softness (S): The stability and reactivity of a molecule are
determined by the calculation of two important parameters: the global hardness (η)
and the softness (S). The resistance of a molecule to deformation is determined by the
chemical hardness, a hard molecule has a high energy gap. In addition, a soft molecule
has a low energy gap. It is important to note that electronic systems with hard
molecules have the least tendency to react while systems with soft molecules have a
higher tendency to react.

The high percentage of elimination of a molecule is linked to a low value for
chemical hardness and a high value for softness. In the present work, the values of the
global hardness (η) and the softness (σ) presented in Table 5 clearly show that the
BB9 dye has the lowest value of the hardness (η = 1.163 eV) and the higher value of the
softness (S = 0.859 eV), which explains their significant elimination percentage com-
pared with BY28, these results are in good agreement with the experimental results.

Global electrophilicity index (ω): The global electrophilicity index (ω) represents
the capacity of the dyes to accept electrons. More reactive nucleophilic is character-
ized by lower value of ω, and conversely more reactive electrophilic is characterized
by a higher value of ω. From Table 5, we notice that the electrophilicity value of BB9
(ω = 6.178) is greater than that of BY28 (ω = 2.48); this indicates that the molecule of
BB9 is more electrophilic than that of BY28. Consequently, BB9 will be adsorbed first
followed by BY28.

Dye N° of atoms Atoms Pk
þ Pk

�
ωk Nk

BB9 1 C 0.117052 �0.091655 0.72314726 —

2 C �0.083178 0.109989 — 0.52134786

3 C 0.123453 �0.0193705 0.76269263 0.09195176

4 C �0.0825946 0.0874818 �0.51026944 0.4152761

5 C 0.1346605 �0.0391588 0.83193257 0.18588682

6 C �0.044701 0.0617533 �0.27616278 0.29314292

7 C �0.0622537 0.0077143 �0.38459903 0.03661978

8 C 0.1288878 �0.049104 0.79626883 0.23309669

9 C �0.0873976 0.0988698 �0.53994237 0.46933494

11 C 0.1294818 �0.031639 0.79993856 0.15019033

12 C �0.045136 0.063713 — 0.30199962

13 C 0.1402246 �0.0370003 0.86630758 0.17564042

19 N 0.3640112 �0.0556138 2.24885996 —

20 S 0.1232636 �0.0137067 0.76152252 —

21 N 0.0351644 0.09916571 0.21724566 0.47073963

22 N 0.0643843 0.15539811 0.39776621 0.73767483
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3.5.2 Local molecular reactivity

The local reactivity site of the studied dyes has been analyzed by evaluating Parr
functions (PF). The PF is used to obtain the detail information of local reactivity of
each atom in the molecule. Domingo proposed the Parr functions P(r) [61], which are
given by the following equations:

Dye N° of atoms Atoms Pk
þ Pk

�
ωk Nk

23 C �0.0038013 �0.006641 — —

27 C �0.0035767 �0.00689 — —

31 C �0.0061814 �0.005169 — —

35 C �0.0061321 �0.010607 — —

39 Cl 0.0012179 0.5782508 0.00752419 2.74495655

BY28 1 C 0.040255 0.066561 0.105689697 0.23709028

2 C �0.000773 0.00887 — 0.03159494

3 C 0.045305 0.037015 0.118214337 0.13184743

4 C �0.025946 �0.014818 — —

5 C 0.066052 0.091588 0.172349484 0.32623646

6 C �0.021701 �0.037533 — —

7 C �0.036225 0.001143 — 0.00407137

8 C 0.458878 �0.089904 1.197350365 —

13 C �0.173976 0.168698 — 0.60090228

15 C �0.014488 0.091639 — 0.32641812

16 C 0.022465 0.020003 0.058617925 0.07125069

17 C 0.03011 �0.006138 0.078566023 —

18 C �0.011644 0.016571 — 0.05902590

20 C �0.013843 0.039811 — 0.14180678

22 C 0.026365 0.07067 0.068794195 0.25172654

24 N 0.121797 0.125083 0.317804912 0.44554565

25 N 0.362411 �0.068898 0.945639022 —

26 N 0.059207 0.13669 0.154488825 0.48688978

27 C �0.006573 �0.003929 — —

31 C 0.019834 0.001078 0.051752856 0.00383984

35 C 0.016503 0.000443 0.043061278 0.00157797

39 O 0.000958 0.10219 0.002499709 0.36400078

40 O 0.00195 0.081069 0.005088135 0.28876778

42 C �0.000314 �0.005534 — —

Table 5.
Theoretical prediction of reactive sites using Parr function for BB9 and BY28 dyes.
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Pþ rð Þ¼ρ
ra
s rð Þ for nucleophilic attack (19)

P� rð Þ ¼ ρ
rc
s rð Þ for electrophilic attack (20)

With these electrophilic and nucleophilic Parr functions are at hand, the local
electrophilicity ωK and the local nucleophilicity NK indices will be redefined as follows:

ωK ¼ ωPþ
K (21)

NK ¼ NP�
K (22)

Table 5 shows that at the DFT level, the most susceptible site to a nucleophilic
attack for BB9 is located on sulfur, nitrogen, and benzene ring. In the case of an
electrophilic attack, the most reactive site is on Cl39. For BY28 the more susceptible
sites to nucleophilic attacks are nitrogen and C8 atoms, while N26 and C13 are the
most susceptible sites for electrophilic. The results indicated that the BB9 dye has
more and strong electrophilic sites than BY28; consequently, BB9 has a high affinity
for NSC than BY28.

3.5.3 MC and MD simulations

In this study, Monte Carlo simulations were performed to study the adsorption and
orientation of dyes on charged surfaces based on (001) kaolinite surface and all-atom
models. The most stable low-energy adsorption configurations of the studied dyes are
shown in Figure 13. It is clear that the three dyes examined BB9, BB41, and BY28 are
adsorbed almost parallel to the plane to maximize surface and contact coverage. These
adsorption configurations indicate that there are strong interactions between the
studied dyes and the kaolinite atoms. This facilitates their adsorption to the surface of
the kaolinite (001) by blocking a maximum of sites and ensuring a great influence on
the removal efficiency.

The outputs and descriptors calculated by the Monte Carlo simulation are
presented in Table 6. The parameters presented in Table 6 include total energy, in
kcal mol�1, of the substrate–adsorbate configuration. As can be seen from Table 6,
BB9 gives the maximum adsorption energy in negative value found during the
simulation process. High values of adsorption energy indicate that BB9 molecule
will give the highest removal efficiency and strong interaction between a kaolinite
substrate and the studied dye. These results are in good agreement with
experimental findings.

To further confirm our results, we have performed the energy fluctuation curves
as obtained from MD simulations; the equilibration of the system is confirmed by
the stable mean values of energy fluctuations, as shown in Table 7. The mean
square displacement (MSD) and the diffusion coefficient were calculated after
100,000 steps. The obtained data included in Table 7 show that the diffusion
coefficient of the free water molecules was more pronounced (5.85 � 10�6 cm2/s)
than the water with BB9 and BY28 molecules. Much smaller diffusion
coefficients obtained for water with BB9 were caused by the strong interaction
between (water + BB9) and the kaolinite surface, which decreased the mobility of
the water [62].
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Figure 13.
The most stable low-energy configuration for the adsorption of the dyes on kaolinite surface obtained through the
Monte Carlo simulations.

System Total

energy

Adsorption

Energy

Rigid adsorption

energy

Deformation

energy

Ead/Ni

Dye

BB9/(001) �111.4 �317.53 �150.77 �166.5 �317.53

BY28/(001) �213.8 �146.92 �117.07 �29.89 �147.18

Table 6.
Outputs and descriptors calculated by the Monte Carlo simulations for the lowest adsorption configurations of
tested dyes on kaolinite (001) surface (in kcal/Mol).
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4. Conclusion

The results obtained in this research indicated that natural safiot clay was consid-
ered low cost, eco-friendly, and a promising alternative adsorbent for removing BB9
and BY28 dyes in single and binary systems from an aqueous solution. The percentage
of dye removed increased with increasing adsorbent dosage, decreased with increas-
ing initial dye concentration, and varied with dye solution pH. The rate of adsorption
was found to obey pseudo-second-order kinetics model with a good correlation coef-
ficient indicating toward chemisorption, and the Langmuir isotherm represented the
equilibrium adsorption and shows monolayer homogeneous surface of adsorbent for
single and binary mixture.

All the theoretical parameters of DFT calculations show that the two dyes can be
adsorbed and that the BB9 molecule has the best percentage of elimination. From this
calculation, we note that: The dye removal efficiency increases with the highest values
of ω, ELUMO, μ, and S and the lowest values of ∆Egap, EHOMO and η. Another impor-
tant conclusion that we can draw from these calculations is that the theoretical results
from reactivity descriptors show that nitrogen, sulfur, carbon, and nitrogen atoms of
BB9 and BY28 are the main adsorption sites, respectively. Finally, this study displays a
good correlation between the theoretical and experimental data, which confirm the
reliability of the quantum chemical methods to study the competitive adsorption of
two cationic dyes onto NSC surfaces, in the single and binary system. DFT calcula-
tions, Monte Carlo method, and Molecular dynamics simulations support the experi-
mental findings.
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Conditions Diffusion coefficient of water (10�6 cm2/s)

Free water molecules 5.850

Water with BY28 2.430

Water with BB9 0.450

Table 7.
Calculated diffusion coefficient of free water and water with dyes in kaolinite surface.
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