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Chapter

Adipocytokines: Are They the 
Theory of Cancer Progression?
Rowyda Nawwaf Al-Harithy

Abstract

Adipocytokines have gained significant attention in the scientific community over 
the past few decades. They are a family of enzymes, hormones, growth factors, pro-
teins, and other bioactive molecules that are important regulators of many processes. 
Adipocytokines are predominantly produced by preadipocytes and mature adipocytes 
to act through a network of autocrine, paracrine, and endocrine pathways. Leptin 
(LEP) is the first adipocytokine discovered that has a role in modulating adiposity 
and has been shown to exert pleiotropic effects on many metabolic pathways through 
the leptin receptors (LEPRs). LEP has pro-tumoral roles; it promotes angiogenesis, 
proliferation, survival of tumor cells, and inhibits apoptosis. To exercise its role in 
tumorigenesis, LEP-LEPR signaling and epithelial-mesenchymal transitions (EMTs) 
play a significant role. LEP is an oncogenic factor mainly due to its proinflammatory 
and proangiogenic effects. In angiogenesis, LEP acts directly as an endothelial growth 
factor or indirectly through cellular pathways, such as STAT3/ERK1/2, JAK2/STAT3, 
MAPK/ERK, PI3K/AKT, p38, p53, MAPK, and Wnt/β-catenin.
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1. Introduction

Adipose tissue is a complex, dynamic, and heterogenic endocrine organ with 
diverse homeostatic processes [1]. During the past few decades, the structural and 
functional principles of adipose tissue have evolved considerably to get to today’s con-
cept [2]. In the human body, the adipose tissue is restricted in depot sites and varies 
in cellular composition and character. Adipose tissue can be classified by morphology 
into white, brown, beige, pink, and yellow [3]. Our understanding of their impor-
tance started with identifying a range of adipose tissue products and their functions. 
Since then, much has been learned about how adipose tissue communicates with 
other organs of the body. More recently, its functions have been reported to be highly 
influenced by bioactive molecules with widespread systemic effects contributing to 
numerous physiological and pathological processes [4]. The white adipose depots are 
considered a specialized organ representing the largest endocrine tissue in humans. 
It can be broadly classified by location into subcutaneous and visceral. In its different 
locations, it shows different metabolic profiles with different functions. In general, 
they are responsible for storing chemical energy formatted as triglycerides packed in 
unilocular lipid droplets. The white adipocytes, especially in the visceral area, secrete 
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abundant mediators, including exosomes, miRNA, lipids, inflammatory cytokines, 
and peptide hormones that participate in the process of interorgan communication 
via paracrine and endocrine modes [5].

White adipose tissue comprises many different cell types; approximately 40–50% 
of the cells are adipocytes, with the rest represented by the stromal vascular fraction 
(SVF) of cells, including preadipocytes, fibroblasts cells, endothelial cells, vascular 
progenitor cells, mesenchymal stem cells, and a variety of immune cells (macro-
phages, natural killer cells, B-lymphocytes, and T-lymphocytes) [6]. Adipocytes, 
specific to white adipose tissue, are plastic and respond to changes in metabolism 
by altering their size, number, and their exerted functions [7, 8]. The white adipose 
tissue multifarious composition renders white adipose tissue an important mediator 
of metabolism and inflammation [9]. White adipose tissue influences metabolism 
through maintaining energy homeostasis, adipocyte differentiation, and insulin 
sensitivity. It also affects inflammation through its actions in the immune system 
as pro- and anti-inflammatory mediators (Figure 1). This function is controlled by 
numerous adipocytokines, other cytokines, chemokines, and growth factors [10]. 
While the term adipokine is commonly used to refer to adipose tissue-derived pro-
teins, adipocytokines are mainly, but not solely, produced by adipocytes.

2. Adipocytokines

The word adipocytokine is derived from the Greek root meaning fat cell move-
ment. Adipocytokines are produced exclusively or substantially by preadipocytes 
and mature adipocytes, hence their name. They are biologically active molecules 

Figure 1. 
Adipocytokines and their mechanisms as an anti-inflammatory and proinflammatory.
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that are important regulators for many physiological processes. Adipocytokines are 
heterogeneous in structure and function, which is mainly affected by the specific 
anatomical location of the producing adipocytes. Adipocytokines have the ability to 
act locally or distally as inflammatory, immune, or hormonal signalers. They can be 
categorized in terms of their function as metabolic factors, proinflammatory factors, 
proangiogenic factors, and extracellular matrix components. Adipocytokines are 
secreted in response to different triggers; their involvement has been noted in insulin 
action, endothelial cell function, blood pressure, appetite, hemostasis, reproduction, 
angiogenesis, and immunity [11].

The year 2022 marks the 35th anniversary of adipocytokines. The breakthrough 
discovery of the first adipocytokine, adipsin, followed by tumor necrosis factor 
(TNF), leptin (LEP), and adiponectin led to the widespread recognition of adipose 
tissue as an endocrine organ. Adipsin (also known as complement factor D) was 
identified as an adipokine in 1987 [12]. In 1993, TNF was identified as a proinflam-
matory adipocytokine in the models of diabetes and obesity, becoming pioneering 
evidence for a functional link between obesity and inflammation [13]. The identi-
fication and cloning of LEP in 1994 followed by that of adiponectin in 1995 were an 
inflection point into the endocrine era [14, 15]. LEP and adiponectin are the classic 
adipocytokines of visceral adipose tissue and clearly the two most widely studied 
adipocyte products. LEP is acknowledged as an adipose tissue-specific secreted 
protein that regulates food intake and energy. Adiponectin, also known as ACRP30, 
AdipoQ , and gelatin-binding protein-28, has anti-inflammatory actions on the 
liver, the heart, the kidneys, muscle cells, and pancreatic β cells, to name a few 
[16–18]. It plays roles that are most likely relevant to cognitive dysfunction, namely, 
synaptic regulation, insulin sensitivity, neuroinflammation, neuroprotection, and 
neurogenesis [19, 20].

Adiponectin and LEP’s detailed mechanisms of action at the cellular level of 
their target organs and their mutual effects on each other remain ambiguous. 
Despite extensive research on the topic, much more regarding LEP and adipo-
nectin, their relationship to each other and to the body remains to be discovered. 
However, it is important to note that the ratio of adiponectin to LEP has been 
proposed as a marker of adipose tissue dysfunction [21, 22]. On review of the 
literature, LEP is found to be the most studied in the context of cancer risk and 
progression (Figure 1).

3. Leptin

Friedman and his colleagues discovered LEP in 1994 and named it after the word 
“leptos,” which means thin in Greek reference to its demonstrated effect on the body. 
In humans, LEP is encoded by the LEP gene that is located on chromosome 7 7q31.3 
and consists of three exonic regions with two intronic regions. It is a nonglycosylated 
adipocytokine consisting of 146 amino acids. LEP is a multifunctional adipocytokine 
primarily secreted by the white adipocytes. LEP is also produced by other tissues, 
such as the stomach, placenta, and mammary glands [23–26]. The past 25 years of 
research on LEP have provided important insights into the intricate network that 
links nutrition, metabolism, reproduction, endocrine regulation, inflammation, and 
immune function [27–29]. LEP is a key regulator of the adipose organ, and its main 
task is to regulate energy balance, which is possible by lowering the appetite. The 
essential characteristics of LEP are listed in Table 1.
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LEP expression in the adipose tissue is influenced by a variety of hormones, 
including insulin, glucocorticoids, catecholamines, and cortisol, and several other 
metabolic factors, including TNF-α, fatty acids, and glucose [30–33]. Recently, a 
fat-specific long noncoding RNA (lncRNA) has been identified to interact with 
redundant enhancers and regulate LEP expression [34]. LEP deficiency or resistance 
is associated with the dysregulation of cytokine production, increased susceptibility 
to infections, autoimmune disorders, malnutrition, and inflammatory responses. The 
elevated levels of serum LEP have been unequivocally correlated with an increased 
risk of developing various tumor forms, including testicular, breast, prostate, colon, 
and pancreatic cancers [35–40]. The short-, medium-, and long-term regulatory 
actions of LEP are supported by its specific LEP receptor (LEPR). The LEPR is a class 
I cytokine receptor and structurally a transmembrane receptor encoded by the LEPR 
(OBR) gene on chromosome 1p31.3 [41–43]. In humans, there are at least four splice 
variants of the LEPR gene that have been identified and categorized as long (LEPRb), 
short (LEPRa, and LEPRc), and secretive (LEPRe) isoforms. The isoforms have 
different lengths of intracellular C-terminal domains. The LEPRb contains the full 
intracellular domain 303 amino acids, and the short isoforms contain 32–40 amino 

Adipocytokine Characteristics

Leptin (LEP) Signals through leptin receptor isoform b (LEPRb)

Binds short and soluble leptin receptor isoforms (LEPRa, LEPRc)

Regulates bone mass

Regulates reproduction

Regulates body weight gain

Regulates immune cell functions

Regulates food intake and energy expenditure

Regulates glucose tolerance and insulin sensitivity

Regulates brain sympathetic output to different tissues

May regulate body temperature

May regulate hematopoiesis

Induce epithelial-mesenchymal transition

Promote adipogenesis

Increases adipocyte lipolysis

Increases angiogenesis

Increases brown adipose tissue activity

Increases skeletal muscle cell glucose uptake

Increases adipocyte, hepatocyte, and skeletal muscle cell fatty acid oxidation

May increase adipose tissue stromal cell proliferation

May increase white adipose tissue browning

Decreases adipocyte glucose uptake

Decreases adipocyte, hepatocyte, and skeletal muscle cell lipogenesis

Table 1. 
The functions of leptin.
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acids. Although long and short isoforms share a sequence of 29 amino acids proximal 
to the transmembrane region, the LEPRe isoform lacks both transmembrane and 
cytoplasmic domains [44, 45]. The long LEPR contains the full intracellular domain 
to fully induce intracellular signaling necessary for the activation of critical second 
messenger pathways and normal leptin action. The LEPR isoforms are distributed in 
almost all peripheral tissues and seem to mediate the transport of LEP. In humans, 
the effects of LEP can be detected at various sites given that LEPR are found in the 
brain, heart, placenta, lung, liver, muscle, kidney, pancreas, spleen, thymus, prostate, 
testes, ovary, small intestine, and colon [46]. Therefore, LEPR locations demonstrate 
LEP’s importance in human molecular processes. The signaling events that follow the 
binding of LEP to its LEPRs have been studied extensively and characterized at the 
biochemical and molecular levels in many systems and, more recently, in relation to 
immune responses [47].

4. Leptin and cancer

LEP is the most studied adipocytokine, particularly in metabolism and obesity-
related cancers. It is well established that LEP has pro-tumoral roles; it promotes 
angiogenesis, proliferation, survival of tumor cells, and inhibits apoptosis [48]. To 
exercise its role in tumorigenesis, LEP-LEPR signaling and epithelial-mesenchymal 
transitions (EMTs) play a significant role in tumor initiation, progression, metas-
tasis, and chemoresistance. The function of the leptin axis in cancer is through 
LEP-LEPR singling. The binding of LEP to LEPR induces the activation of several 
signaling pathways, such as JAK/STAT3, PI3K/AKT, and MAPK/ERK. Cumulative 
research demonstrated high levels of LEP and LEPR expression in cancer cells. 
LEP and LEPR levels are usually missing in epithelial breast tissue but are found in 
abundance in breast cancer [49]. Other cancers that show high levels of LEP and 
LEPR include hepatocellular carcinoma [50], lung cancer [51], prostate cancer [52], 
colorectal cancer [53], melanoma [54], ovarian cancer [55] renal carcinoma [56], 
and breast cancer (Figure 2) [57]. It was also demonstrated that the upregulated 
level of LEP correlates with clinical and prognostic outcomes in multiple cancer 
types such as the presence of remote metastasis of breast cancer and the short 
survival of its patients. The level of LEP expression is influenced by numerous 
physiological mechanisms, which are noted to be associated with fat mass. One of 
such mechanisms is the ability of inflammatory cytokines, i.e., TNF-α, interleukin-1 
(IL-1), and leukemia inhibitory factor, to induce adipocytes to produce LEP and 
increase the expression of its mRNA synthesis [58]. Another factor is the genetic 
variations in the LEP gene and/or LEPR gene that modulates LEP level [59, 60]. The 
genetic variations in these genes have been specifically linked to the progression 
of prostate, breast, gastric, and lung carcinomas [61–63]. Since the proposal of 
LEP as an EMT inducer a decade ago, research has proven it to be very important 
in driving the cellular process to aggressive cancer phenotypes. EMT is a complex 
reprogramming cellular process allowing epithelial cells to acquire mesenchymal 
characteristics, an important role in the tumor microenvironment (TME). This 
change enhances migratory and invasive capability and has been demonstrated to 
be essential in the metastatic spread of several cancer types, including prostate, 
lung, liver, pancreatic, and breast cancers [64, 65]. EMT programs were also found 
to stimulate the production of LEP by cancer cells, suggesting a signaling loop in 
tumor progression. Other important signaling molecules involved in the process 
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include integrins, growth factors, and cytokines, such as IL-8, IL-6, and TNF-α, 
which are often secreted by tumor stroma [66, 67]. Literature has also documented 
that EMT programs can stimulate the production of proinflammatory factors. 
Olea-Flores demonstrated the mechanism by which LEP promotes EMT program-
ming, through Src and FAK activations that control the secretion and activation of 
metalloproteinase-2 (MMP-2) and metalloproteinase-9 (MMP-9). Leptin promotes 
the expression of EMT-related transcription factors and invasion in a Src and FAK-
dependent pathway in MCF10A mammary epithelial cells [68]. In a recent review, 
Tsung-Chieh and Michael indicated that cancer cells and the tumor microenviron-
ment express LEP and LEPRs and suggested that the potential leptin autocrine/
paracrine signaling loop could affect tumor progression [49].

Other studied theories on the involvement of LEP in carcinogenesis were 
described to be mediated by LEPR activation of PI3K, ERK1/2, and Jak2/Stat3 signal-
ing pathways. These pathways regulate the expression of cancer-related genes, such 
as cyclin D1, cyclooxygenase-2 (COX-2), vascular endothelial growth factor (VEGF), 
and potentiate several procarcinogenic processes, including angiogenesis, migration, 
and mesenchymal transformation [69, 70]. Additionally, in vitro studies have docu-
mented the antiapoptotic and mitogenic effects of LEP on different cancer cell lines. 
Zhang and his team have shown that LEP can play the role of being an antiapoptotic 
by regulating the expression of proteins involved in the apoptotic pathway. They 
observed that LEP decreases the apoptotic potential of adipose tissue by increasing 
the Bcl2 and decreasing proapoptotic Bax and CD95 protein expression [71]. More 
importantly, LEP has been studied as an oncogenic factor due to its proinflammatory 
and proangiogenic effects.

Figure 2. 
LEP and LEPR expression in a pancancer panel. From Lin and Hsiao [49].
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5. Role of leptin as a proinflammatory factor

The immune system response, acute and chronic inflammation, is called into 
action when other homeostatic mechanisms are inadequate. Inflammatory mediators 
play a significant role, adjacent in importance to mutations and epigenetic alterations. 
In tumor initiation, LEP plays a pleiotropic role in the immune response and can 
appropriately be considered, both structurally and functionally, as a proinflamma-
tory cytokine. LEP regulates both innate and adaptive immune responses through 
the modulation of immune cells’ survival and proliferation as well as its activity 
[72–74]. LEP has a modulatory impact on the course of inflammation, affecting the 
expression of proinflammatory cytokines and their receptors. In the innate immune 
response, LEP enhances the secretion of TNF-α, a proinflammatory mediator, and 
interacts with interleukin1beta (IL1β) [75]. IL1β has the ability to increase the levels 
of cytokines, such as Interleukin 6 (IL6), Interleukin 8 (IL8), and prostaglandin E2 
(PGE2), by its mechanism on nitric oxide synthase-2 (NOS2) through the JAK2, PI3K, 
MAP2K1/MEK1, and MAPK14/p38 signaling pathways [76]. These cytokines also 
regulate the expression of LEP, creating a signaling loop that supports sustaining a 
chronic proinflammatory state [77]. In the adaptive immune response, LEP promotes 
the alteration of memory T-cells immune response toward T helper-1 cells, as well 
as escalating CD4+CD25– T-cell proliferation and reducing the autophagy process 
during T-cell receptor (TCR) stimulation by triggering MTOR signaling pathway 
and upregulating the synthesis of B-cell lymphoma 2 (BCL2) [78]. LEP controls the 
crosstalk between innate and adaptive immunity by affecting dendritic cell number, 
maturation, cytokine production, and capacity to induce CD4+ T-cell proliferation 
[79]. Chronic infectious, immune, and metabolic diseases may lead to LEP resistance, 
increasing LEP levels and further fueling the inflammatory state. LEP’s involvement 
in the immune and inflammatory response has become increasingly evident and, in 
turn, is important in cancer.

6. Role of leptin as an angiogenic growth factor

Angiogenesis, a hallmark of cancer, refers to the formation of new blood vessels 
from preexisting ones. It is a vital process that plays a role in normal physiological 
as well as pathological processes. Angiogenesis enables tumor growth and metas-
tasis through a multistep progression commencing with endothelial cell migration, 
proliferation, invasion, and ultimately novel capillary formation. Though the basic 
steps of angiogenesis are similar in all tissue, it is likely that the vascular network of 
each organ will be established through tissue-specific key mechanisms. Angiogenesis 
requires a balance between proangiogenic and antiangiogenic factors; changes in 
equilibrium can lead to oncogenic angiogenesis.

White adipose tissue is embedded in a dense vascular network and is the most 
vascularized tissue in the human body. The hypervascularization of the white adipose 
tissue indicates the presence of an intimate interplay between both the vascular 
and adipose compartments. The functions of adipose vasculature are summarized 
in Table 2. It has been previously noted that the white adipose tissue regulates the 
production of various adipocytokines, but it also releases angiogenic factors; there-
fore, it influences and modulates angiogenesis as well as vascular structure [80–82]. 
Scientific research has been able to narrow the culprits of angiogenic growth in white 
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adipose tissue to two possibilities: first, in response to signals initiating from neigh-
boring adipocytes that are undergoing proliferation and enlargement; the other possi-
bility is through metabolic signals produced locally or distally. These two possibilities 
are not mutually exclusive, and probably tissue expansion involves both local signals 
arising from expanding adipocytes and distant signals reflecting the developmental 
and metabolic state of the whole organism. It has been acknowledged that adipogene-
sis, angiogenesis, and vascular remodeling are tightly related and regulated processes. 
Dysfunction in the regulation of one or more of these processes leads to changes in 
vessel growth, vascular permeability, remodeling, adipose mass, and function, which 
will ultimately cause pathological angiogenesis or vascular regression [83].

In white adipose tissue, LEP was found to be an important proangiogenic factor 
or an angiogenesis inducer [84]. In 1998, Sierra-Honigmann and colleagues produced 
one of the first studies to demonstrate that leptin-induced cell proliferation, cell sur-
vival, and 3D matrix formation of capillary-like tubes mimicking vascular endothelial 
growth factor (VEGF) 165 [85]. This supported the notion that LEP is an endothelial 
growth factor. LEP is able to act as a direct factor to induce the angiogenic potential 
of endothelial cells evident by the presence of LEPR on endothelial cells. Both in vivo 
and in vitro studies have demonstrated the activation of endothelial LEPR by LEP, 
leading to capillary tube formation [86]. The indirect involvement of LEP in angio-
genesis has been explored immensely. Garonna et al. showed that leptin enhances 
endothelial cyclooxygenase-2 (COX-2) expression and causes rapid VEGFR2 phos-
phorylation through the activation of P38 MAPK/AKT/COX-2, which is needed 
for leptin-stimulated neoangiogenesis [87]. LEP increases the levels and activity of 
enzymes involved in angiogenesis through metalloproteinase-2 (MMP-2) and MMP-9 
activity [82]. Additionally, LEP has been shown to upregulate and act synergistically 
with the key angiogenic mediators like fibroblast growth factor (FGF)-2, VEGF, and 
its receptor VEGFR, resulting in stimulation of blood-vessel growth [88]. The VEGF 

Adipose vasculature functions

1 Providing nutrients and oxygen essential for the maintenance of adipocyte survival and functions

2 Removing metabolic products from adipose tissue

3 Paracrine regulation of adipocyte functions through the production of various factors and cytokines 

from vascular cells

4 Transporting adipose-tissue-derived growth factors, adipokines, and cytokines for removal of tissues 

globally regulating physiological functions via the endocrine mechanism

5 Transporting non-adipose-tissue derived growth factors, cytokines, and hormones for modulating 

adipocyte functions and growth

6 Alteration of the adipose microenvironment such as hypoxia and acidosis, which control adipocyte 

function, preadipocyte differentiation, and adipose tissue mass

7 Supplying circulating stem cells from non-adipose tissues to adipose tissues

8 Supplying adipocyte vessel wall stem and precursor cells that can eventually differentiate into mature 

adipocytes

9 Supplying other cell types such as inflammatory cells that secondarily affect adipocyte function

10 Preparation of adipose niche formation during embryonic development by the vasculature

Table 2. 
Adipose vasculature functions in the modulation of adipocyte functions.
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and VEGFR have a special signaling transduction system that plays a significant role 
in the process of oncogenic angiogenesis. In vitro and in vivo findings have implicated 
the role of VEGFR in the facilitation of angiogenic growth and endothelial cell tube 
development [89]. LEP can upregulate VEGF expression and function, VEGF can, in 
turn, activate LEP demonstrating the functional interplay between both cytokines. 
The increase in the presence of both cytokines could generate and amplify a proan-
giogenic environment. Moreover, crosstalk between LEP and VEGF has been noted 
in other tissues, such as in cancerous breast tissue; LEP activates HIF-1α and NF-κB 
to upregulate VEGF [89]. Additionally, LEP is involved in tumor angiogenesis-related 
signaling pathways such as STAT3/ERK1/2, JAK2/STAT3, MAPK/ERK, PI3K/AKT, 
p38, p53, MAPK, and Wnt/β-catenin [90]. Less studied are the Akt and Wnt signaling 
pathways’ effect on the proliferation and angiogenic differentiation of endothelial 
cells, though LEP’s involvement was demonstrated [91]. Furthermore, distinct 
mechanisms, regulated Wnt-responsive GSK-3β and growth factor/Akt responsive 
GSK-3β, suggest that GSK-3β has a crucial role in the crosstalk between the Akt and 
Wnt signaling pathways [92]. However, the underlying cellular mechanism remains to 
be elicited. Of note, tumor angiogenesis is closely associated with the tumor micro-
environment and is regulated by a variety of proangiogenic factors and/or angiogenic 
inhibitors. The genetic and epigenetic alterations of angiogenesis-associated genes 
might result in angiogenesis dysfunctions and promote tumorigenesis.
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