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Abstract

Glucose provides the necessary fuel to cover the physiological functions of the 
organism. In the brain, glucose represents the main energy supply through the 
generation of adenosine triphosphate, with oxygen and glucose being the main com-
ponents involved. The imbalance in glucose levels in the central nervous system pro-
duces substantial changes in metabolism. Hypoglycemia, or decreased blood glucose 
levels below 50 mg/dl, is accompanied by symptoms such as decreased performance 
of cognitive tasks such as verbal fluency, reaction time, arithmetic ability, verbal 
memory and visual, in addition to excitotoxicity, oxidative stress, neuroinflammation 
and apoptosis. Hyperglycemia participates in some cardiovascular diseases, neuropa-
thy, nephropathy, retinopathy. Changes in glucose metabolism must be regulated and 
considered in order to obtain the best treatment for different pathologies, such as 
infections, non-infections, traumatic, primary or acquired.

Keywords: hyperglycemia, hypoglycemia, neuroglycopenia, neuroinflammation, 
oxidative stress

1. Introduction

The human brain requires a high and continuous input of energy, which is obtained 
mainly from glucose, due to its high metabolic rate. Some interesting facts about the 
brain are that it accounts for only 2% of body weight, but it also requires 15% of cardiac 
output, 20% of total body oxygen and 25% of serum glucose, which means that the 
human brain uses up between 5 and 10 g of glucose per hour or 140 g per day on average 
[1]. Under normal conditions, serum glucose is around 80–90 mg/dl and may increase 
up to 200 mg/dl after meals. On the other hand, serum glucose may decrease up to 
54 mg/dl during prolonged fasting. The concept of hypoglycemia refers to a clinical 
situation in which patients have a serum glucose value below 50 mg/dl matching with 
neuroglycopenic symptoms or serum glucose values below 40 mg/dl without any 
symptoms [1]. The high energy requirements of the human brain employ such complex 
metabolic strategies to manage energy sources. Glucose enters the central nervous 
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system through the Blood-Brain Barrier (BBB), a process that requires a transport 
protein located in the cell membrane [2, 3]. There are two systems of glucose and other 
monosaccharide transporter proteins: sodium-glucose transporters, also known as 
SGLTs (sodium-dependent glucose transport), and glucose transporters, also known 
as GLUTs (glucose transporters). There are several types of GLUT transporters in the 
human body, but in the central nervous system, there are only two types: GLUT1, which 
is found in the BBB, and GLUT3, which is found in neurons. Glucose enters cells via 
GLUT transporters in a process composed of four steps; (1) first, glucose binds to the 
transporter protein on the outer face of the cell membrane; (2) the transporter protein 
changes its conformation and glucose enters into the cell membrane; (3) glucose is 
released into the cytoplasm by the transporter; (4) the transporter returns to its original 
conformation and its glucose binding site is exteriorized again (Figure 1) [4, 5].

The human brain requires a lot of energy to carry out all its functions, this energy 
comes from different pathways in which glucose and oxygen work together to develop 
adenosine triphosphate (ATP). The bonds of the ATP molecule are then broken to 
obtain stored energy, and most of this energy is used for information processing. For 
example, in the human brain, there are about 10 billion neuronal cells communicated 
by more than 50 trillion synapses through neurotransmitters that are synthesized in 
the cerebral cortex in a process that requires about 3.8 × 1012 molecules of ATP [5, 6].

Neuronal and glial cells have distinct functions and are metabolically different 
from each other [6]. In fact, the gray matter of the human brain uses 10 times more 
glucose than any other organ in the body. With the known stoichiometry of glucose 
oxidation (C6H12O6 + 6O2 6CO2 + 6H2O) and its coupled reactions, it is possible to 
obtain an estimated flux at different points in the metabolic chain. This allows us to 
know how glucose enters into glycolysis and the Krebs cycle, leading to the release of 
energy that is then split into small components such as ATP, increasing its molar flux 
to 31 molecules of ATP for each molecule of glucose [7].

Oxidation of glucose molecules through the tricarboxylic acid cycle develops small 
amounts of lactate, which plays an important role as a precursor to the process of 

Figure 1. 
Glucose transport from blood vessels to neuronal cells. GLUT (glucose transporters). Modified from Iatreia: 
2002;15(3).
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gluconeogenesis in the nervous system. Lactate becomes an energetic compound for 
the nervous system, which is demonstrated in neuronal and glial uptake, improving 
ATP synthesis in neurons. Such articles suggest that glucose is stored by the astrocytes 
and then released as glucose or lactate, to be used by neurons, when energetic require-
ments increase [8].

2. Cellular and molecular facts of glucose

Glucose is absorbed by GLUT1 protein transporters and can be stored as  
glycogen (the most important storage of glycogen is located on astrocytes) or go 
into glycolysis (Figure 2) [9].

2.1 Neurons

Glucose represents the main source of energy and its metabolic regulation is so 
important for normal nerve cell functions, including ATP synthesis, regulation of 
oxidative stress, synthesis of neurotransmitters and neuromodulatory molecules 
and many processes such as memory, learning and sensitivity and motor functions 
[10, 11]. The overall performance of neurons, astrocytes and endothelial cells is very 
important during the transit of energy supplements in the nervous system neces-
sary to cover cellular functions [12]. As mentioned above, neuronal cells require a 
high amount of energy which is obtained from glucose; also glucose can be obtained 
directly by neurons or indirectly from astrocytes that converted lactate into glucose 
previously [13, 14]. In normal conditions, neurons obtain energy from glucose, but 

Figure 2. 
Pathway of glucose from food to ATP in the neuron. The blue color is the area outside the blood-brain barrier, the 
green color represents only processes in the astrocyte, the yellow color processes in the neuron, and the orange color 
represents the intramitochondrial pathways.
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during the synaptic activity, they mainly consume lactate as a product of glucose 
metabolism. In both cases, the overall net brain consumption would be sustained by 
glucose. Under conditions of glutamatergic synaptic activity, glutamate stimulates 
GLUT-1-mediated glucose incorporation and glycolysis in astrocytes, followed by the 
release of lactate into the extracellular space and its capture in neurons, the neuron 
uptake of glucose is made via the GLUT-3 transporter [9, 15–17].

2.2 Astrocytes

Astrocytes also need the energy to carry out their functions, these cells play such 
an important role in brain metabolism by providing lactate as a metabolic substrate 
when neuronal energy requirements increase. In astrocyte cells, the GLUT-1 transport 
protein is the main glucose uptake protein. Once glucose enters the astrocyte, it is 
converted to glucose-6-phosphate (G6P) to undergo glycolysis or be converted to 
glycogen. Glucogenic enzymes involved in glycogen metabolism, such as glycogen 
synthase, store backup glycogen. Glycogen phosphorylase and the debranching 
enzyme metabolize glycogen into G6P to undergo glycolysis when the astrocyte, or 
near neurons, require energy sources (Figure 3) [18, 19].

2.3 Hypoglycemia in neurons and astrocytes

It has been described that hypoglycemia actively causes neuronal death. When 
glucose concentration decreases below 1 mM (18 mg/dl), causes energy deficit, the 
release of excitatory amino acids (aspartate and glutamate) induces the expression of 

Figure 3. 
Glucose metabolism and energy synthesis in astrocytes and neurons. LDH (lactate dehydrogenase), MCT 
(medium-chain triglycerides), LAC (lactate), ATP (adenosine triphosphate), NAD+ (nicotinamide adenine 
dinucleotide oxidized), NADH (nicotinamide adenine dinucleotide reduced), H+ (hydrogen), Pyr (pyruvate). 
Modified from N Engl J Med 2015; 373:187–189.
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excitatory receptors located in neuronal dendrites that produce calcium fluxes, induc-
ing neuronal necrosis. Hypoglycemia constitutes a metabolic brain injury [20, 21].

During hypoglycemia or periods of intense brain activity, glycogen can be 
used to generate lactate, which is translocated to nearby neuronal cells. Thus, 
glycogen within astrocytes functions as a backup system in case of hypoglycemia, 
ensuring neuronal functions and survival during glucose deprivation [22, 23]. 
In cases of brain ischemia, astrocytes have shown a high resistance, a situation 
that is explained by its glycogen store. Astrocytes also keep glucose synthesis 
for longer time periods compared with neuronal cells. Besides, astrocytes lead 
glycogen to turn into lactate which is moved within neurons when these cells have 
increased energy requirements or during lack of glucose. However, the amount of 
mitochondria within astrocyte cells is smaller than the amount of mitochondria 
within neuronal cells. A single molecule of lactate can generate 10 mM ATP, which 
is equivalent to 17 molecules of ATP [7, 23]. Several papers suggest that glucose 
molecules are stored mainly in astrocyte cells and can be released as glucose or lac-
tate to contribute to neuronal metabolism when energy needs increase [8, 22, 23]. 
Other studies, recently published, suggest that other substrates such as pyruvate, 
glycogen, ketone bodies, glutamate, glutamine and aspartate can be metabolized by 
neuronal cells in case of glucose deprivation, supporting neuronal functions and 
delaying ATP depletion during hypoglycemia [24]. Astrocytes can release purines 
made of adenine, specifically adenosine (which plays an important role as a neuro-
protective molecule) and guanosine which can lead to cell repair after a brain injury 
(Figure 3) [25].

In situations of low glycogen levels, glycogen can modulate some neurotransmitters 
and also serum glucose levels. These facts are explained by the fact that, during periods of 
hypoglycemia, glycogen is converted into lactate and reaches nearby neurons and axons 
where it is used as an energy source, leading to protection against hypoglycemia-induced 
brain injury and ensuring that neuronal functions supplying energy demands [26].

3. Cellular and molecular neuroglycopenia

3.1 Calcium and hypoglycemic damage

As mentioned above, intracellular calcium accumulation promotes lipolysis, 
increasing the amount of free fatty acids due to phospholipids metabolism, includ-
ing arachidonic acid, activated by cyclooxygenase enzyme and promoting oxygen 
reactive species releasing, platelet aggregation and neutrophil chemotaxis, leading 
to inflammation and direct/indirect cell damage. Calcium accumulation can also 
activate regulatory mechanisms to keep adequate levels of this ion, such as calse-
questrin and chelation promoted by the endoplasmic reticulum and mitochondria 
[27]. When these mechanisms fail, an ionic overcharge takes place in the mitochon-
dria and the cell membrane polarity is dropped. When the membrane potential 
is dispelled, the ATP synthase works upside down, metabolizing ATP. Also, it is 
impossible to generate ATP by Krebs cycle or oxidative phosphorylation. Serum 
calcium levels decrease during isoelectric periods and return to normal levels after 
glucose administration. This fact correlates to an increase in intracellular calcium 
levels and neuronal injury. Besides, proapoptotic factors are released as cytochrome 
C, caspase 3 and apoptosis-inducing factors. A persistent state of oxidative stress 
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is induced by a failure in the I and IV complex of the electron transport chain and 
release of reactive oxygen species (Figure 4) [28].

3.2 Reactive oxygen species and oxidative stress

Oxygen ions, free radicals and peroxides are very small molecules, which appear as 
a result of oxygen metabolism, and play an important role in the oxidation-reduction 
process, activating genes, exchanging ions when their values need to be regulated. 
The regulating mechanisms to avoid over synthesis of these small molecules include 
important enzymes groups such as catalase and superoxide dismutase. There are 
also antioxidant molecules, for example, ascorbic acid, uric acid and glutathione. 
Oxidative stress can be defined as a metabolic status with overproduction of oxygen 
reactive species and exceeding the antioxidant molecules’ capacity to offset this 
process. Some important molecules that can be affected by this situation are cell 
membrane lipids, deoxyribonucleic acid (DNA) and proteins. An increase in catalase 
and superoxides dismutase enzymes indicate, indirectly, the presence of peroxides 
and superoxide, respectively. That is because these enzymes are considered important 
indirect markers of oxidative stress [29].

The glutathione tripeptide functions as a chemical synthesis buffer during 
oxidation-reduction reactions carried out by the mitochondria. This chemical buffer 
is made of glycine, glutamate and cysteine. Another chemical buffer that appears in 
cases of oxidative stress is glutathione in its oxidized form, which is formed by two 
glutathione molecules linked by a disulfide bond. There is also an increase in nitric 
oxide synthase, subsequently, nitric oxide becomes reactive when it is combined with 
superoxides, forming peroxynitrite, a highly reactive molecule with a short half-life, 
which in addition to oxidizing nearby molecules, can be transformed into nitrotyro-
sine when reacting with tyrosine residues, increasing immunoreactivity. The neuronal 
cells located on the Ammon’s horn 1 region (CA1), in the hippocampus, promote an 
increase in zinc levels during long times of hypoglycemia. The glucose reintroduction 

Figure 4. 
Example of severe hypoglycemia in the brain.
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to the system promotes zinc vesicles and nitric oxide synthesis that trigger neuronal 
damage. Zinc activates the NADPH enzyme oxidase (NOX) and poly-ADP ribose 
(PARP-1) after being translocated to postsynaptic neurons, leading to the produc-
tion of reactive oxygen species (ROS), depletion of oxidized nicotinamide adenine 
dinucleotide (NAD+) and lead to neuronal death. The production of ROS by NOS and 
NOX induces DNA damage and consequent activation of PARP-1, which consumes 
the NAD+ which is required for glucose oxidation through the glycolytic pathway, 
as well as activating programmed cell death pathways such as calpain [30]. During 
hypoglycemia, PARP-1 activation is an important factor involved in neuronal death (it 
leads to increased nitrotyrosine and products of this polymerase). On the other hand, 
PARP-1 inhibitors can rescue neurons that would otherwise die after severe hypogly-
cemia (Figures 4 and 5) [31, 32].

3.3 Apoptosis and inflammatory response

Apoptosis is a type of cell death that depends on energy and various cellular func-
tions in which the membrane retains its integrity. For its activation, specific proteins 
are required to avoid inflammatory responses, which are divided into intrinsic and 
extrinsic pathways. The intrinsic activation pathway consists of caspases and cal-
pain. Caspases are classified as initiators, such as caspase 9 and executors, including 

Figure 5. 
Cell death in neuroglycopenia. DNA (deoxyribonucleic acid), PARP (poly-ADPribose), NMDA (N-methyl-
D-aspartate), Mg2 (magnesium), Ca2+ (calcium), Na+ (sodium), K+ (potassium), nNOS (neuronal nitric 
oxide synthase), NO+ (derived from oxygen species), ROS (reactive oxygen species), Cit C (cytochrome C), AIF 
(apoptosis inducing factor).
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caspase 3. The intrinsic pathway starts with the release of cytochrome C from the 
mitochondrial inner membrane, which increases its concentration in the cytosol and 
binds APAF1 (apoptotic protease-activating factor 1) protein, dATP and procaspase 
9 zymogen [29, 32]. Once bound, this complex becomes an active initiator form of 
the pathway, caspase 9, which consequently causes the activation of the executioner 
pathway, procaspases 3 and 7, responsible for promoting apoptosis.

It has been postulated recently that an inflammatory response also participates in 
hypoglycemic cell damage, this is known due to a study that demonstrates microglial 
reactivity in the rat of hippocampus 1–7 days after 30 minutes of hypoglycemic 
isoelectric, with activation of calpain, xanthine oxidase and phospholipase A2.

Tkacs and cols., demonstrated that three hypoglycemic episodes related to 
30–35 mg/dl glucose blood levels increased the number of positive cells to TUNEL 
(apoptosis marker in the arcuate nucleus of the hypothalamus). Subsequently, other 
authors reported positive degenerative cells to the neuronal death marker Fluoro-Jade 
B (FJB) after only 1 week of a single hypoglycemia event, particularly in the cerebral 
cortex, although some were also observed in the hippocampus and striatum [33].

In 1880, blood glucose levels were measured for the first time, which made it 
possible to understand the different clinical neurological manifestations and their 
association with low blood glucose levels [34]. It was in 1938, when the surgeon Allen 
Whipple proposed a triad characterized by hypoglycemia symptoms, decreased 
venous glucose concentration and the disappearance of these symptoms after the cor-
rection of glycemia. Although this description was proposed as criteria to perform or 
not the insulinomas resection, this triad became widely generalized among the medi-
cal community in the face of hypoglycemia events due to any cause. Reversibility of 
the clinical syndrome is frequent when treatment is initiated, although there are also 
less fortunate scenarios in which sustained damage to the nervous system is produced, 
which will depend on the degree of hypoglycemia when treatment is not timely. This 
situation is directly related to functional prognosis and mortality [34, 35].

The physician must be able to identify the clinical signs of hypoglycemia since the 
first organ to suffer the consequences is the brain, and we must avoid unfavorable 
outcomes, such as neuronal damage and death (neuroglycopenia). When the arte-
rial glucose supply is interrupted and the protective mechanisms are overcome, the 
previously described alterations occur at the level of ionic gradients, neurotransmitter 
release and reuptake, and oxidative stress, culminating in mitochondrial and cellular 
dysfunction [36].

There are usually very effective endogenous mechanisms to prevent neuroglycopenia. 
The first line of defense against falling blood glucose levels is to decrease endogenous 
insulin production, increasing hepatic glucose production and decreasing its utilization 
by other peripheral tissues such as muscle and fat tissue [37]. If glucose levels remain 
low, there will be glucagon secretion, followed by an increase in adrenaline. These 
counterregulatory mechanisms will be as intense as hypoglycemia severity, resulting in 
mobilization of glycogen stores, gluconeogenesis and decreased glucose utilization at the 
peripheral level [38].

A very particular characteristic of the brain is the high consumption of glucose 
and oxygen, with a high tolerance to periods of transient deficit of these substrates, 
however, when glucose decreases below 20 mg/dl, there is a cessation of brain electri-
cal activity (hypoglycemic coma). Blood glucose concentrations may decrease to 30% 
of the normal value, but this supply must be constant, as neuronal glycogen stores are 
limited and depleted in less than 2 minutes. From this point on, the extent of neuronal 
damage is directly related to the time the isoelectric period is maintained. Neuronal 
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death occurs after a period of approximately 15 minutes of inactivity. Repeated epi-
sodes of hypoglycemia cause irreversible damage, causing the irreversible cognitive 
deficit, which correlates to various brain structures, the most sensitive to the damage 
being the cortex, hippocampus and striatum [39].

3.4 Excitatory amino acids in hypoglycemic damage

Excitotoxicity refers to the ability of some amino acids (glutamate) to cause 
neurodegeneration secondary to prolonged stimulation of postsynaptic receptors. 
This type of toxicity was first described in cerebral vascular disease; later evidence 
was found in severe hypoglycemia. The mechanism of damage is as follows: extracel-
lular concentrations of glutamate are regulated by reuptake into the synaptic space 
by specific transporters located in astrocytes and neurons. This reuptake is mediated 
by sodium, regulated by the electrochemical gradient of ATP-dependent Na/K+ 
pumps. These ionotropic receptors are classified according to their specific agonist: 
the N-methyl D-aspartate (NMDA) receptor, permeable to calcium and sodium. The 
non-NMDA receptors (kainate receptor and a-amino-3-hydroxy-methyloxazole-
4propionic acid (AMPA) are sensitive to sodium [40].

Under resting conditions, the NMDA receptor ion channel is blocked by magnesium, 
which is released during depolarization mediated by non-NMDA aspartate receptor-
dependent ion channels, allowing calcium to enter the intracellular space. Both glutamate 
and aspartate have been shown to be associated with neuronal damage in hypoglycemia, 
being released in large amounts during the isoelectric trace [41]. In this situation glu-
tamate is used as a metabolic substrate, favoring the release of aspartate by altering the 
electrochemical gradient of Na+/K+, promoting the accumulation of intracellular calcium 
and with it, the release of vesicles by exocytosis with excitatory neurotransmitters. Even 
with the accumulation of excitatory neurotransmitters, the inhibition of their trans-
porters can limit neurological damage; however, when there is an absence of energetic 
substrates, neuronal death is induced. As mentioned, neuronal death and cognitive 
impairment caused by hypoglycemia suggest that they are involved in excitotoxicity and 
DNA damage.

4. Neuroglycopenia secondary to hypoglycemia

To avoid neuronal death during a period of hypoglycemia, the brain sets in motion 
two main regulatory mechanisms: increased cerebral blood flow and the use of 
alternative substrate pools to glucose [39, 41]. During hypoglycemia, oxygen con-
sumption remains constant, giving rise to the theory that these alternative pools are 
able to compensate for the lack of glucose, allowing adequate cellular function during 
relatively short periods of hypoglycemia. The brain can use other substrates for 
energy, such as lactate, pyruvate and ketone bodies, although the primary substrate 
in the first instance appears to be glycogen, which seems to be depleted in more than 
5 minutes after the onset of the isoelectric period [42].

The nervous system is very susceptible to changes when serum glycemia value 
is low, which leads to protective mechanisms; on the other hand, when there is 
hyperglycemia it has a better regulation. The endocrine counterregulatory response 
mechanisms that are activated when glucose drops below 70 mg/dl, at the level of 
the pancreatic b-cells the first response is initiated, which consists in the cessation 
of insulin release and when the glucose level reaches 66 mg/dl, growth hormone and 
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cortisol are released, which stimulate lipolysis in adipose tissue, ketogenesis and 
gluconeogenesis in the liver. Below 54 mg/dl, glucagon (a hormone produced in pan-
creatic cells, which stimulates hepatic glucose production through glycogenolysis and 
gluconeogenesis) and epinephrine are secreted. Epinephrine secreted by the adrenal 
glands increases glycogenolysis and gluconeogenesis in the liver, stimulates lipolysis 
and decreases insulin secretion while elevating glucagon release (Table 1) [38, 39, 42].

The first modulatory process in hypoglycemia is decreased insulin synthesis. This 
is followed by an increase in other involved hormones such as GH, ACTH, glucagon, 
and epinephrine, resulting in the activation of metabolic regulatory pathways such as 
lipolysis, ketogenesis, and gluconeogenesis.

Recurrent hypoglycemia can cause the loss of these counterregulatory mechanisms 
and create a vicious cycle increases the risk of severe hypoglycemia with each event. 
Recurrent hypoglycemia reduces the glucose levels necessary to trigger the autonomic 
counterregulatory response during a subsequent hypoglycemic period, leading to 
patients being unable to recognize sympathoadrenal symptoms, leading to the onset 
of neuroglycopenic symptoms (hypoglycemia unawareness). The unawareness of 
hypoglycemia and the failure of the autonomic response lead to the so-called hypogly-
cemia-associated autonomic failure, which increases the risk of severe hypoglycemia 
by 25 times or more, with high chances of coma, irreversible brain damage and death. 
Clinical data suggest that about 25% of diabetic patients suffer hypoglycemia without 
realizing it [37, 39, 42]. Hypoglycemia occurs in 25–30% of diabetic patients, with 
type 1 diabetics being more affected, followed by type 2 diabetics, although in them 
it usually happens in advanced stages of the disease. The incidence of hypoglycemia 
episodes depends on the age and duration of the disease. The mortality rate is between 
4 and 10% and is attributable to severe hypoglycemia in type 1 diabetic patients with 
the long-standing disease (7–30 years), this is because the continuous administra-
tion of insulin or insulin-releasing drugs leads to glucose uptake in fat, muscle and 
liver, inhibiting gluconeogenesis and glycogenolysis, as well as lipolysis and glucagon 
secretion from pancreatic cells. As a consequence, the first response to hypoglyce-
mia (inhibition of insulin secretion) is lost, glucagon secretion is suppressed, and 
 epinephrine is secreted at lower glucose levels [37, 38, 42].

4.1 Moderate or severe hypoglycemia

According to histological studies, hypoglycemic coma induces neuronal damage 
in the cortex, particularly in the insular cortex, hippocampus, caudate nucleus and 
putamen; lesions have also been identified in the thalamus, globus pallidus and a 
significant volume decrease in the white matter and gray matter in all cerebral lobes 
with occipital and parietal predominance. There is a close correlation between the 
duration of the isoelectric period and the spread of neuronal damage. The most 

Organ involved Response Effects

Pancreatic a cells Decreased insulin synthesis Blood glucose mobilization is reduced.

Hypophysis Increased GH y ACTH Lipolysis and ketogenesis Glyconeogenesis

Pancreatic β cells Increased glucagon Glycogenolysis

Adrenal glands Increased epinephrine and cortisol

Table 1. 
Brain protection mechanisms in neuroglycopenia.
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vulnerable brain regions include superficial layers 2 and 3 of the cerebral cortex, CA1, 
the subiculum and crest of the dentate gyrus, as well as neuronal damage in the dorso-
lateral region of the striatum [43].

5. Clinical manifestations in neuroglycopenia

Signs and symptoms for hypoglycemia depend on glucose levels (mild, moderate or 
severe), frequency and duration of episodes. Symptomatology can be divided into two 
big groups: The first group included sympathoadrenal or neurogenic symptoms due 
to the activation of the autonomic nervous system and the release of epinephrine and 
norepinephrine, triggered in moderate hypoglycemia. The symptoms can be hunger, 
sweating, tingling, tremors, palpitations and anxiety (the initial symptoms that allow 
the patient to notice the hypoglycemic state). If glucose levels continue dropping to 
moderate or severe, the patient would develop the second group of symptoms (neuro-
glycopenic symptoms) which include blurry vision, confusion, dizziness, irritability, 
bradylalia, lipothymia, drowsiness, bradypsychia, seizures and coma. However, they 
do not always present the same way, actually, it is one of the first diseases that mimic 
brain stroke symptoms, among other acute neurologic diseases (hypoglycemic enceph-
alopathy) [34, 35, 44]. Hypoglycemia recurrence induces the body to adapt, and the 
clinical signs can be minimal or absent until the glucose levels decrease deeply, taking 
the patient to an impaired consciousness state (Table 2) [29, 44].

Mild hypoglycemia has subtle symptoms which are inconspicuous with cogni-
tive changes. Multiple studies have done experiments on both humans and animals, 
finding an association between hypoglycemia and cognitive impairment, affecting 
complex abilities more than simple ones, regulated by the hippocampus [45, 46]. 
After a severe hypoglycemia episode, the cognitive deterioration in different cerebral 
domains appears in healthy individuals with glucose blood levels between 2.6 and 
3.3 mmol/l [47]. Severe hypoglycemia causes a decrease in the performance of cogni-
tive tasks, such as verbal fluency, reaction time, arithmetic abilities and verbal and 
visual memory [48]. The cognitive function drop is seen after the activation of the 
counterregulatory response and the presence of neuroglycopenic symptoms in diabetic 

Sympathoadrenal 

symptoms

Neuroglycopenic 

symptoms

Other symptoms of severe 

neuroglycopenia

Hunger Blurred vision Cognitive changes

Sweating Confusion Difficult memory

Paresthesias Dizziness Troubles with language

Tremor Irritability

Palpitations Bradylalia Bradykinesia

Anxiety Lipothymia

Drowsiness

Bradypsychia

Seizures

Coma

Table 2. 
Clinical manifestations of neuroglycopenia.
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patients, however, this response changes in non-diabetic patients in whom the cogni-
tive function is immediately impaired, even before the counterregulatory neuroendo-
crine response starts and senses the neuroglycopenic symptoms (Table 2) [47, 48].

In 1990, Ryan et al., evaluated the cognitive effects after a hypoglycemic event in 
children, using the hypoglycemic clamp technique, with a control group with normal 
glucose levels. Hypoglycemic values were 3.1–3.6 mmol/l and the euglycemic values were 
from 5.5 mmol/l onwards, noticing a significant decrease in the trail-making test (men-
tal flexibility), attention and decision making in the mild hypoglycemic group. Also, 
once the glycemic values were restored (>5.5 mmol/l), there was no recovery observed in 
the attention or reaction time tests, which suggests a long-term neurological effect [49].

Other studies have documented attention, intelligence and memory disturbances 
in children with a history of severe hypoglycemia [48, 49]. Childhood hypoglyce-
mia represents an essential factor that affects specific cognitive capabilities such as 
memory, learning, intelligence and attention, being the most vulnerable cognitive 
domains to hypoglycemia in children [50, 51]. However, no studies have been made 
comparing the history of hypoglycemia with long-term control groups, therefore, the 
sequels that may develop are unknown with certainty.

Also, there have been reported mood disorders associated with repeated events of 
severe hypoglycemia, especially in depressive disorder until 24 hours after the event. 
Acute hypoglycemia changes the state of mind causing the patient to feel exhausted 
and reducing the hedonic tone. The consequence of long-term and repetitive periods 
of moderate hypoglycemia to neuronal damage and cognitive function is not well 
understood, however, prolonged hypoglycemia with the absence of isoelectricity 
can also induce neuron death restricted mainly to the cerebral cortex. Glucose blood 
concentrations of 30–35 mg/dl for 75 minutes can cause significant neuron damage in 
the medial prefrontal cortex, piriform cortex and orbital cortex [52].

5.1 Imaging in neuroglycopenia

Objective damage from repeated hypoglycemia events is difficult to document 
because routine imaging studies are not usually performed in this type of patient, 
as it is an event that is treated in the emergency room and it usually subsides in a 
few minutes. However, some studies have evaluated diabetic patients with recurrent 
hypoglycemia events trying to correlate cognitive alterations and imaging findings in 
MRI [53]. It has been reported cortical atrophy in type 1 diabetic patients with severe 
recurrent hypoglycemia events while in patients who do not have recurrent events 
these findings were not present, nevertheless, these findings were not related to the 
cognitive alterations. There are also case reports in which the MRI shows a reduction 
in the white matter of the hippocampus, thalamus and globus pallidus, correlating 
this with memory loss and anterograde amnesia, however, these findings are not com-
mon, which make them statistically insignificant.

6. Neuroglycopenia with and without hypoglycemia in medical scenarios

The physiology of glucose in the human brain has already been discussed thor-
oughly, its’ way through the blood-brain barrier and molecular, cellular, tissue and 
systemic conditions, on the other hand, it is important to mention some clinical 
scenarios where these events take place even though there are not evident and can 
explain part of the symptoms and prognostic in each entity. This section will briefly 
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describe neuropathologic things that cause glucose levels alterations at the central 
nervous system and important treatment aspects (Figure 6).

6.1 Glucose brain concentration in the intensive care unit

The relationship between changes in glucose values and cardiovascular events, 
such as stroke and acute myocardial infarction, has been well established. Both 
hyperglycemia and hypoglycemia are factors that vary patient prognosis [54]. Glucose 
dysregulation is a common situation in neurocritical patients. Since 1849, the asso-
ciation between hyperglycemia and prognosis has been described in patients with 
cerebral infarction, a situation that has been repeated in more recent studies [55, 56], 
which also include patients with acute brain injury secondary to other situations such 
as meningitis and cranioencephalic trauma [57].

From several years, it has been thought that intensive glucose control by continu-
ous infusion, even to near-normal levels, might be beneficial to the patient; however, 
the NICE-SUGAR study group conducted a randomized clinical trial comparing 
intensive glucose control (from 81 to 108 mg/dl) with a group in which glucose levels 
were more permissive (up to 180 mg/dl), with subcutaneous bolus insulin administra-
tion. Glucose below 140 mg/dl was associated with increased hypoglycemia events 
and increased cardiovascular mortality, whereas glucose levels above 180 mg/dl were 
associated with the worse neurological recovery and increased likelihood of sequelae 
[58, 59]. Multiple studies have reached the same conclusion, including the SHINE 
study, in which intensive control compared with the standard modality did not make 
a significant difference in functional outcome (Rankin scale at 90 days) [60].

Very loose glucose control was associated with worse neurological recovery, 
although it does not significantly influence mortality in the neurocritical patient, 
some sequelae may impact functionality [61].

6.2 Brain glucose concentrations in cerebral infarction

Several clinical trials have shown that cerebral stroke patients with acute elevation 
of glycemia at the onset of the event suffer worse functional outcomes, longer hospi-
tal stay and higher mortality with a higher rate of bleeding after the ischemic event 
[62]. The definition of hyperglycemia is debated, the reference cohort for different 
authors usually varies according to the results obtained in clinical trials, where the 
objective is the correlation between glucose levels and increased mortality, findings 
are diverse, finding favorable results with levels of 110–155 mg/dl [63, 64]. It has been 
shown that patients with ischemic stroke who are treated with tissue plasminogen 

Figure 6. 
Hypoglycemia negatively affects diseases of the central nervous system.
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activator benefit from glucose levels below 140 mg/dl in the first hours of treatment, 
which correlates with the benefit of the fibrinolytic drug, since patients with adequate 
initial glycemic control had higher reperfusion rates, smaller infarcts, and better 
functional prognosis than patients with higher glucose levels, this is independent 
of chronic glycemic dyscontrol [65, 66]. Although evidence indicates that intensive 
glucose control does not impact mortality, hypoglycemia could have an impact on the 
development of neurological damage and long-term sequelae, perpetuating the dam-
age already established by previous injuries in the neurocritical patient [67].

6.3 Brain glucose concentrations in patients with traumatic brain injury

During traumatic brain injury there is a net decrease in glucose in microdialysis, 
but an increase in glutamate and lactate/pyruvate in microdialysis, with an adverse 
effect on the long-term recovery of neurological function [68]. Care should be 
taken in the management of these patients, as it is known that during traumatic 
injury there is hyperglycemia, using insulin to control it and decrease brain dam-
age due to hyperglycemia, however, adequate monitoring should be performed, 
as lowering glucose levels with insulin may induce and aggravate secondary brain 
injury [69].

A hypothesis suggests that post-traumatic reductions in extracellular glucose 
levels are not due to ischemia, but are associated with poor neurological outcomes. 
Neurosurgical data from the microdialysis catheter in uninjured brain tissue with a 
perfusion rate of 2 uL/min suggest that glucose values of 0.5–1 mmol/L and lactate of 
0.6–1.1 mmol/L are considered normal. In patients with epilepsy versus non-epileptic 
tissue perfused at 2.5 uL/min, mean glucose values of 0.82 ± 0.27 mmol/L and mean 
lactate levels of 1.3 ± 0.49 mmol/L were observed [70]. In minimally injured brain 
trauma patients perfused at a rate of 2 uL/min and under conditions of normal intra-
cranial pressure and normal tissue oxygenation, reports of mean glucose values have 
ranged from 0.5 to 1.1 mmol/L, demonstrating that glucose variations are not signifi-
cant during direct trauma [71]. The extracellular glucose level is generally reduced 
after severe traumatic brain injury and is associated with poor neurological recovery, 
but is not associated with ischemia [72].

Due to these findings, blood glucose control in patients with traumatic brain 
injury has recently been the subject of much research [68, 72]. A retrospective study 
included a total of 228 patients with severe trauma who were treated with insulin. In 
the first week (acute stage), a blood glucose target of 90–144 mg/dL (5–8 mmol/L) 
was associated with a reduced mortality rate and a decrease in intracranial pressure 
(ICP) compared with a blood glucose target of 63–117 mg/dL (3.5–6.5 mmol/L). 
However, in the second week, the groups appeared to have the reverse results: com-
pared to the target group of 5–8 mmol/L, the 3.5–6.5 mmol/L group demonstrated a 
lower incidence of ICP and a reduction in infectious complications. Therefore, slightly 
higher blood glucose (5–8 mmol/L) appears to provide benefits during the first week, 
whereas lower blood glucose (3.5–6.5 mmol/L) may be more favorable during the later 
stages of recovery [69, 72]. Another study showed that blood glucose < 6–11 mmol/L 
could reduce mortality in patients with mild trauma, whereas, in severe cases, the 
ideal blood glucose target was 7.77–10.0 mmol/L.

Both hyperglycemia and hypoglycemia are harmful [70, 73]. Therefore, methods 
to improve intensive insulin therapy without inducing secondary complications 
should be investigated, and attention should also be focused on the prevention of 
hypoglycemia in patients with head injury [73]. It can be concluded that, in the first 
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few days following traumatic brain injury, patients benefit most from less strict 
glucose control, and that, past this acute period, blood glucose targets should be 
modified.

6.4 Hypoglycorrhachia without hypoglycemia

An objective way to demonstrate neuroglycopenia without symptoms is by 
measuring glucose in the cerebrospinal fluid (CSF). There are multiple etiologies 
that lower glucose centrally and are recognized not by the symptomatology of 
neuroglycopenia but by the characteristic symptoms of each disease and the presence 
of hypoglycorrhachia (there are multiple definitions, however, the most accepted is 
CSF glucose/serum glucose ratio ≤ 0.5, and < 40 mg/dl is considered severe) [74, 75]. 
The etiologies are diverse in both children and adults (Table 3) [74–76]. Treatment is 
disease-specific and hypoglycorrhachia is not specifically treated.

6.5 COVID-19

Neuro-COVID has been described for its clinical manifestations and findings in 
acute neurological disease, and the data that have caused the most impact when talk-
ing about encephalitis secondary to COVID-19 is hypoglycorrhachia and changes in 
the electroencephalogram [77]. Based on the above, our team conducted an investiga-
tion during the current SARS-CoV2 pandemic in 30 patients with a diagnosis and 
positive polymerase chain reaction for SARS-CoV2, without any obvious neurological 
manifestations, and performed a clinical history, complete physical and neurological 
examination, lumbar puncture and electroencephalogram, obtaining the following 
results: We found a high prevalence of minor neurological manifestations, such as 
headache, anosmia, dysgeusia and hypoaesthesia predominating in the early stages 
[78]. Other frequent abnormal findings were in the CSF with hypoglycorrhachia 
>70% and less frequently in the electroencephalogram of the scalp with focal and 
generalized dysfunction in <20%.

Infectious diseases Non-infectious diseases

Meningitis caused by typical bacteria, atypical bacteria, viruses, 
parasites, mycobacteria or fungal etiology.

Carcinomatous meningitis.

GLUT-1 deficiency syndrome.

Amebic meningoencephalitis. Leukemia or lymphoma involving 
CNS.

Cytomegalovirus. Subarachnoid hemorrhage.

Other causes of hypoglycorrhachia

Malignant atrophic papulosis. Neurosarcoidosis.

Meningitis of rheumatoid etiology.

Cholesterol-induced leptomeningitis. Behcet’s disease.

Rheumatoid meningitis Dermoid cyst.

Granulomatous angiitis of the central nervous system. Systemic lupus erythematous with 
CNS involvement.

Table 3. 
Diseases with hypoglycorrhachia without neuroglycopenia.



Basics of Hypoglycemia

16

7. Conclusion

Glucose is the main fuel for the appropriate functioning of the central nervous 
system. It has been described the main mechanism of entry and use of glucose at the 
molecular and cellular levels. We emphasize that neurons and astrocytes interact to 
form common metabolic cooperation generating a neuroprotective effect to avoid 
hypoglycemic coma or a major brain injury that leads to cellular death. We cannot 
forget that when a patient has already had neuroglycopenia secondary to hypoglyce-
mia, he/she already has a change in his/her metabolism and recurrence becomes more 
frequent with each episode, which is why some insulin-dependent diabetics die. The 
management of glucose in critically ill patients or at the brain level is different and the 
ideal treatment and glucose values at central and serum levels are not clear. Central 
nervous system diseases that cause hypoglycorrhachia are treated by etiology and not 
by low central glucose. Finally, at the time of writing this chapter we faced with the 
fact that the amount of published information is old and repetitive, it is important to 
continue research on the damage, prevention and prognosis of glucose levels at the 
central level in different scenarios.
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Appendices and nomenclature

AMPA  a-amino-3-hydroxy-methyloxazole-4propionic acid
AIF  apoptosis inducing factor
ATP  adenosine triphosphate
APAF1  apoptotic protease-activating factor 1
BBB  blood brain barrier
Ca2+  calcium
Cit C  cytochrome C
dl  deciliters
DNA  deoxyribonucleic acid
FJB  Fluoro-Jade B
H+  hydrogen
GLUT  glucose transporter
G6P  glucose-6-phosphate
K+  potassium
LAC  (lactate)
LDH  lactate dehydrogenase
MCT  medium-chain triglycerides
mg  milligrams
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Mg/dl  milligrams per liter
Mg2  magnesium
mM  millimoles
mmol/l  millimoles per liter
Na+  sodium
NADH  nicotinamide adenine dinucleotide reduced
NAD+  nicotinamide adenine dinucleotide oxidized
NMDA  N-methyl-D-aspartate
nNOS  neuronal nitric oxide synthase
NO+  derived from oxygen species
ROS  reactive oxygen species
SGLT  sodium dependent glucose transport
PARP  poly-ADPribose
Pyr  pyruvate
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