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Clustering Network Data Using
Mixed Integer Linear
Programming
Harun Pirim, Amin Aghalari

and Mohammad Marufuzzaman

Abstract

Network clustering provides insights into relational data and feeds certain
machine learning pipelines. We present five integer or mixed-integer linear pro-
gramming formulations from literature for a crisp clustering. The first four cluster-
ing models employ an undirected, unweighted network; the last one employs a
signed network. All models are coded in Python and solved using Gurobi solver.
Codes for one of the models are explained. All codes and datasets are made avail-
able. The aim of this chapter is to compare some of the integer or mixed-integer
programming network clustering models and to provide access to Python codes to
replicate the results. Mathematical programming formulations are provided, and
experiments are run on two different datasets. Results are reported in terms of
computational times and the best number of clusters. The maximum diameter
minimization model forms compact clusters including members with a dominant
affiliation. The model generates a few clusters with relatively larger size. Additional
constraints can be included to force bounds on the cluster size. The NP-hard nature
of the problem limits the size of the dataset, and one of the models is terminated
after 6 days. The models are not practical for networks with hundreds of nodes and
thousands of edges or more. However, the diversity of models suggests different
practical applications in social sciences.

Keywords: network clustering, signed networks, integer programming,
python application, social networks

1. Introduction

Network and graph terms are used interchangeably, while the latter recalls more
of a mathematical phenomenon since the study of networks has roots in graph
theory [1]. Complex systems of real life can be modeled as networks with certain
features. Watts and Strogatz [2] propose that real-world systems exhibit small
world characteristics with a connection topology between regular and random.
Zhang and Zhang [3] argue based on simulations that the real networks have longer
average shortest paths than expected to allow a substantial increase in the network
modularity. That is a trade-off between network efficiency and modularity. Albert
et al. [4] claim scale-free characteristic of real-world networks that makes them
vulnerable to targeted attacks but robust against random failures. Ravasz and
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Barabási [5] show that the scale-free and high degree clustering characteristics of
real networks emerge as a result of hierarchical organization. Balkundi and Harrison
[6] investigate the effect of network structure on the team viability and perfor-
mance. Similarly, Balague et al. [7] report quantification of individual player con-
tributions to the team performance using a network approach. Barabási and Oltvai
[8] discuss network biology to understand the internal organization and evolution
of a cell. Those studies convince that any system of objects with certain relations can
be modeled as a network. The objects (i.e., nodes of the network) can represent
individuals, animals, routers, documents, etc., where the relations (i.e., edges of the
network) quantify a proximity of a relationship or existence of a relationship (i.e.,
binary networks).

Network analysis focuses on both descriptive and predictive tasks within the
broad scope of network science since network structures at node, edge, network, or
intermediate levels reveal information about a function or an emergent behavior.
Clustering network data is essential to network analysis to support downstream
machine learning tasks such as prediction of a node’s label or directly describe a
group of similar objects. There is an abundance of network clustering algorithms
[9–12] mainly categorized under community structure finding title. However,
mixed-integer linear programming (MILP) formalism, despite its NP-hard nature,
provides a flexible representation of the clustering problem and generates a global
optimal solution to the problem [13]. The ease of algebraic representation of the
problem including the objective function and the constraints and inclusion of spe-
cial constraints imposed by the nature of the application on hand, availability of
special modeling languages and solvers make MILP clustering suitable for many
applications. It is conventional to design heuristic algorithms to support the MILP
formalism to solve larger problems with thousands of nodes and millions of edges
compromising the global optimality [14].

The aim of this chapter is to compare some of the integer linear (ILP) and
mixed-integer linear programming (MILP) network clustering models and to pro-
vide access to Python codes to replicate the results. Mathematical programming
formulations are provided, and experiments are run on two different datasets.
Results are reported in terms of computational times and the best number of
clusters.

We summarize three ILP and two MILP clustering models providing
Python codes and the datasets to generate the results. The chapter is structured
as follows. Section 2 introduces the ILP and MILP models. Section 3 presents the
Python application and results, followed by the discussion and the conclusion
sections.

2. Pure and mixed-integer linear programming models

Given a graph G V,Eð Þ with the set of vertices V and the set of edges E, the
clustering models here generate a crisp clustering C ¼ Cif gi∈ I with clusters Ci

comprising nonoverlapping members [15]. Clustering problem is ill-posed since
there is no consensus on what defines a cluster. A general adoption is having
clusters with similar members and separate clusters holding different members.
Bittner et al. [16] propose combining cluster analysis solution with the information
gained from subjective choices.

The first model, referred to as (M1), addresses the well-studied graph coloring
problem [17]. The problem inherently requires finding the minimum number of
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colors to assign the nodes of the network such that no adjacent nodes have the same
color. The corresponding clustering problem can be viewed as finding clusters of
diverse members.

M1ð Þ : min
X

k

c¼1

yc

st

X

k

c¼1

xic ¼ 1, ∀i∈V 1ð Þ

xic þ xjc ≤ 1, ∀ i, jð Þ∈E 2ð Þ

yc ≥ xic,∀i∈V,∀c∈C 3ð Þ

yc, xic ∈ 0, 1f g, ∀i∈V, ∀c∈C 4ð Þ

(1)

In (M1), xic are binary variables taking value 1 if member i is assigned to cluster c,
0 otherwise. yc are binary variables taking value 1 if color c is used, 0 otherwise. The
objective is to minimize the number of colors used. The initial number of colors, k is a
user-defined parameter. k can be chosen arbitrarily as long as the feasibility of the
model is retained. The first set of constraints (1) implies each member is assigned to
one cluster only. The second set of constraints (2) avoids adjacent nodes sharing the
same color. The third set of constraints (3) relates two different sets of variables to
each other. A color c is used once at least a node is assigned the color. The last set of
constraints (4) implies domain of the variables to be binary.

The second model (M2) minimizes the total distance within clusters [18].

M2ð Þ : min
X

N�1

i¼1

X

N

j¼iþ1

dijyij

st

X

k

c¼1

xic ¼ 1, ∀i∈V 1ð Þ

X

N

i¼1

xic ≥ 1, ∀c∈C 2ð Þ

yij ≥ xic þ xjc � 1, i ¼ 1, …N � 1; j ¼ iþ 1, …N;∀c∈C 3ð Þ

yij ≥0, i ¼ 1, …N � 1; j ¼ iþ 1, …N 4ð Þ

xic ∈ 0, 1f g, ∀i∈V, ∀c∈C 5ð Þ

(2)

N is the number of objects to cluster. k is the number of clusters, a user-defined
parameter. yij are binary variables taking value 1 if members i, j are in the same

cluster, 0 otherwise. dij are the distance values between members i, j. The first set of
constraints (1) is similar to the first model. The second set of constraints avoids
empty clusters (2). The third set of constraints (3) is to relate variables to each other
in a linear fashion. The last two sets of constraints (4, 5) restrict the domains of
variables.
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The third model (M3) minimizes the maximum diameter of clusters [19].

M3ð Þ : minDmax

st

Dc ≥ dij xjjicþ xjc � 1
� �

∀i∈V,∀j∈V, ∀c∈C 1ð Þ

X

k

c¼1

xic ¼ 1∀i∈V 2ð Þ

X

N

i¼1

xic ≥ 1∀c∈C 3ð Þ

Dmax ≥Dc∀c∈C 4ð Þ

xic ∈ 0, 1f g∀i∈V, ∀c∈C 5ð Þ

Dc ≥0∀c∈C 6ð Þ

(3)

In addition to the variable, parameter, and constraint definitions for the second
model (M2), an additional continuous variable, namely,Dc, is introduced in (M3).
The first set of constraints (1) implies Dc to be the diameter of cluster c, i.e., the
longest shortest path in the cluster. Second and third set of constraints (2, 3) are
similar to (1, 2) sets of constraints in (M2). The fourth set of constraints (4) implies
Dmax is the maximum of Dc values defining the largest diameter. The last two
constraints (5, 6) are domain-related.

The fourth model (M4) maximizes the modularity metric [15]. Modularity
quantifies the compactness of clusters compared with a random model. The clus-
terings resulting in modularity values greater than 0.3 and closer to one are per-
ceived to have high modularity.

M4ð Þ : max
1

2m

X

i,j
mi,j 1� xi,j

� �

st

xi,l ≤ xi,j þ x j,l∀i, j, l, i 6¼ j 6¼ l 1ð Þ

xi,j ∈ 0, 1f g∀i, j 2ð Þ

(4)

xij variables take 1 if members i, j are in different clusters, 0 otherwise. mi,j are
the elements of the modularity matrix defined as follows.

mi,j≔ai,j �
did j

2m
(5)

aij are elements of adjacency matrix being 1 if i, j are connected, 0 otherwise. di is
the degree of node i. m is the number of edges for the graph. The first set of
constraints (1) define transitivity or clique. If nodes i, j and j, l are in the same
cluster then nodes i, l must be in the same cluster either. The second set of
constraints (2) restricts variables to binary.

The fifth model (M5) is designed to cluster signed networks [20]. Signed net-
works assume negative or positive edges between objects. The ideal clustering
minimizes the frustration edges, i.e., positive edges between clusters or negative
edges within clusters.
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M5ð Þ : min
X

i,jð Þ∈E
f ij

st

X

c∈C
xic ¼ 1∀i∈V 1ð Þ

f ij ≥ xic � xjc∀ i, jð Þ∈Eþ,∀c∈C 2ð Þ

f ij ≥ xic þ xjc � 1∀ i, jð Þ∈E�,∀c∈C 3ð Þ

xic ∈ 0, 1f g∀i∈V,∀c∈C 4ð Þ

f ij ∈ 0, 1f g∀ i, jð Þ∈E 5ð Þ

(6)

f ij are binary frustration variables. The first set of constraints (1) are similar to

(1) in (M2). The second set of constraints (2) implies that frustration exists
between nodes i, j if they belong to different clusters although they share a positive
edge. The third set of constraints (3) implies that frustration exists between nodes
i, j if they belong to the same cluster sharing a negative edge. The last two sets of
constraints (4, 5) are domain-related ones.

3. Python application and results

The Python language is used to code the algebraic models, and the Gurobi solver
[21] is used to solve them optimally. Python/GUROBI is one of the most widely
used package in solving optimization problems. In our demonstration, we use
model 3 (M3) for its simplicity to introduce to the readers. However, the link to the
repository of the source codes for all other models (i.e., M1–M5) is provided for the
interested readers. Due to the availability of open-source packages and simplicity in
maintaining the coding paradigm, the Python programming language is utilized in
this study as compared with the other available languages.

We explain the code for the third model only to save space and since the
algebraic expressions are quite similar. All codes and data are available through: h
ttps://github.com/harunpirim/networkclustering. UKfaculty data [22] is about the
friendship network of 81 faculty of a UK university. The data is retrieved from the R
package igraphdata. The original data represents a directed network with 817 edges.
We collapsed the edges to transform the network into an undirected one. There
would be an edge between authors if there was at least one directed edge between
them. The undirected network has 577 edges. The shortest path distances are
obtained from the original directed network ignoring the weights. A signed network
is retrieved from the signet R package [23] to be employed in model 5. The network
represents 91 countries and 521 positive or negative relationships. The inclusion of
the datasets is decided based on the scalability and existence of edge signs. The
transformation of directed edges is to fit the data to the selected network clustering
models.

After reading the input files and populating the parameters (e.g., dij), a null
GUROBI model (model3) is created as follows:

Next, the model variables, namely xic, Dc, andDmax, are constructed and added
to the model3 model as follows:
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Constraint set (1) of M3 can be added to GUROBI’s model3 model as follows:

Likewise, constraint sets (2)–(4) of M3 can be added to GUROBI’s model3
model as follows:

The objective function of M3 can be added to GUROBI’s model3 model as
follows:

where, GRB.MINIMIZE represents minimizing the objective function of M3.
The objective function of M3 minimizes the maximum diameter of clusters. As
such, GRB.MINIMIZE is used. Following creating the model and adding all the
variables and constraints, the model3 model is optimized as follows:

Cluster membership vector is stored in the val_map (i.e., the first line in the
code below) dictionary. The membership information is used in visualization.

The network is visualized in Figure 1. The distinct node colors represent the
clusters. Here the number of clusters is 8 that is the optimal cluster size within the
range of 2–10. The sensitivity of the objective function value when the number of
clusters changes is plotted.

The largest cluster (cluster 6 in Figure 2) has 20 members, while the smallest
one (cluster 7 in Figure 2) has 5 members. Remaining cluster sizes are 7, 7, 8, 9, 11,
14. The dataset provides group information with respect to faculty affiliated to
three distinct universities. Figure 2 illustrates the faculty (numbers on x axis)
affiliations (numbers 1, 2, 3 on y axis) in each of eight clusters (numbers 1–8 on y
axis). Broken green lines corresponding to faculties 50 and 70 imply unknown
affiliations. Clusters include at least two affiliations. Most of the clusters have a
dominant affiliation. When the number of clusters increases to 9, the optimal
solution produces two clusters of sizes 6 and 10 with single affiliated members.

The best number of clusters between 2 and 10 and solution times are listed in
Table 1. Models M1, M3, M4 optimal cluster numbers are close to each other. They
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used the same dataset to generate clusters. M4 has seven clusters without user input
of number of clusters, while M1 and M3 are provided the number of clusters
between 2 and 10 to decide on the best number of clusters. M1 finds the optimal
solution fastest among all. M2 is computationally the most expensive since it could
not find the optimal solution in 6 days. M5 used a signed network dataset. It has the
least number of clusters to find the optimal solution once provided number of
clusters between 2 and 10. It has the second best solution time among all models
with a slightly different network structure with more nodes and edges compared
with other models.

4. Discussion

The model minimizing the maximum of cluster diameters can be expected to
generate clusters of similar sizes. However, the application of the third model (M3)
on the UKfaculty data formed three clusters of size greater than 10. The result

Figure 1.
Clusters of the UKfaculty network with the number of clusters eight.

Figure 2.
Faculty affiliations in clusters.
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reveals that the cluster sizes are dependent on the density of the relationships
existing in the data. An alternative optimal solution with the cluster size increased
from eight to nine formed more uniform-sized clusters. Two cluster sizes were
greater than 10. This observation suggests defining extra constraints to force
bounds on cluster sizes based on the subject matter expert opinion. Such constraints
can improve the results compromised with the extra computational time.

The first model is more suitable for generating clusters with diverse members
since the adjacent nodes are assigned to different clusters while optimizing the
number of clusters. Second and third models generate compact clusters minimizing
the distances inside the clusters. Both models can be used where individual cluster
members are required to be close to each other. Third one is more relaxed compared
with the second one minimizing the diameter of clusters instead of minimizing the
total distance between members of clusters. The second model is computationally
the most expensive among all. The fourth model maximizes the modularity metric
to generate compact clusters compared with a random model. The modularity
metric is widely used to design heuristic algorithms to cluster large scale datasets.
The advantage of the modularity optimization is that it does not require the number
of clusters as a user input. The last model is designed for clustering signed networks.
Signed networks have many applications in social science.

The maximum diameter minimization model (M3) can form dense clusters as in
community structure finding approaches [14, 15]. However, mathematical pro-
gramming approaches to both modularity maximization and modularity density
maximization are computationally more costly compared to M3. Table 1 reports
computational efficiency of M3 compared with a modularity maximization model
(M4). Many heuristic algorithms are developed [11] for modularity maximization
despite the reported deficiencies such as resolution and degeneracy problems.
Designing heuristics to optimize M3 can contribute to heuristic approaches in
network clustering as such.

5. Conclusion

In this chapter, we provided pure and mixed-integer linear programming for-
mulations with diverse objective functions for crisp clustering problems. The first
formulation finds the minimum number of clusters to assign objects that do not
share a common edge. The second formulation minimizes the total distance inside
clusters. This model is computationally more expensive than others, unable to find
the optimal solution in 6 days even for two clusters. The third formulation mini-
mizes the longest shortest path inside clusters. The fourth formulation maximizes
the modularity metric to find optimal clustering. The last formulation is designed
for signed networks to minimize the number of frustration edges. All models are

Model Best number of clusters Solution time (CPU s) Data size (V, E)

M1 9 0.1 (81, 577)

M2 — Stopped after 6 days (81, 577)

M3 8 2.50 (81, 517)

M4 7 6.19 (81, 517)

M5 4 0.48 (91, 521)

Table 1.
Model results.
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coded in Python and solved optimally except the second one. Optimal clustering
results are reported with respect to solution times and the number of clusters.

Application of the third model on UKfaculty dataset generated clusters with at
least two affiliations. However, most of the clusters have a dominating affiliation.
The model produces compact clusters in this sense. When the number of clusters is
increased from eight to nine, dominating affiliations are distinguished better. There
exist two clusters with a single affiliation. Three clusters out of eight have sizes
greater than 10. Increasing the number of clusters while the solution stays optimal
or imposing bounds on cluster sizes can form clusters with similar sizes. MILP
formulations allow flexibility of defining extra constraints to improve results. The
third model can be employed to social network datasets to reveal close relationships
as such. The models are not practical for networks with hundreds of nodes and
thousands of edges or more. However, heuristics can be developed to solve the
models for larger datasets. Defining extra constraints based on expert opinions and
designing heuristics are future research directions. The code for the third model is
explained in detail. All codes and data are publicly available to make a reproduction
of the results possible.
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