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Abstract

Plant hormones, such as auxin, play crucial roles in many plant developmental 
processes, which is crosstalk with gibberellin and strigolactone. The roles of hormones 
may vary in the biosynthesis of metabolisms. During the pathogen attack, including 
plant-parasitic nematodes, viroid, phytoplasma, virus, and bacteria, plant hormones 
are involved in several plant processes. Ethylene (ET), salicylate (SA), jasmonate (JA), 
and abscisic acid (ABA) primarily regulate synergistically or antagonistically against 
pathogens. Those pathogens—nematodes, bacteria, viroid, phytoplasma, and viruses 
regulate several plant hormones for successful parasitism, influencing the phytohor-
mone structure and modifying plant development. Several genes are related to plant 
hormones that are involved in pathogens parasitism. In this chapter, how pathogens 
affect plant hormones in plants growing are discussed.

Keywords: plant hormones, gene, parasitic nematodes, bacteria, virus, phytoplasma, 
viroid, phytoplasma

1. Introduction

Plant hormones, small chemicals, also termed phytohormones, play an amazing 
array of very important roles in plant development, fruit ripening, from embryo-
genesis to senescence and stress resistance. Among the nine well-characterized 
plant hormones, gibberellin (GA), strigolactones (SLs), brassinosteroids (BRs), 
cytokinins (CKs), and auxin are classified as growth-promoting hormones, and 
others, including jasmonic acid (JA), salicylic acid (SA), ethylene, and abscisic acid 
(ABA) are considered stress reaction hormones. Several studies reveal that the role 
of hormones in the regulation of several physiological processes in diverse tissues or 
dissimilar ecological conditions has widely been described [1, 2]. Although little is 
known about the interaction between hormones at various levels of these cascades 
nevertheless, with the initiation of “omics” tools, noteworthy development has 
been made in the description of phytohormone reactions in different stimuli [3]. 
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Although there are many studies in which exogenously hormone treatment is made 
to increase the plant quality [4], plant hormones are generated by the plants them-
selves, and their functions and chemical structures are mainly conserved among 
plants. Since these combinations are signal molecules, their cellular intensities are 
firmly controlled at the level of catabolism, biosynthesis, and transport in reaction 
to growing and ecological conditions. Therefore, here we have surveyed the pub-
lished literature on the role of phytohormones in the perspective of their effects on 
numerous features of plant growth and respond to biotic stress conditions, such as 
plant-parasitic nematodes, virus, viroid, bacteria, and phytoplasma, and describe 
ways in which phytohormones modulate these reactions separately or grouping with 
several hormones. In addition to biotic stress and hormone interactions, special 
attention is also paid to the tomato, a well-studied plant, for the molecular genetic 
investigation of succulent plant growth and fruit ripening.

2. The role of phytohormones in plant development fruits ripening

The hormone auxin plays a key role in organ development as well as in distinct 
aspects of plant growth and development, such as cell elongation, division, and 
differentiation. Among auxin hormones, indole-3-acetic acid (IAA) is the most 
abundant occurring form in plants. Leaf primordia are known as the major sites 
for the synthesis of auxins, but roots contain much higher levels of auxins due to 
the polar transport of this hormone [5]. Construction of adventitious root (AR) is 
an important developmental process in cutting propagation for the horticultural 
industry. AR formation is divided into three developmental stages—induction, 
initiation, and lengthening [6, 7], and it has been stated that auxin (IAA) regulates 
the formation of AR at almost every developmental stage of these three stages. 
Although Arabidopsis thaliana have been well characterized in terms of mechanism 
of AR formation, there is no detailed study in other species involving tomato in 
which stem cuttings readily form ARs that which them an ideal system to study AR 
formation in detail. It was shown that AR is formed in tomato stem cuttings after 
the perception of a wounding stimulus [8]. The effect of auxin on the transcrip-
tional regulation of target genes, through Auxin Response Factors (ARFs), has been 
shown to have the potential involvement of many ARFs in a/biotic stress responses 
[9]. For example, overexpression of an auxin-responsive gene, TaSAUR75, in 
Arabidopsis altered root length and survival rate and higher expression of some 
stress-sensitive genes, increasing drought and salt tolerance [10]. ARF genes 
also govern the initiation of fruit set by the involvement of SlARF8, SlARF7, and 
SlARF9 on plant fruit development through the interactions between the auxin- 
and GA-signaling pathways [11, 12]. During tomato fruit ripening, auxin induces 
ethylene biosynthesis through upregulation of both ACS and ACO genes, and 
Sl-SAUR69, auxin-related gene, plays an important role in the initiation of “system 
2” ripening, where the fruit experiences high sensitivity to ethylene [13]. Abscisic 
acid (ABA) is one of the most important hormones in the response mechanism 
against stress conditions and plays an important role in germination, root develop-
ment, drought tolerance, and growth [14]. It is the best-known stress signaling 
molecule in plants, and it defends plants from a/biotic stresses. Apart from this, 
ABA controls almost the entire process of fruit ripening by regulating the ABA-
ethylene pathways [15]. Conserved pyrabactin resistance/pyrabactin resistance-
like/regulatory component of ABA receptors (PYR/PYL/RCAR) sense the ABA and 
trigger a series of signaling events. The hormone is normally known as plant growth 
inhibitor. However, the experiments showed that ABA promotes growth on roots 
and shoots. For instance, exogenous treatment of ABA to plant shoots encourage 
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primary root (PR) growth [16]. The main function of ABA in plants reported that it 
has a key role in stress adaptation involved in drought and salinity stress. It has been 
shown that ABA accumulation increases up to 40 times in plants exposed to drought 
stress. Drought and salinity stresses activate ABA biosynthetic genes through acti-
vating ABA response genes by binding ABA-responsive elements (ABREs) located 
in their promoter regions and increasing ABA levels in plants [17]. Mutant plants 
that are insensitive to ABA have also been identified as sugar insensitive, indicating 
a strong correlation between ABA and sugar signaling [18]. It was recently shown 
that increased ABA hormone content mediates the expression of drought and salt 
stress-induced OsSWEET13 and OsSWEET15 genes, resulting in increased sucrose 
content in phloem and altered sucrose transporting in leaf and root tissues [19].

ABA also plays a key role in plant immunity, but this involvement is more 
complex than its involvement in abiotic stress responses because the effect of ABA 
on the resistance of plants to fungi appears to depend on several factors, such as the 
rate of increase of the hormone, the type of pathogen, source of ABA (endogenous 
or exogenous), or application method. ABA-mediated response against biotic 
stresses is not fully understood. However, ABA also affects the expression of genes 
encoding proteins associated with the plant’s response to a/biotic stresses and 
the spread of pathogens in the plant [20]. The functions of ABA in the pathogen 
defense mechanism may generally be related to SA, JA, and ET, whose signals are 
in more pathogen defense than ABA signaling [21]. In other words, endogenous 
ABA and JA form a synergy and exhibit a complex antagonistic relationship with 
SA during the development of the pathogen [22]. Based on the current studies, the 
research on ABA has become increasingly detailed, covering all aspects of plant 
development, fruit ripening, and a/biotic stress conditions, from properties and 
physiological indicators to the molecular and cellular levels, with greater emphasis 
on the study of various mechanisms.

Ethylene is the simplest and first molecule discovered as a hormone in plants 
[23]. Ethylene is synthesized by plants and influences various developmental 
processes, such as seed germination, fruit ripening, senescence, as well as responses 
to various a/biotic stresses. The ethylene signal transduction pathway has been 
broadly investigated in tomatoes because ethylene affects many characteristics 
related to plant vigor, fruit ripening, and postharvest physiology and storage. 
Numerous transcription factors have been identified that participate in the fruit 
ripening mechanism by regulating ethylene responses. The role of ethylene in 
the regulation of fruit ripening has been extensively reviewed [24]. Besides plant 
growth and development, recent studies have emphasized the role of ethylene in 
regulating plant responses to various stress conditions [25]. Ethylene is one of the 
important positive mediators for stress tolerance against salinity in many plants, 
such as the Arabidopsis model plant, maize, and tomato [26, 27]. Ethylene enhanced 
seed germination in saline conditions by reducing the expression of MsACO and 
MsERF8 genes in alfalfa, showing that ethylene improves salt tolerance in alfalfa via 
MsETR2 dependent manner [28]. In another recent study, the application of 1-MCP 
(an ethylene precursor) and AVG (an ethylene biosynthesis inhibitor), respec-
tively, increased and decreased the cold resistance of apple seedlings. This study 
suggested that MdERF1B, an ethylene signaling activator, is a potential regulatory 
module that integrates the cold and ethylene signaling pathways in apples [29]. It 
is clear that ethylene plays a very important role in plant adaptation under abiotic 
stress. However, it would be more useful to determine the molecular cocktail of the 
antagonistic and synergistic role of ethylene with other signaling cues.

In addition to abiotic stress conditions, the role of ethylene in plants exposed to 
biotic stress has been investigated in different plant species and different diseases. 
Molecular studies in plants have shown in plants that many plant hormone-regulated 



Plant Hormones - Recent Advances, New Perspectives and Applications

4

pathways related to resistance to biotic stresses are stimulated by the pathogen 
through the biosynthesis of effector proteins [30]. However, the role of ethylene in 
host-defense mechanisms against pathogens is complex and could be controversial 
due to the conflicting roles that ethylene can increase susceptibility or resistance 
depending on the host-pathogen interaction studied [31]. However, recent evidence 
demonstrates that the ethylene signaling pathway is involved in the plant defense 
response against biotrophic and necrotrophic pathogens. In apple, over-expression 
of the MdERF11 gene in apple callus significantly enhances resistance to B. dothidea 
infection, whereas down-regulation of the gene in apple callus reduced the resistance 
[28]. In a similar study, over-expression of AcERF2, an ethylene-responsive fac-
tor, increased the resistance against both fungal pathogen B. cinerea and bacterial 
pathogen Pst DC 3000 in transgenic plants by regulating the expression of biotic 
stress-responsive genes positively [32]. These results indicate that ethylene not only 
regulates several aspects of plant growth and fruit ripening but also participates in 
defense mechanisms against biotic stress factors.

Gibberellins (GAs) are another important hormone that controls plant growth 
by regulating various physiological mechanisms [33]. Like many other plant 
hormones, GAs play key roles in stem and root elongation, flowering, leaf enlarge-
ment, fruit senescence, seed germination, and increased fruit size. Exogenously 
applied studies have shown that GAs affect various physiological activities, such as 
vegetative growth, flowering fruit set, leaf area expansion, internode elongation, 
and can also increase biomass production, fruit weight, and dryness of plant organs 
[34, 35]. Apart from the roles associated with the growth and development of the 
plant, GAs plays a critical role in defense against environmental stresses. Treatment 
with GAs has been reported to increase the resistance to salinity stress. The foliar 
application of GA3 successfully elevated salinity tolerance of tomato and sweet pep-
per seedlings up to 25 mM NaCl and 50 mM NaCl, respectively showing the positive 
effect of GA3 in plants treated with salinity stress [36]. Exogenous GA increased 
the survival rate of wheat seedlings by regulating antioxidant defense mechanisms 
and the glyoxalase system under drought stress [37]. Moreover, treatment of 
tomato fruits with GA3 effectively reduced chilling injury (CI) index in mature 
green tomato fruit during long-term cold storage by reducing the expression of the 
DELLA protein, which is known as a crucial GA signaling component and growth 
repressor [38]. These findings provide a comprehensive insight into the mechanisms 
by which GA mediates fruit tolerance against abiotic stress conditions.

Although GA has received less attention n in the elucidation of signaling compo-
nents involved in defense responses to biotic stress conditions. However, recent evi-
dence shows that GA signaling components play an important role in plant disease 
resistance and sensitivity. It has been shown that DELLA proteins, which function 
as repressors in GA signaling pathways, control plant immune responses [39]. It was 
reported that overexpression of four MeDELLAs identified in cassava increased the 
disease resistance against cassava bacterial blight. In contrast, virus-induced gene 
silencing (VIGS) of the genes reduced the resistance with lower transcript levels of 
defense-related genes [40]. In a recent study, exogenous GA3 treatment promoted 
the resistance of rice to brown planthopper (BPH) [41]. Accumulating evidence 
suggests that GA and signaling components play important roles in regulating 
defense responses against a variety of pathogens too.

3. Phytohormone stimulating by plant-parasitic nematodes

Nematodes are mostly microscopic organisms that are found in many places 
on the earth, from oceans to continents. They may be parasitic or free-living that 
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plant-parasitic nematodes cause damage to crops in the world. Plant-parasitic 
nematodes infect many plants, including crops, vegetables, and fruit trees [42], and 
they are the most damaging group of plant pathogens [43]. Root-knot nematodes 
(Meloidogyne ss) are one of the most damaging nematode genera in the world, and 
they are sedentary endoparasitic nematodes. Root-knot nematodes modify cell wall 
molecular architecture in their feeding site termed giant cells in successful parasit-
ism [44, 45]. Plants also respond to nematode as a resistance gene such as SlWRKY3 
roles a resistance against Meloidogyne javanica activating plant hormone [46]. Root-
knot nematodes form a feeding tube where the glands insert the stylet to release 
nematode secretions to employ plant resistance and construct a feeding place [47]. 
Cell wall thickness change induced by nematodes [48]. Nematodes damage 
plants by affecting the phytohormone structure and altering plant growth. Plant 
hormones—auxin and cytokinin involve in a vital role in establishing established 
nematode feeding sites [49]. Auxin, cytokinin, and ethylene involve in gall forma-
tion after root-knot nematode infection in plant roots and activates the formation 
[50–53]. Auxin plays a significant role in cell division and growth of plant roots [53] 
that it also plays a role in gall development and gall expansion in roots of A. thaliana 
after Meloidogyne incognita infection [54].

Phytohormones: auxins, cytokinins, gibberellins, abscisic acid, and peptide 
hormones involved in plant defense. But, signaling pathways, but their function 
in plant defense is not well understood [55], and they involve in gene expression 
of plant defense and assembly of defense molecules such as pathogenicity-like 
proteins (PR) [56], phytoalexins [57] phenylpropanoids [58]. During the nematode 
infection, the concentrations of plant hormones [59]. Auxin, ethylene, cytokinin, 
gibberellic acid, abscisic acid, nitric oxide, jasmonic acid, brassinosteroids, salicylic 
acid, and strigolactones are plant hormones [60]. It appears that plant growth 
hormones, particularly cytokinin and auxin, are central to the formation of patho-
gen/pest-infected plant galls [61]. Root-knot nematodes and cyst nematodes modify 
auxin homeostasis thru several approaches [62]. Nematodes can alter several plant 
hormones for successful parasitism. Each hormone may coordinately stimulate 
potato tuberization formation or suppresses [63].

Gibberellins have functions such as controlling growth, metabolic activity, 
reactive oxygen species (ROS) in reaction during abiotic and biotic stresses  
[64, 65]. Gibberellin, glycosyltransferases, and auxins involve in biosynthesis 
and inactivation pathways in the nematode resistance response and their involve-
ment in jasmonate signaling and biotic stress response in soybean-root-knot 
nematode interactions [66]. Several proteins are involved in hormone perception 
and signaling cytokinin, gibberellic acid, auxin, ethylene, and jasmonate recog-
nition [60, 67].

Several genes are dissimilarly expressed in reaction to nematodes associated with 
plant hormones [60]. Several hormones are involved in nematode feeding site for-
mation, such as ethylene biosynthesis in feeding cell formation by cyst nematodes, 
cytokinin, and ethylene-mediated regulatory networks in feeding cell development 
[60]. Auxin or IAA (indole-3-acetic acid) is involved in several developmental 
processes in plants. Auxin-mediated regulatory networks in nematode feeding cells, 
polar auxin transport (pat) plays a role in feeding cell formation and variation of 
local auxin intensities by endoparasitic nematodes [60].

Stress-related genes are notable genes involved in glycosyltransferases, peroxi-
dases, auxin-sensitive proteins, and gibberellin-regulated genes during the Root-
knot nematode in soybean infection. In the resistance reaction, auxins gibberellin 
signal transduction and glycosyltransferases, revealing the key role of components 
of biosynthesis and deactivation pathways and their involvement in jasmonate 
signaling and redox homeostasis involve in responses to biotic stress [66].
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Cytokinin signaling is activated at nematode feeding sites to respond against 
sugar beet cyst nematode infection in the Arabidopsis plant [68].

Plant-parasitic nematodes may regulate phytohormone pathways that auxin 
and cytokinin involve in the formation of root-knot nematode and cyst nematodes 
feeding site, and plant genes are involved in hormone pathways [69]. Jasmonic acid 
defense molecules and salicylic acid-related defense are involved in nematode-plant 
interactions [69]. Ethylene plays a role in plant susceptibility to root-knot nematode 
and cyst nematodes [69]. Arabidopsis REPRESSOR OF CYTOKININ DEFICIENCY 
1 transports UDP-N-acetylglucosamine/UDP-N-acetylgalactosamine and regulates 
endoplasmic reticulum protein quality control and cytokinin [70]. A transcrip-
tion factor, WRKY23, is regulated by auxins and prompted by the cyst nematode 
Heterodera schachtii [71].

4. Viroid-induced plant hormone alterations

Viroids are agents that can cause disease by infecting many agriculturally 
important crop groups (such as potatoes, tomatoes, hops, coconuts, and citrus 
fruits) and ornamental plants [72–74]. Although viroids cause symptoms similar 
to viral infections in plants, they have exceptional structural, functional, and 
evolutionary features. Viroids are RNA with a minute genome varying between 
250 and 401 bases, single-stranded, circular, non-protein-coding, and autono-
mously replicating RNA [75, 76]. They need a host cell to reproduce. Viroids are 
the smallest highly structured infectious agents that do not have detectable mRNA 
activity and can reproduce spontaneously in susceptible plant species [77]. Unlike 
viruses, viroids that do not have protein-coding ability need RNA-dependent RNA 
polymerases in the host plant to perform the initiation and elongation of viral RNA 
strands in replication and use cellular pathways for the transport of proliferating 
viroids [78, 79]. To date, 33 viroid species belonging to eight genera and two fami-
lies (Avsunviroidae and Pospiviroidae), accepted by the International Committee 
on Virus Taxonomy (ICTV), have been reported and recorded. Species belonging 
to these families have important changes in terms of replication mechanisms and 
where they reproduce in the cell [80, 81]. In viroid infection, symptoms may pres-
ent as asymptomatic, mildly symptomatic, or severe symptomatic, according to the 
plant species and the variant of the agent and/or the early infection of the plant. 
The symptom severity observed in plants varies depending on abiotic factors, such 
as high temperature and light intensity, that affect viroid replication [72, 82, 83].

Potato spindle tuber viroid (PSTVd) is the first agent defined as viroid in 
potato (Solanum tuberosum L.) viroids [84]. It has been reported to cause intense 
symptoms in this plant, where it is the main host, and cause serious damage in 
large production areas [85]. PSTVd is asymptomatic in most plants but has a broad 
host range (Solanaceae, Asteraceae, Gesneriaceae, and Lauraceae). Among the most 
important symptomatic hosts are tomato (Solanum lycopersicum L.) [85] and pepper 
(Capsicum annuum L.) [86] plants. Until today, it is known that the resistance to 
viroids in cultivated plants is limited, and there are no naturally resistant plants. 
Viroid infection usually results in changes in the cellular functions of the host plant, 
including defense mechanism, signal transduction, hormone balance, and energy 
production [77]. Viroids’virulence mechanism is mediated either straightforwardly 
by their own genome or by single- or double-stranded RNAs (ss/dsRNAs) com-
posed of its genome, and the symptoms that arise systemic infection are caused by 
small RNAs (sRNA) produced from the viroid, which is unknown to date. It can be 
a result of accumulation with plant features, either in the organelle where the viroid 
proliferates or in the cytoplasm thru its effort within the cell [72]. Application of 
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microarray analysis-based studies in viroid-pathogenicity study due to the low pro-
liferation rate of viroids in the model plant A. thaliana [87–89]. It was determined 
that PSTVd infection caused an important modification in gene expression in one 
of four different genes in Rutgers tomato cultivar, similar to the result observed in 
CaLCuV infection in A. thaliana [90].

To date, things have been done about gene-specific events different from host 
diseases [91]. It is a mediator of plant hormones to signals in plant defense against 
plant organisms and in response to biological stress [92, 93]. Plant hormones as a 
whole took part in the regulation of defense; Hormones involved in plant defense, 
such as salicylic acid (SA), ethylene (ET), and jasmonic acid (JA), are significant 
in systemic gain in the fight against pathogens [94]. Brassinosteroid (BR-induced 
systemic defense against biotrophs, appearance as a system from the entity that 
differs in appearance from the SA mediated SAR and JA/ET from the entity that 
is different from the mediated disease [95, 96]. Plant hormones such as abscisic 
acid, auxins, cytokines, plant systems, and plant hormones such as gibberellins 
are those that have emerged as end-model choices because they alter plant system 
functioning and morphological responses [97]. Having simple structures and low 
systems, plant hormones, cell type, plant preference, and as well as organogenesis 
and apoptosis preference, is in the eye and Estel (Santner). They also play a role in 
defense against viruses [98]. Viroids, those with non-RNA-coding genomes, also 
stimulate defensive responses in plants for symptomatic. In its design as a model 
system, the expression of PSTVd factor and its hosts encoding products involved 
in viroid defense/stress response, growth propensity, preferred defense/stress 
response, development, and other functions has been overlooked [98].

In recent years, with the increase in microarray analyzes and transcriptome 
studies, data on the effect of different signaling pathways in viroid infection have 
been obtained [99]. SA is identified for its significant function in the plant defense 
reaction to diverse biotic and abiotic stresses [100, 101]. In many plant species, 
fungal, bacterial, or viral infection causes local and, to a reduced amount, systemic 
amassing of endogenous SA [102]. Viral contaminations may activate boosted SA 
quantities both in infected subordinate leaves that acquire a hypersensitive response 
(HR) and in uninfected higher leaves that improve systemic acquired resistance 
(SAR) [103, 104]. Many plant species such as tomatoes, soybeans, and potatoes can 
have basal SA levels significantly greater than the presence in tobacco and A. thali-
ana [105]. Application of SA to sensitive tobacco and other plant species infected 
with tobacco mosaic virus (TMV), Cucumber mosaic virus (CMV), and Potato X 
virus (PVX) increased resistance to these agents [106]. In addition, SA application 
in tobacco and potato-PVY interactions decreased viral increase and postponed the 
onset of disease symptoms [107].

To determine the plant-viroid interactions, it was revealed that there was rising in 
the expression of the NPR1 gene in the susceptible Rutgers tomato variety 21–30 days 
after the infection of the tomato with PSTVd (potato spindle tuber viroid). It was 
confirmed that the expression of both NPR1 and PR1 genes was increased in the 
PSTVd-infested plant [108]. In the transcriptome investigation of tomato plants 
infested with PSTVd, it was determined that there were noteworthy modifications 
in the expression of 93 genes linked to SA biogenesis and 146 genes associated with 
SA signaling [109]. In this way, it has provided a unique insight into the mechanisms 
underlying transcript profiling, gene resistance and basal defense mechanism for 
gene, biotrophy versus necrotrophy, and pathogenicity of vascular and non-vascular 
pathogens. In this way, genomic technologies have facilitated the systems-wide 
approach to incorporate distinctive structures in the interfaces of hosts and patho-
gens [110]. It has been determined that increased SA accumulation and external SA 
application in Gynura aurantiaca plants infested with Citrus exocortis viroid (CEVd) 
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[111] have a beneficial effect on alleviating the symptoms caused by CEVd [112]. In 
addition, PR1, PR2, and PR3 gene expression levels were increased in the leaves of 
the hop plant infested by Citrus bark cracking viroid (CBCVd) and/or Hop latent 
viroid (HLVd) [113]. In HSVd infected hop plants [114], It is suggested that the 
regulation of genes encoding SA-bound PR1 and PR4 proteins was not triggered. No 
important alterations in endogenous SA content are detected in the PSTVd-infested 
potato cultivars Solanum laxum and Désirée [115, 116]. The poor reaction of potato 
to SA in PSTVd contamination suggests that several still unrevealed salicylates 
play in signal transduction in potatoes. Gentisic acid (GA), a metabolic derived of 
SA, observes to accumulate in large amounts, even higher than SA, in tomato and 
G. aurantiaca plants infested with CEVd [117]. It has also been suggested that GA 
treatments can delay the onset of symptoms and that GA plays as a pathogen-derived 
signal in addition to SA for the stimulation of plant defense genes in tomatoes [118].

JA plays a significant role in plant growing and growth events such as reproduction, 
flower and fruit growth, root development, senescence [119], and jasmonates in injury 
[120], insect damage, and defense against pathogens were determined to be key signals 
in stress responses [121]. Although JA does not inhibit the systemic increase of viruses, 
it has been observed that external applications of JA can reduce viral replication [122]. 
Generally, it has been observed that JA and ET signaling pathways do synergistically 
in the plant defense mechanism [123], and both JA and SA are necessary for pathogen-
associated molecular model (PAMP)-stimulated resistance reactions to potato [123]. 
While JA supports plant defense in the initial stages of viral contamination, it reduces 
plant resistance if applied in later stages [124]. In Nicotiana benthamiana, both SA 
and JA were required for systemic resistance to TMV, and inhibiting JA development 
significantly reduced subsequent SA accumulation, suggesting that the reverse had no 
effect, proposing that JA was required to motivate SA [125]. Evidence that JA-mediated 
signaling is involved in plant-viroid interactions in tomato plants infested with PSTVd 
is provided by genome-wide analyzes [108].

A transcriptome study in hops showed that the synthesis of JA biosynthesis and 
JA signaling pathways was triggered in HSVd-infected plant leaves [114]. While 
the expression of the LOX gene was decreased in complete tissues of the hop plant 
(leaf, flower, and cone) infected with asymptomatic HLVd and severe symptomatic 
CBCVd in the hops plant, the JAR1 gene revealed small fluctuations in gene expres-
sion competed to the plants without viroids, regardless of disease status. Decreases 
in the expression of the LOX gene in leaf samples of together plant groups indicate 
that this gene does not contribute significantly to the dwarfing of hops plants 
infected with CBCVd [113].

In a study on gene expression in the tomato-PSTVd interaction, JAZ and MYC2 
genes were identified for JA signaling [109], while MYC2 is the main regulator 
of the JA signing pathway, which triggers the transcription of initial JA-receptive 
genes, whereas, in jasmonate-induced transcription, it is found to have a dual role. 
Although there are different variants of PSTVd used in studies, systemic infection of 
Rutgers tomato cultivar with PSTVd was confirmed by increased accumulation of JA 
in plant leaves [126]. Significant amassing of endogenic JA and its precursor cis-
OPDA was detected in plants of PSTVd-infected Désirée potato cultivar and S. laxum 
plants [115, 116]. However, no notable modifications in JA and cis-OPDA contented 
or appearance of related genes were observed in the tubers of infected potato plants, 
recommending the presence of organ-specific alterations in plant hormone reactions 
upon potato-PSTVd contamination. Deficiency of JA biosynthesis and signaling can 
cause male sterility [127] and undersized development of aerial plant parts, particu-
larly in situations where endogenic gibberellins are reduced [128].

Brassinosteroids (BRs) are steroid phytohormones that have been widely studied for 
their early isolation and characterization [129]. Plant growth and development [130]. 
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They also act in plant resistance by stimulating plant defense against viruses [95]. BRs 
have active roles in defensive plants in contradiction of several biotic and abiotic stresses 
[131, 132]. It has been determined that the application of brassinolide (BL) against TMV 
in tobacco reduces the lesions amount on tobacco leaves and increases resistance to TMV 
[95]. BL application also reduced symptom development in CMV-infected Arabidopsis 
[133]. The interaction of BR with other plant hormones is partly related to the ability of 
BR to confer stress tolerance through synergistic or antagonistic interfaces with addi-
tional stress plant hormones such as auxins, JA, gibberellins, SA, and ABA, [134].

When a different PSTVd variant was used on the same tomato cultivars, it 
caused a rise in the expression of some genes like brassinosteroid-6-oxidase 1, while 
decreased expression of the CPD gene was observed [108]. It was determined that 
PSTVd infection did not have a noteworthy influence on endogenic CS in infested 
tomato plants [126]. The function of BR-mediated signing in plant reactions to 
viroid interfaces is highly dependent on the host-viroid grouping, and though BRs 
have a significant part in the regulation of plant immunity, it is not possible to pre-
dict the outcome due to the different mechanisms of action of BRs in plant-viroid 
infection.

The significance of plant hormones in the instruction of plant immunity is clear 
[135]. There is insufficient information to form a general model of the interaction 
of plant hormones during plant-viroid infections. Therefore, new research can help 
improve the product by adding phytohormones aimed at improving plant resis-
tance/tolerance to viroids in the production program at the aquaculture stage.

5. The interaction of phytoplasma with plant hormones

Many yellow-type diseases were supposed to be caused by viruses until a group 
of Japanese researchers in 1967 saw microorganisms similar to animal mycoplasma 
through electron microscopy in the phloem of diseased plants. Later, these types 
of bacteria without a cell wall were called mycoplasma-like organisms (MLOs). 
[136]. In subsequent years, MLOs were named “Candidatus phytoplasma” with 
DNA-specific amplification and sequencing methods [137]. Phytoplasma 16S rRNA 
genes with sufficient diversity are greatly preserved and are used in classifications 
of phytoplasmas [137–140].

Despite having one of the smallest genomes among living organisms, phytoplasmas 
encode compound metabolic functions that enable them to network with their plant 
hosts [141, 142]. Phytoplasmas are of different sizes and shapes, they live and reproduce 
in environments with equal osmotic pressure provided by plant phloem and insect 
fluids, and it is still not possible to reproduce in in vitro conditions. Phytoplasmas are 
plant diseases that spread violently and rapidly and can increase metabolic activities, 
such as plant shoot production, flower shape, and color change in their hosts. They 
also cause severe decline and death in infected plants. [143, 144]. Plants infected with 
phytoplasmas often show symptoms indicating that their growth regulators are severely 
affected. The characteristic symptoms are vigor and phyllodes of flowers, sterility, loss 
of apical dominance leading to witches’ broom formation and proliferation of axillary 
buds, abnormal internode elongation, and general stunting [145, 146].

Phytoplasmas are transmitted by families of Cicadellidae, Cixidae, Psyllidae, 
Delphacidae, and Derbidae [147]. It has been determined that phytoplasmas are 
transmitted with transovarial and seeds in some insect and plant hosts [148–157]. 
Phytoplasmas are also efficiently spread by vegetative propagation like micropropa-
gation parts, grafting, and cuttings [158–160].

Phytoplasma diseases were previously thought to affect the growth regulators 
of plant hosts. It is now recognized that the pathogenicity of phytoplasmas includes 
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certain effector proteins that have diverse effects on growth and other aspects of 
plant life. Phytoplasma effector proteins activate physiological events in cells that 
control symptom development in the plant. Such physiological changes in plants 
result from the effect of phytoplasma on hormonal, nutritional, developmental 
processes, and stress and the interaction of these changes with each other [161].

Plant hormones are small molecules that have important regulatory roles 
in plant growth, survival, and immunity [162–172]. Plant hormones also trig-
ger plant defense mechanisms against pathogen attacks [173, 174]. Salicylic acid 
(SA), jasmonic acid (JA), and ethylene are known to be involved in plant immune 
reactions. Although there are not many studies on other plant hormones such as 
cytokinins, abscisic acid, auxins, brassinosteroids, gibberellic acid, and peptide 
hormones, it is known that these hormones also take place in plant defense systems. 
These hormones are important for plant defense mechanisms in pathogen attack, 
and the cooperation between hormones is preserved in plant species. Activation and 
regulation of hormones against pathogen attack depend on plant host-phytoplasma 
interaction [173–176].

SA is the plant hormone used against pathogens in plant defense and enables the 
Pathogenesis Related Protein (PR) protein genes to be activated. The PR-1, PR-2, 
and PR-5 proteins are used as molecular markers for monitoring SA-dependent gene 
expression [176–179]. Genes expressed in the presence of SA are up-regulated in 
phytoplasma-infected plants. In a study, PR proteins were up-regulated in phyto-
plasma-infected seedlings of garland chrysanthemum and Mexican lime infected 
with “Ca. P. aurantifolia.” When the mulberry phloem sap was infected with phy-
toplasma, the expression of PR-1 protein was increased [180–182]. SA-hormones 
activities are increased in the grapevine infected with the phytoplasma “Ca. P. 
solani” and flavescence dorée phytoplasma [183–187].

JA is an important plant hormone involved in the development processes in 
which stress reactions such as insect attack, injury, and drought are triggered [188, 
189]. Significant variation in gene expression by JA signaling has been reported in 
the phytoplasma infected tobacco (infected with the “Ca. Perrisia mali”), grapevine 
(infected with bois noir; up-regulated PR-6 gene), tomato (infected with “Ca. P. 
solani” strain C; up-regulation of the PR-6 gene PIN2), coconut (infected with 
yellow decline phytoplasma; up-regulation of the PR-3 and PR- 10) [186, 190].

Ethylene is a minor gas hormone that regulates the expansion of organs such as 
leaves, flowers, and fruits in plants and is considered to have an effect on activating 
the plant defense system against pathogens [173, 191]. Ethylene signaling is gener-
ally in synergy with JA signaling and provides increased resistance to pathogen 
attack by the expression of certain defense genes [173]. Differentiation of gene 
expression by ethylene signaling has been reported in the phytoplasma infected 
Mexican lime (infected with “Ca. P. aurantifolia”), grapevine (infected with “Ca. P. 
solani” and “Ca. P. asteris”), Paulownia fortunei (paulownia witches’ broom phyto-
plasma) [183, 190, 192–195].

There are some researches that have revealed the plant-pathogen interactions of 
Indole-3-acetic acid (IAA) or auxin signaling in disease development [171, 196]. In 
one study, it was revealed that there was a significant differentiation in the level of 
IAA in phytoplasma-infected Mexican lime [197].

Cytokinins are an important group of plant hormones that involve in plant growth 
and development [161]. In a study, it is thought that the elevation of cytokinin in the 
flowers of Catharanthus roseus plants is caused by phytoplasma infection [198].

Genetic studies in recent years have been promising in understanding the disease 
capabilities of phytoplasmas, the plant-phytoplasma interaction, and the control 
of phytoplasma diseases in plants. These studies have also revealed the hormonal 
responses of plants to phytoplasma diseases and the resistance mechanisms they 
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have developed in the fight against the disease. However, it is obvious that there are 
still many unknowns waiting to be clarified in terms of the biological structure of 
phytoplasmas and the hormonal interactions of phytoplasma infected plants. When 
phytoplasma diseases and plant resistance mechanisms are understood, agricultural 
production with disease control will be possible over the next half-century.

6. Phytohormone-producing plant growth-promoting rhizobacteria

Plants have a greatly complicated defense system akin to the animal immune sys-
tem. Unknown molecules or signals are recognized by plants from their own injured 
cells and their immune responses by triggering against the invader [199, 200]. Plant 
hormones play a part in the regulation of plant growth. They have important func-
tions in the setting of immune reactions against pathogens, insects, and beneficial 
microorganisms. Signaling pathways are interrelated with a complex network. 
Plants have a huge organizing potential to adapt to the biotic environment rapidly. 
They employ inadequate resources for growing and trigger their immune system 
against attack by insects or pathogens.

Plant pests possess several mechanisms to operate the plant’s hormone signaling 
interaction to overcome host immunity. Beneficial root-colonizing microorganisms 
can organize the hormone-regulated immune signaling system to keep a continued 
mutualistic life cycle [201].

Efficacious pathogens and insects may vigorously attack the plant immune 
system to launch a continued relationship. On the other hand, beneficial associations 
between plants and microbes are rarely found in nature. Beneficial microorganisms 
that are found in the roots or the rhizosphere considerably progress in plant growth. 
Because beneficial microorganisms are primarily recognized by plants as possible 
attackers, thus plant immune system is become activated; they also support the plant 
to withstand biotic or abiotic stress [202].

Beneficial plant-microbe associations are highly organized with coordination 
of plant immune responses that are significant for plant development and survival. 
The best-studied mutualistic microorganisms are mycorrhiza fungi, plant-growth-
promoting rhizobacteria, fungi, and Rhizobium bacteria [203, 204].

Rhizobium bacteria fix atmospheric nitrogen for the plant by inducing the 
development of symbiotic constructions (nodules) in the roots of legumes [201].

Beneficial PGPRs are in close relations with plant roots. They may belong to 
several bacterial genera such as Pseudomonas, Bacillus, Azotobacter, Burkholderia, 
Azospirilium, Paenibacillus. Rhizobacteria may enhance plant growth by generating 
phytostimulators or by overwhelming pathogen microorganisms [205, 206]. They 
also produce phytohormones. The six major classes of phytohormone produced by 
PGPR may induce plant growth, initiate plant immunity, sustain stress tolerance, 
and support plant maturity for fruiting and seedling [207]. From this point of 
view, phytohormone-producing PGPR covers the role and significance of sustain-
able agriculture. Some of them may regulate plant physiology by mimicking the 
synthesis of plant hormones. Plant-growth-promoting rhizobacteria (PGPRs) cause 
a series of chemical changes in soil by increasing minerals and nitrogen. They are 
applied to crops for growth enhancement and disease control [208, 209]. Various 
stress types of salt, including chilling, nutritional stress, pathogen infection, heat, 
metals, and wounding, may cause damage to crops [210]. The use of PGPR may 
affect plant hormone signaling pathways by generating gibberellin, auxins, ABA, 
and cytokinins or by intervening plant ethylene quantities by forming ACC deami-
nase reduced the damage to plants that follow in stress situations by definite mecha-
nisms at sites where stress is a chief restriction [211]. Salicylic acid is a significant 
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plant hormone vital for the immune reaction to pathogens. SA has an essential role 
in disease resistance signaling [212]. The SA reaction pathway is typically effective 
against pathogens [213]. SA is a phenolic compound that may be synthesized from 
the primary metabolite by systemically induced disease resistance responses [214]. 
Plants are involved in complex signal transduction pathways [215].

Jasmonic acid (JA) is a plant hormone vital for the immune reaction to pathogens. 
JA was initially isolated from plants of the Jasminum spp. and other fruits. It can 
modulate the ripening of fruits, root growth, pollen production, tendril coiling, 
and plant resistance to pathogens. JA concentrations in uninduced plant tissues are 
mostly very minor in plant species [216, 217]. JA biosynthesis is controlled by various 
elicitors such as wounding [210, 216, 218]. The expressions of numerous genes, 
with lipoxygenase (LOX) and AOS, were boosted by exogenous application of JA 
[219–222] and connected with an amplified level of endogenous JA [223, 224].

Ethylene (C2H4) is a simple gaseous hydrocarbon that has special effects on plant 
development and growth [225]. A chief component of resistance signals is con-
structed thru numerous plant-pathogen interfaces. It is a significant modulator of 
plant immunity [226–228]. Ethylene has an important potential in the growth of the 
plant. Although greatest commonly associated with ripening, ethylene is a regula-
tor of seed germination, leaf and petal abscission, seedling growing, stress, organ 
senescence, and pathogen reactions.

Abscisic acid is a 15-C weak acid that was identified in the early 1960s. It is 
a development inhibitor amassing in abscising cotton fruit (“abscisin II”) and 
sycamore trees stimulated to develop dormant (“dormin”) [229–232]. ABA has been 
adjusting some plant development and growth features such as seed dormancy, 
embryo maturation, elongation, germination, cell division and floral initiation, and 
reactions to ecological stresses like cold, drought, salinity, pathogen incident, and 
UV radiation. The presence of ABA in abscising organs reveals its potential in 
stimulating senescence and/or stress reaction. Young tissues have great ABA levels, 
and ABA-deficient mutant plants are highly undersized in part since their capability 
in reducing transpiration [233]. Recent studies have greatly concentrated on under-
standing of ABA signaling mechanism [234]. ABA is a significant modulator of the 
plant immune signaling complex. Besides this, it has an important role in growth 
and modification to abiotic stress such as salinity and drought stress [235–237]. 
Plant immunity is suppressed by ABA signaling using the SA-dependent defense 
mechanism [238–241].

Auxins play an essential role in plant development [242]. Microorganisms may 
produce auxins or influence auxin signaling in the host [243, 244]. Auxin signaling 
may suppress SA quantities and signaling [245]. Many pathogens changed ways to 
achieve auxin-mediated destruction of SA to improve the sensitivity of the host [246].

The GAs encompasses many diterpenoid carboxylic acids, common in higher 
plants as endogenous development regulators that involve in promoting organ 
growth and growing variations. These complexes are also constructed by several 
bacteria, plants, and fungi species. The role of GAs in microorganisms has only 
lately been researched. Biologically functioning GAs concentration is firmly 
controlled and is moderated by various developing and environmental signals. 
The latest investigation has focused on the expression of the genes that encode the 
dioxygenases plays a role in biosynthesis and inactivation. GAs influence plant 
development by regulating the deprivation of development inhibitory DELLA 
proteins [247]. They tightly play a role in plant immune signaling [248]. MAMPs 
are produced by soil-borne microorganisms [249, 250]. Because of the abundance 
of soil rhizosphere inhabiting microorganisms, immune signaling in plant roots 
should be controlled frequently [251]. Hormone-regulated responses may affect the 
composition of the native microflora of the rhizosphere [252, 253]. Beneficial soil 
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microorganisms use strategies that rely on hormone-adjusted immune reactions 
that are activated in the roots on preliminary detection [254].

7. Virus-induced-phytohormone remodeling in plant tissues

Plant hormones ethylene (ET), salicylate (SA), jasmonate (JA), and abscisic 
acid (ABA) primarily regulate synergistically or antagonistically against pathogens 
[251]. Plants respond to pathogen invasion by the hypersensitive response (HR), 
R-mediated, and systemic acquired resistance (SAR). The signaling of systemic 
acquired resistance (SAR) depends on the discernment of ethylene and salicylic 
acid [255] synergistically [256] or independently and antagonistically [257]. 
Phytohormones and precursors, such as salicylic acid (SA) and aminocyclopropane-
1-carboxylic acid (ACC), increased antioxidant enzyme activities and defense-
associated genes related to SAR [257].

Hypersensitive response of plant cell death reinforces systemic acquired 
resistance to prevent pathogen movement. The genes are generally associated 
with plants expressing systemic acquired resistance and hypersensitive response 
induce ROS (Reactive Oxygen Species) MAP kinase activation, protein phos-
phorylation, changes in the ion fluxes, and phytohormones as the first responses to 
stress conditions. The intersection of emerging signals causes reprogramming of 
defensive metabolites [258, 259]. Integration of abscisic acid (ABA) and salicylic 
acid (SA) signals resulting from pathogen-related (PR) gene expression during 
pathogen invasion induce defense mechanism and increase expression of genes 
associated with resistance [103]. Otherwise, different SA signaling pathway is 
responsible for PR gene expression independently and related alternative oxidase 
(AOX) induction [260]. Expression of Cucumber mosaic virus protein cmv2b 
inhibits SA-mediated resistance by inducibility of AOX (alternative oxidase) [261]. 
Relationship between AOX and virus resistance, explained by disruption of redox 
signaling in the mitochondrion [262]. SA modulates the opening of mitochondrial 
permeability transition pore, and alternative oxidase (AOX) limits the systemic 
spread of the viruses [263].

Expressed transcriptional factors regulate responsive defense hormone in plants 
during pathogen invasion. The NAC transcription hormone signals [264] response 
to pathogen infection as well as to stress conditions. TMV-P0 inoculated, and plant 
defense-related hormone-treated Capsicum plants overexpress the CaWRKYd gene. 
Silencing of CaWRKYd affects HR lesion formation [265]. WRKY transcription fac-
tors identified as abscisic acid (ABA) signaling regulators. WRKY40 regulates the 
expression of genes responsible for ABA production and modifies the transcription 
of numerous defense-related genes.

Callose accumulation and stomatal closure limiting virus movement are the first 
responses to stress conditions regulated by the plant stress hormone ABA [266]. 
Exogenous application of ABA increases resistance to tobacco mosaic virus [267] 
and tobacco necrosis virus infection [268]. The abscisic acid (ABA) acts both resis-
tance and susceptibility side against virus diseases related to different diseases such 
as Cucumber mosaic virus (CMV) and Bamboo mosaic virus (BaMV) [251]. ABA 
treatment increases antiviral defense responses of plants and contributes antiviral 
disease resistance [269]. ABA postponements the multiplication of TMV in invaded 
leaves and prevents systemic movement. WRKY8 prevents virus infection regulated 
by ABA signaling enhances immune responses against viruses. Another transcrip-
tion factor ABA-responsive MYB gene identified from the avian myeloblastosis 
virus was widely distributed in plants [270]. MYBs interrelate with phytohormones 
in plant defense against virus disease and serve as a molecular connection to 
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integrate abscisic acid (ABA) and salicylic acid (SA) signals and enhance disease 
resistance induction of PR genes during Pseudomonas syringae invasion [271]. MYB1 
performs in the crosstalk between phytohormones and defense responses to regu-
late the SA-dependent defense responses against TMV [257].

Ethylene (ET) plays a complex role in resistance against pathogens, and the 
scheduling of ethylene application affects plant defense against viral infection 
[251, 257]. ET contributes to virus susceptibility and plays a negative role in 
anti-TMV-cg defense. Ethylene-mediated MYB4L signaling pathway affects the 
susceptibility to TMV as a consequence of the SA-independent resistance mecha-
nism [257]. Aminocyclopropane-1-carboxylic acid (ACC) treatment increased 
the accumulation of TMV-cg systemically [267] and Turnip mosaic virus (TuMV) 
[272]. On the contrary, ACC, the precursor of ethylene, accumulates around 
necrotic lesions of TMV-infected plants, and SAR depends on the perception of 
ethylene [273]. Supplementation of the ACC had a suppressive influence on the 
replication of the white clover mosaic virus [122]. ACC-pretreatment increases the 
transcription of MYB4L and stimulates ethylene production during viral infection 
to enhance TMV resistance [257]. Overexpression of ET-response transcription 
factor (ERF) enhances resistance to tobacco mosaic virus infection preventing 
systemic spread of the virus independently exogenous application of salicylic acid, 
jasmonic acid, or ethylene [274].

Another evidence of phytohormone-mediated resistance to viruses is viral 
silencing suppressors (VSRs) [261]. VSRs regulate to integrate connections between 
hormone signaling and subcellular organization [275]. Most viruses encode 
silencing suppressors (VRSs) to suppress SA-related defense responses [276]. 
SA-dependent signaling pathway leads the virus resistance [251]. RNA reliant 
on RNA polymerase (RdRp) open reading frame (ORF) is responsible for RNA 
silencing suppressors to inhibit SA signaling and ABA [277]. CMV 2b expression 
inhibits the salicylic acid (SA)- mediated defense response. Virus-encoded sup-
pressor of RNA silencing protein can constrain to overcome SA-mediated resistance 
mechanism [278]. An exogenous SA application capable of induction RNA silencing 
antiviral defense response to VSR protein [261]. Systemic movement of ToRSV was 
reduced with SA pretreatment. SA signaling plays a role restriction of systemic 
infection but not RNA silencing [279]. Conversely, Alamillo et al. [280] reported 
that the SA signaling system enriches the function of the RNA silencing system 
in tobacco. SA-inducible RNA-dependent RNA polymerases (RDRs)-mediated 
RNA silencing mechanism and the AOX-regulated pathway enhanced resistance 
to tobamoviruses independent by PR genes [263, 281]. Exogenous SA applica-
tion suppressed replication of Potato virus Y in tobacco [282], and RNA silencing 
mechanism associates plant immunity against viral pathogens [283].

Virus spread is commonly limited by the siRNA microRNA system at the 
transcriptional or post-transcriptional level [251]. The SA-dependent overlaps 
between hormones and siRNA, miRNA [262, 284], RNA silencing system [256, 
262, 284] (Yu et al. 2003), JA- mediated (VSR) proteins [276], CMV-2b-VSR 
interferes [261] were evidenced in various studies.

ARFs are the key factors in auxin signaling factors that interact with the helicase 
domain of TMV replicase [285]. TMV replicase-Aux/IAA interactions increase virus 
pathogenicity in tissues of tomato plants where Aux/IAA proteins accumulate [286]. 
Repression of the auxin receptor increased rice susceptibility to Rice black-streaked 
dwarf virus (RBSDV), and Rice stripe virus (RSV) expression of auxin signal-
ing genes changed in response to virus infection [287, 288]. Tobacco mosaic virus 
(TMV) disrupts auxin/indole acetic acid (Aux/IAA) transcriptional regulators and 
access to the phloem for systemically spreading [289]. Tomato spotted wilt virus 
(TSWV) manipulates auxin signaling by interruption of Auxin Response Factor 
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(ARFs) to optimize their own replication and spread [290, 291]. Viral suppressor 
HCPro component of Tobacco vein banding mosaic virus (TVBMV) triggers auxin 
biosynthesis and an increase in auxin accumulation in plants [281].

In the last century, endogenous cytokinins and pathogen interactions in plants 
propounded [292]. Cytokinin levels confer resistance against White clover mosaic 
virus [122], Tobacco necrosis virus (TNV) [293], Potato virus Y [294]. Cytokinin 
may modulate the redox signaling system and trigger defense reactions [278]. 
Cytokinin accumulation suppresses virus-induced necrotic symptoms and increases 
ascorbate peroxidase and catalase activities, ascorbate levels, and H2O2-scavenging 
capacity [293]. White Clover Mosaic Potexvirus infection decreases the level of 
free bases but increases the accumulation of nucleotides. Despite the cytokinin 
concentration being the same for both control and infected leaves, the distribution 
of the specific cytokinin groups in the virus-invaded leaves had changed signifi-
cantly [122].

Researchers interested in the relationship between virus accumulation and 
gibberellic acid (GA) and the earlier findings demonstrated that virus content 
was not reduced by GA [295]. However, virus infection affects GA biosynthesis 
and accumulation. Rice dwarf virus (RDV) infection reduces GA biosynthesis in 
rice [291], tomato yellow leaf curl Sardinia virus (TYLCSV) in S. lycopersicum 
[296]. Tobacco mosaic virus in tobacco [297] and CMV significantly reduces 
the content of jasmonic acid (JA), indole acetic acid (IAA), salicylic acid (SA), 
and gibberellic acid (GA3) in cucumber plants [298]. Pathogen invasion induces 
BR biosynthesis and signaling pathways in both resistant and susceptible 
plants. The resistance against the Rice stripe virus (RSV) can be enhanced by 
Brassinosteroids (BR) and jasmonic acid (JA) signaling, and RSV invasion is 
suppressed by the endogenous BR levels [299].
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