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Abstract

Sweetpotato [sweet potato; Ipomoea batatas (L.) Lam.] is the seventh most 
valued food crop of the world. It has an inherent ability to grow under diverse agro-
ecological and microclimatic zones ranging from tropical and subtropical zones to 
temperate areas with its tuberous roots enriched with the secondary metabolites of 
immense nutritional value. Among these, carotenoids are the most conspicuous one 
for having their use in nutritional, pharmaceutical, food, feed, aquaculture, and 
cosmetic industries. In food industries, carotenoids are used as food additives being 
antioxidants with attractive colors. Despite the immense economic importance, 
sweetpotato has received lesser attention in terms of its breeding with improved 
varieties. The conventional method of breeding by crossing has not been much suc-
cessful due to the complexity of genome sterility and cross-incompatibility. Hence, 
the modern molecular breeding approaches, e.g. genetic, genomic, and metabolic 
(pathway) engineering, have been applied to this crop by some of researchers in 
Japan, Korea, and China to generate various cultivars with improved quantities and 
qualities of carotenoids. This has also opened a new gate for molecular breeders to 
engineer new sweetpotato cultivars enriched with carotenoids under current global 
scenario of dramatically rising climatic changes where novel food resources are bit-
terly needed, especially under alarmingly growing world population, the majority 
of which suffers from malnutrition.

Keywords: sweetpotato, carotenoids, molecular breeding, metabolic engineering, 
pathway engineering

1. Introduction

Sweetpotato [Ipomoea batatas (L.) Lam.], also described as “sweet potato,” 
belongs to the family Convolvulaceae and occupies the seventh position among the 
food crops of the world after wheat, rice, maize, potato, barley, and cassava [1, 2]. 
The largest genus in the family Convolvulaceae is Ipomoea, consisting of 600–700 
species, among which, only I. batatas is cultivated widely as a food crop around the 
world [3, 4]. In comparison with other tuber crops, sweetpotato comprises higher 
contents of carbohydrates, many minerals, and more protein estimates than other 
vegetables [5, 6]. It also contains much higher levels of provitamin A, vitamin C, 
and minerals than those of rice or wheat [7]. Hundred grams of raw sweetpotato 
contain 1.57 g of protein, 20.12 g of carbohydrates, 3 g of total dietary fiber, 41.8 g 



Food Additives

2

of total sugars, 30 mg of calcium, 0.61 mg of iron, 25 mg of magnesium,  
47 mg of phosphorous, 337 mg of potassium, 55 mg of sodium, 0.3 mg of  
zinc, 2.4 mg of vitamin C, 0.5 mg of niacin, 0.2 mg of vitamin B6, 14,187 IU 
of vitamin A (VA), 0.2 mg of vitamin E, 11 μg of vitamin B-9, and 8509 μg 
of β-carotene (β,β-carotene) [8]. The starch in sweetpotato is easy to digest. 
Therefore, it is a valuable constituent in the preparation of excellent weaning meals 
[9]. It is a source of food supply to combat malnutrition in the developing nations, 
since the tuberous roots (tubers) are enriched with starch and dietary fiber, along 
with carotenoids, anthocyanin, ascorbic acid, potassium, calcium, iron, and other 
bioactive ingredients [10–13]. For people of South East Asia and Africa, this crop 
is the main source of β-carotene [10, 14]. The tubers of the Japanese cultivars are 
diverse concerning carotenoids accumulation [15]. Sweetpotato may exert diverse 
health positive effects, since it contains high amounts of numerous phytochemicals 
in roots or leaves [6, 16]. I. batatas cultivars with color-fleshed tubers have been 
reported for their excellent bioactivities, such as antimutagenic [17], free radical 
scavenging [18], hepatoprotactive, reduction of liver injury [19, 20], anticancer 
[21–23], antioxidative activities [23–25], antimicrobial activity, antihypertension, 
anti-inflammatory, antidiabetic, anticaries effect, ultraviolet protection [23], 
and chemopreventive activities [26]. Previous reports also suggest that its tubers 
may be useful for treating peptic ulcers [27]. The genome of I. batatas is structur-
ally complex and has a size of 4.8–5.3 pg/2C nucleus [28]. Due to the existence 
of polyploidy, sweetpotato is a hexaploid species (2n = 6x = 90) that has a basic 
chromosome number of 15, [3] with a huge genome size of 2200–3000 Mbp [29]. 
The genetic studies on this species are exhausting, since it is difficult to generate 
seeds and to evaluate the effects of polyploidy on the genome [30, 31]. Complex 
structure of its genome also manifests self and cross-incompatibility, causing 
barrier for genetic studies on important agronomical characters [3, 32]. Its tubers 
exhibit various colors, such as white, yellow, orange and purple orange, and yellow 
and orange-fleshed lines, were shown to contain β-carotene as the predominant 
carotenoid [11–13, 33, 34]. Annual yield of sweetpotato is currently exceeding 
the value of 105 million metric tons, 95% of which is shared by the developing 
countries. China is the world’s leader among all in sweetpotato consumption that 
counts about 66% of the total global consumption. China is followed by Nigeria 
and Tanzania, though, each of these last two countries shares only 4% of the total 
global consumption [35]. By applying the conventional breeding, biofortification 
of sweetpotato involved the selection of orange-fleshed varieties, to combat vita-
min A deficiency among the developing nations [36]. In Japan, high β-carotene-
accumulating varieties, such as “Benihayato,” “J-Red,” and “Sunny-Red,” were 
initially developed by Japanese breeders at the Kyushu-Okinawa Agricultural 
Research Center (formerly the Kyushu National Agricultural Experiment Station), 
Miyakonojo, Miyazaki, Japan [37–39]. The enhancement of sweetpotato with 
provitamin A carotenoids (PVACs) has also been the area of research focus for 
the HarvestPlus (a company headquartered in Washington, DC, USA, involved in 
the development of nutritious food crops through biofortification and promotion 
of such crops) since the launch of its projects on biofortification [40]. Genetic 
modification of sweetpotato by using the transgenic tools and in order to improve 
the nutritional quality offers huge scope, and numerous research reports have 
already been published on genetic modification of sweetpotato using molecular 
gene engineering technologies [41]; however, it is the immense need to overcome 
hidden hunger, specially the one related with the insufficiency of provitamin A 
carotenoids among the poorly fed but rapidly growing populations in the develop-
ing countries by molecular breeding of sweetpotato varieties on sustainable basis.
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2. Carotenoids and their distribution

Carotenoids, the visible colors of life, are the 40-carbon isoprenoids synthesized 
naturally by fungi, bacteria, algae, and cyanobacteria [42–44] and conspicuously 
by green plants including bryophytes [45] and higher plants [44, 46, 47]. Being 
intracellular, carotenoids are commonly located in the membranes of chloroplasts, 
mitochondria, or endoplasmic reticulum [48]. Approximately 750 carotenoids have 
been reported so far [49, 50].

Maoka et al. (unpublished) analyzed carotenoids that were extracted from 
the orange tubers of the cultivar W71. It was consequently found that there were 
β-carotene-5,8,5′,8′-diepoxide (13.8% of the total carotenoids), β-carotene-5,6,5′,8′-
diepoxide (9.2%), β-carotene-5,8-epoxide (4.6%), β-cryptoxanthin (3.2%), 
β-cryptoxanthin-5′,6′-epoxide (2.2%), lutein (2%), and zeaxanthin (trace amounts), 
in addition to β-carotene (59.3%). The biosynthetic pathway of these carotenoids 
is proposed in Figure 1. The carotenoids with 5,6-epoxy-β-ring or with 5,8-epoxy-
β-ring are unique to sweetpotato. The tubers of the Japanese cultivar “Benimasari” 
were also found to accumulate not only the unique carotenoids, such as β-carotene-
5,8,5′,8′-diepoxide (40.5% of the total carotenoids), β-carotene-5,8-epoxide (6.5%), 
β-cryptoxanthin-5′,8′-epoxide (10.5%), and β-carotene (10.5%), but also typical 
carotenoids that included 5,6-dihydroxy-β-ring (named ipomoeaxanthins) [15].

2.1 Role of carotenoids in animals

Animals, with very few exceptions [51, 52] are unable to synthesize them [53, 
54]; however, carotenoids are accumulated by crustaceans, crabs, fish, crayfish, 
prawns, mammals, and in insects such as butterflies. The animal and human diet 
must include carotenoids as essential nutrients [44].

In marine animals, astaxanthin (3,3′-dihydroxy-β,β-carotene-4,4′-dione) 
has been reported as the most commonly stored carotenoid pigment [55]. It is 

Figure 1. 
Proposed carotenoid biosynthetic pathway in sweetpotato orange tubers [10].
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responsible for the red/pink coloration of crustaceans [56, 57] and the flesh of 
salmonoids [58]. Astaxanthin has received much attraction for its likely role in 
preventing cardiovascular diseases and aging caused by UV light in human body 
[59]. Chemical structures of some major dietary carotenoids are shown in Figure 2.

Both á -carotene and β-carotene have provitamin A activity and are converted to 

retinol in the human body [60–64]. Carotenes such as the lycopene and β-carotene 
play a potential role in human nutrition and act as protectants against diseases, such 
as lycopene protects against cardiovascular [65], aging-related diseases, macular 
degradation of eye [66, 67], and certain types of cancers including gastrointestinal, 
cervix, breast, and prostate cancer [47, 61, 68–73].

Beneficial effects of dietary carotenes, α-carotene, and β-carotene on human 
health related to enhancement of immune system and minimizing the risk of 
cancer are due to their antioxidant potential [69, 74]. β-Carotene, α-carotene, and 
β-cryptoxanthin are provitamin A carotenoids (PVACs) and hence they are the 
main precursors of vitamin A (VA) in the human body [75].

Figure 2. 
Structures of some major dietary carotenoids.
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2.2 Carotenoids use in disease prevention

Carotenoids, especially astaxanthin, have been reported to enhance both the non-
specific and specific immune system and protect cell membranes and cellular DNA 
from mutation [44, 76]. Intake of fruits and vegetables rich in carotenoids mainly 
lycopene, α-carotene, β-carotene, β-cryptoxanthin, zeaxanthin, and lutein lowers the 
risk of morbidity and mortality by cardiovascular diseases and atherosclerosis [69]. 
Epidemiological studies have reported that lycopene can lower the risk of prostate 
cancer [77] and in its ability to quench singlet oxygen; it is 2- to 10-fold stronger than 
β-carotene and α-tocopherol, respectively [78]. Clinical studies have reported that the 
lycopene-enriched foods are protective against oxidative DNA damage in leukocytes 
in vitro [79] and prostate tissue in vivo [80]. β-Carotene is useful in reducing the risk 
of ischemic heart disease and myocardial infarction [81]. In the macular region of 
human eye including eye lens, two xanthophylls, lutein and zeaxanthin, exist in high 
concentrations and are regarded very important carotenoids for eye health. Reports 
suggest that these two carotenoids protect eye from high energy UV light and are 
excellent reactive oxygen species scavengers [82]. The role of lutein and zeaxanthin 
as macular pigments and their function in eye health has been reported in previous 
studies [83]. It has been anticipated that phytoene and phytofluene which are color-
less precursors of other carotenoids possess light absorption in UV-A and UV-B range 
and protect skin by their photo-protective characteristics [84, 85]. Astaxanthin is also 
known as the super antioxidant. Since, it contains particular molecular configura-
tion, making it extremely powerful antioxidant consequently, protecting cells against 
oxidation by quenching singlet oxygen and dissipating the energy as heat. It has the 
strong potential for scavenging free radicals and effectively breaks peroxide chain 
reactions [86, 87]. Studies have showed that the low-density lipoprotein (LDL) high 
cholesterol levels in mice decreased when supplemented with astaxanthin. Neither 
β-carotene nor canthaxanthin produced the same effect. Astaxanthin or other carot-
enoids can decrease the oxidation of the lipid carriers and thereby reduce the risk of 
atherosclerosis [88]. It also has positive effects in case of antitumor activity [89].

2.3 Industrial uses of carotenoids

All carotenoids show antioxidants activities appearing in a variety of colors 
in red, yellow, and orange; therefore, carotenoids are used as natural pigments in 
food, food supplements, nutraceuticals, pharmaceuticals, and cosmetic industry 
and various biotechnological purposes [90, 91]. Global carotenoids market touched 
$1.5 billion ($1500 million) in 2017 with a projection of $2.0 billion by 2022 [92]. In 
a previous report, the global market for carotenoids was $766 million in 2007. The 
expected projection for the year 2015 was $919 million with a compound annual 
growth rate (CAGR) of 2.3%. In 2007, β-carotene alone shared the market value 
at $247 million; this segment was predicted to be worth $285 million by 2015 with 
CAGR of 1.8% [91, 93]. In horticultural crops, they appear as a trait of attractive-
ness, adding value to the marketing potential of fruits and vegetables [94, 95]. 
Green algae Haematococcus pluvialis, which is the natural source of astaxanthin, 
has been reported for huge amounts ranging from 10,000 to 40,000 ppm (mg/
kg) of astaxanthin in addition to other important carotenoids such as β -carotene, 
lutein, and canthaxanthin [58, 96]. Industrially, astaxanthin has been utilized as 
a feed supplement for cultured fish and shellfish [97, 98]. Other diverse biologi-
cal functions of astaxanthin include an involvement in cancer prevention [99], 
enhancer of immune responses [100], and a free radical quencher [58, 101]. It is 
evident, therefore, that astaxanthin is a biomolecule with huge biofunction poten-
tial both to the pharmaceutical and food industries [58].
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3. Sweetpotato carotenoids

The carotenoids present in the sweetpotato leaves can scavenge free radical agents 
as singlet-oxygen quenchers [102–105]. In a recent analytical report [105], the total 
phenol, carotenoid, anthocyanin, and flavonoids contents of the sweetpotato leaves 
ranged from 2.0 to 22.5 (g/100 g DW), 0.9 to 23.4 (β-carotene equivalents/100 g; 
BET/100 g), 2.2 to 24.5 (color value/g DW), and 62.8–272.2 (catechin equivalents; 
μg/g), respectively [105]. Consumption of sweetpotato in Asia ranges from its use 
as additional food of minute status to a very vital supplementary food to rice and/
or other root and tuber crops [106]. It is cooked or used to make cakes, chapatis, 
mandazia, bread, buns, and cookies [107]. In the United States and some other 
developed countries, sweetpotato is strictly used as a luxury food. In Japan, it is 
used in novel plant products and/or nutraceuticals [108]. By using absorption 
spectroscopy, Ishiguro et al. [109] analyzed carotenoids from eight cultivars of 
yellow-fleshed sweetpotato and compared them in terms of their carotenoids. 
By HPLC analyses, they revealed some 17 different carotenoids from yellow- and 
orange-fleshed sweetpotato. In yellow-fleshed sweetpotato, the major carotenoids 
included β-carotene-5,8, 5′,8′-diepoxide (32–51%) and β-cryptoxanthin 5,8-epx-
ide (11–30%), whereas β-carotene with amounts ranging from 80 to 92% were 
dominant in the orange-fleshed cultivars. For other orange cultivars, e.g. W71 and 
“Benimasari,” carotenoid composition in the tubers has already been described along 
with a comprehensive metabolic pathway [10, 15]. Kammona et al. [110] analyzed 
and compared the carotenoid composition in some Malaysian orange, yellow, purple, 
and white sweetpotato tubers. They reported the highest total carotenoid contents 
from orange sweetpotato followed by yellow, purple, and white sweetpotato. Among 
the individual carotenoids analyzed, β-carotene existed in all types ranging from 
91.95 ± 2.05 μg/g DW in white sweetpotato to 376.03 ± 11.05 μg/g DW in orange 
sweetpotato tubers. Traces of zeaxanthin were reported with values 5.44 ± 3.23 μg/g 
DW and 20.47 ± 2.03 μg/g DW in yellow and white sweetpotato, respectively. 
Lutein was available only in orange sweetpotato at trace amount of 0.91 ± 1.03 μg/g 
DW. Purple sweetpotato contained only β-carotene (113.86 ± 14.17 μg/g DW) with 
absence of other carotenoids [110].

Islam et al. [111] performed HPLC analyzes of trans- and cis-β-carotene from 
raw and boiled sweetpotato which included three orange-fleshed, three yellowish-
cream-fleshed, and one white-fleshed varieties of sweetpotato. The deep-orange-
fleshed variety Kamalasundari (BARI SP-2) showed the highest amounts of 
β-carotene among all the varieties followed by yellow varieties. On the other hand, 
from one of the two white-fleshed varieties, only trace amounts of β-carotene were 
obtained with no amounts at all from the other one. Their results proposed that the 
orange-fleshed varieties of sweetpotato contain the highest amounts of β-carotene 
in raw as compared to those which were boiled.

Despite huge economic value, sweetpotato has not received due importance 
as compared with common staple crops such as wheat, maize, and rice. World 
increasing hidden hunger, especially in developing countries, needs new foods and 
nutrition sources on sustainable bases. In this regard, sweetpotato not only offers 
immense nutritional, medicinal, industrial, and potential benefits but is also a new 
horizon in modern industrial biotechnological uses for biofunction development 
through the latest molecular tools and technologies of molecular plant breeding.

3.1 Isolation and functional identification of carotenoids biosynthesis genes

The heterologous complementation expression system in Escherichia coli offers 
unique tool for functional analysis of isolated new carotenoids biosynthesis genes 
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from different organisms [112]. Carotenoid biosynthetic pathway in microorganisms, 
such as Erwinia uredovora and Erwinia herbicola (reclassified as Pantoea ananatis and 
Pantoea agglomerans, respectively), is specified by a gene cluster, encoding biosynthetic 
enzymes that function in a pathway starting with the synthesis of geranylgeranyl 
pyrophosphate (GGPP) and ending in the synthesis of zeaxanthin glucosides  
[113, 114]. Complete carotenoid gene clusters or part of it from E. uredovora or 
 E. herbicola have been introduced into E. coli, which is otherwise a nonpigmented 
bacterium, and such transformed E. coli engineered in a way that they accumulate a 
range of colorful carotenoids [114, 115]. Since carotenoids are derived from isoprenoid 
precursors, E. coli can accumulate carotenoids by coupling an endogenous isoprenoid 
biosynthetic pathway with enzymes encoded by transformed genes of carotenogenic 
organisms such as E. uredovora. Hence, the biosynthetic pathway can be reconstructed 
in vivo even if the enzymes are of such diverse origin as those encoded by bacteria 
and plants [116–118]. The expression of carotenoid genes in E. coli has been useful for 
identifying function of gene products [118–120], the manipulation of the pathway 
[121, 122], investigating transcriptional regulators of carotenoids biosynthesis genes 
[123], and the isolation of new genes encoding enzymes of the carotenoid biosynthetic 
pathway [124] or enzymes catalyzing the synthesis of carotenoid precursors [125].

Misawa et al. [55] isolated and functionally identified the carotenoids biosynthe-
sis genes cluster that included crtB (phytoene synthase), crtI (phytoene desaturase), 
crtW (β-carotene ketolase), and crtZ (β-carotene hydroxylase) from Agrobacterium 
aurantiacum (reclassified as Paracoccus sp. strain N81106). The functional identi-
fication of the isolated gene cluster led them to propose astaxanthin biosynthetic 
pathway for the first time.

Misawa et al. [114] isolated and functionally identified the carotenoid bio-
synthesis genes, such as crtE (GGPP synthase), crtX (Zeaxanthin glucosyltrans-
ferase), crtY (lycopene β-cyclase), crtI (phytoene desaturase), crtB (phytoene 
synthase), and crtZ (β-carotene hydroxylase), form E. uredovora by analyzing 
carotenoids accumulated in E. coli transformants in which these genes were 
expressed. By analysis of accumulated carotenoids in the transformed E. coli by 
these individual genes, they found that carotenoids in this pathway appeared to be 
close to those in higher plants rather than to those in bacteria. Although HPLC is a 
routine analytical tool to analyze various metabolic products from plants, highly 
developed and comprehensive metabolome analytical techniques with respect 
to particular tissues now offer precise analytical approaches such as nuclear 
magnetic resonance (NMR; COSY and NOESY) and accurate mass spectrom-
etry (MS) techniques [47, 126]. A foreign crtW gene was expressed in the W71 
cultivar of sweetpotato, and carotenoids generated there have been successfully 
analyzed by UV-vis, ESI-MS, 1H-NMR, and CD spectral data [127]. As a result, 
novel carotenoids, shown in Figure 3, i.e. echinenone 5′,8′-epoxide, echinenone 
5′,6′-epoxide, and 3′-hydroxyechinenone 5′,6′-epoxide, were identified besides 
ketocarotenoids including astaxanthin.

3.2  Sweetpotato carotenoids biosynthesis genes, cloning, and genetic 
engineering

Although, sweetpotato is highly important as a valuable source of carotenoids 
especially β-carotene, very little research has been done on molecular biological 
aspects of its carotenoid biosynthesis [10, 14, 31, 128]. The development of an effi-
cient and reproducible transformation system is needed for genetic manipulation 
of sweet potato to either improve the crop or establish it as a novel “transgenic plant 
bioreactor” [129]. Otani et al. [130] developed and reported the first successful trans-
formation protocol for the production of transformed (transgenic) sweetpotato 
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plants that was based on the formation of hairy roots using leaf disks as explants 
for Agrobacterium rhizogenes. However, the regenerated transgenic plants showed 
some morphological abnormalities such as short storage root and internodes. 
Later on, to overcome such anomalies, a modified and successful Agrobacterium 
tumefaciens-mediated transformation protocol was developed via somatic cell 
embryogenesis [131–133]. Liao et al. [14] isolated and functionally characterized an 
isopentenyl diphosphate isomerase (idi) gene from sweetpotato cultivar YUSU 303 
from Southeast China. They isolated a full-length cDNA of idi gene by SMART™ 
RACE cDNA Amplification Kit (Clontech, USA). Isolated idi was 1155 bp with an 
open reading frame of 892 bp encoding a polypeptide of 296 amino acids (GenBank 
accession No. DQ150100). Isolated idi gene was cloned in pTrc expression vec-
tor and was fed to E. coli which contained pAC-BETA plasmid for β-carotene 
accumulation. E. coli were cultured and carotenoids were analyzed by color 
complementation. Cultures of E. coli which were transformed with idi gene turned 
orange indicative for β-carotene and suggested its potential activity in promoting 
β-carotene biosynthesis. Kim et al. [134] isolated a partial sequence of phytoene 
synthase (PSY) which contained 354 bp from a cultivar Shinhwangmi (accession 
No. HQ828092). It showed 94% sequence identity with a PSY isolated from Ipomoea 
species Kenyan (GenBank accession No. AB499050.1). However, no gene function 
of isolated PSY from sweetpotato could be reported. Ling et al. [135] isolated a 
lycopene ε-cyclase (LCYe) gene from sweetpotato cultivar Nongdafu 14 from China. 
However, they did not functionally characterize it. They isolated a full-length cDNA 
of idi gene by GeneRacer TM Kit (Invitrogen Carlsbad, CA, USA). Isolated LCYe 
was 1805 bp with an open reading frame of 1236 bp encoding a polypeptide of 411 
amino acids. Quantitative real-time PCR analysis showed that IbLCYe expression 
levels were desirably higher in roots as compared to those in leaves. Isolated LCYe 
gene was expressed in tobacco cultivar Winconsin 38. Carotenoids from transgenic 
tobacco plants were extracted and analyzed by HPLC which revealed transgenes 
accumulating more β-carotene as compared to control plants. Kim et al. [128] 
isolated a partial lycopene β-cyclase (IbLCYb) from a cultivar Yulmi of sweetpotato. 
They synthesized primers by using a partial sequence of IbLCYb from database 
with accession number JX393306 and amplified a partial cDNA of IbLCYb by 

Figure 3. 
Novel carotenoids produced in the tuber of the transgenic sweetpotato engineered with the crtW gene of 
bacterial origin.
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RT-PCR. By using isolated IbLCYb, an IbLCYb-RNAi vector was constructed and 
then used to transform white-fleshed sweetpotato. Transformed sweetpotatoes 
were cultured and analyzed for accumulated carotenoids. Their results showed a 
total increase in the carotenoids contents along with increase in resistance against 
salt stress in transgenic sweetpotato as compared to the control. Significant levels of 
carotenoids genes expression were observed in all plant parts with highest expres-
sion in leaves to lowest in the fibrous roots. But in case of transgenic calli, expres-
sions of IbLCYb were dramatically reduced and found high in non-transgenic calli. 
Lycopene was not produced both by transgenic and non-transgenic sweetpotato. In 
an another experiment, Kim et al. [134] cloned a partial cDNA encoding β-carotene 
hydroxylase (BHY) from storage roots of sweetpotato cultivar Shinhwangmi and 
constructed an RNA-i-IbCHY-β vector for transformation of white-fleshed cultivar 
Yulmi and evaluation of inhibition effects of β-carotene hydroxylase (BHY) in 
transgenic lines. Downregulation of IbBHY gene expression altered the content and 
degree of carotenoids between transgenic and non-transgenic cells with an increase 
in the β-carotene and total carotenoids in transgenic sweetpotato cells along with an 
increase in their antioxidation potential.

3.3  Metabolic engineering of the carotenoid biosynthetic pathway to enhance 
carotenoid contents in higher plants

The pathway engineering approach using a variety of carotenoid biosynthesis 
genes is becoming a potential approach as one of the most effective methods to gen-
erate large quantities of structurally diverse carotenoids [59, 136, 137]. Astaxanthin 
(3,30-dihydroxy-4,40-diketo-β-carotene) is a high-value ketocarotenoid that is bio-
synthesized only by a few organisms typically at low levels. This red pigment (pro-
duced through chemical synthesis) has been used in large amounts in aquaculture. 
Currently, natural astaxanthin is employed as a health boosting food and is inves-
tigated for the treatment of a number of human diseases including cancers [138]. 
The limited renewable sources and growing demand for natural astaxanthin have 
attracted tremendous interest in its engineering into heterologous hosts, especially 
plants with the ability of sequestering 10- to 50-fold higher carotenoids than micro-
organisms, to produce the high-value pigment, during the past decade [139, 140]. 
The most promising approach reaching high astaxanthin yields was by chloroplast 
transformation using a bacterial ketolase gene [141]. Plastid genome transformation 
of lettuce (Lactuca sativa) has similarly been site-specifically modified with the 
addition of three transgenes, which encoded β,β-carotenoid 3,3′-hydroxylase (crtZ) 
and β,β-carotenoid 4,4′-ketolase (4,4′-oxygenase; crtW) from a marine bacterium 
Brevundimonas sp. strain SD212, and isopentenyl-diphosphate-isomerase (idi) 
from a marine bacterium Paracoccus sp. strain N81106. The resultant transplastomic 
lettuce leaves generated 49.2% astaxanthin fatty acid diester, 18.2% astaxanthin 
monoester, and 10.0% astaxanthin in its free forms along with the 17.5% of other 
ketocarotenoids. The ketocarotenoids produced in transplastomic lettuce were 
94.9% of total carotenoids. The wild-type native carotenoids analyzed were 3.8% 
lactucaxanthin and 1.3% lutein in the transplastomic lettuce [142]. Likewise, by 
the introduction and heterologous expression of crtW gene, astaxanthin and other 
intermediates have been produced and reported in carrot (Daucus carota) roots 
[143], canola (Brassica napus) seeds [144], and maize (Zea mays) endosperms [145]. 
A comprehensive carotenoid biosynthetic pathway in these higher plants is shown 
in Figure 4 with a summarized illustration for the metabolic pathway engineering 
with heterologous crtW and crtZ genes expression.

Through pathway engineering that utilizes the marine bacterial carotenoid 
4,4′-ketolase (4,4′-oxygenase) gene named crtW, unique keto-carotenoids such as 
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astaxanthindiglucoside, 2,2′-dihydroxyastaxanthin, and 2,2′-dihydroxycanthaxan-
thin have been produced in Escherichia coli [146, 147] and 4-ketoantheraxanthin in 
tobacco (Nicotiana tabacum) plants [148]. Breitenbach et al. [149] also synthesized 
α-echinenone (4-keto-α-carotene) in rice callus using crtW. Recently, 4-keto-
zeinoxanthin was produced in E. coli cells by introducing the bacterial crtW gene 
and carotenogenic genes from liverwort [150].

3.4  Metabolic engineering of the carotenoids biosynthetic pathway in 
sweetpotato

Metabolic engineering of carotenoid biosynthetic pathway using a combinato-
rial approach has led to the efficient production of interesting carotenoids of high 
commercial value and pharmaceutical potential [44, 59, 151].

Starting with transgenic approach, prerequisite is to have a sound knowledge on 
the metabolic pathways regulating the carotenoid biosynthesis and their accumula-
tion. Due to efforts of many scientists, the carotenoid metabolic pathway and the 
function of the biosynthetic enzymes involved in carotenoids biosynthesis have 
been elaborated well [152]. It was reported that sweetpotato contained not only 
β-carotene but also several epoxy carotenoids unique to the sweetpotato tubers, e.g. 
β-carotene-5, 8-epoxside and β-carotene-5, 8, 5′8′-diepoxside [15]. Therefore, it 

Figure 4. 
Carotenoid biosynthetic pathway in higher plants. A summarized illustration for the introduction and 
function of heterologous crtW and crtZ genes expressed in tobacco [141] and lettuce [142] leaves. The 
carotenoids shown in black represent native carotenoids accumulated by both tobacco and lettuce, and black 
and underlined are those reported from both of the transgenic tobacco and lettuce. Carotenoids underlined 
red are reported from lettuce only, where GGPS, is geranylgeranyl pyrophosphate synthase, PSY is phytoene 
synthase, PDS is phytoene-desaturase, ZDS is ζ-carotene desaturase, CRTISO is carotenoid isomerase, LCYb is 
lycopene β-cyclase, LCYe is lycopene ε-cyclase, LsLCYe is lettuce LCYe, LsCYP97C is lettuce heme-containing 
cytochrome P450-type carotene ε-ring hydroxylase, BHY is non-heme di-iron-type carotene β-ring hydroxylase, 
EHY is carotene ε-ring hydroxylase, ZEP is zeaxanthin-epoxidase, VDE is violaxanthin de-epoxidase, and 
NSY is neoxanthin synthase.
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was assumed that the new structural carotenoids with epoxy and keto groups can 
be produced by expressing the ketolase crtW gene in sweetpotato tubers. Recently, 
marine bacterial genes that include the crtW gene encoding carotenoid 4,4′-ketolase 
[148] was introduced into sweetpotato cultivar W71 under the control of the CaMV 
promoter. Consequently, novel carotenoids with epoxy and keto groups 1, 2, and 
3 were obtained along with a series of ketocarotenoids. The structural elucidation 
of these novel epoxy-keto carotenoids along with biosynthetic pathway in sweet-
potato was also proposed [127]. A tabulated summary of recent developments in 
molecular breeding of sweet potato by genetic, metabolic, and pathway engineering 
approaches is presented in Table 1.

“White Star” (WS) and W71, which produce white- and orange-fleshed tubers, 
respectively, are important sweetpotato cultivars, since they are amenable to 
Agrobacterium-mediated transformation [10, 127, 158, 159]. Chemical analysis of 
the carotenoids and isolation and functional characterization of the carotenoids 
biosynthesis genes of these two cultivars was reported in more details by Khan 
et al. [10] for the first time. One of the initial works that led to the sweetpotato 
genetic improvement for enhancing provitamin A amounts was done by Kim et al. 
[160] which involved isolation and functional analysis of the orange (Or) gene, 
from orange-fleshed sweetpotato controlling the carotenoids accumulation in the 
transgenic calli of sweetpotato. White-fleshed sweetpotatoes were transformed 
by the orange (Or) gene, which resulted in the 10-fold increased accumulation 
of β-carotene and total carotenoids. Later, identical results were presented by 
Park et al. [161] who observed that the overexpression of IbOr gene boosted the 
carotenoid composition in purple-flesh sweetpotato cultivar. In higher plants, 
the biosynthesis of carotenoids from lycopene involves the enzymatic activity 

Gene engineered Promoter used Carotenoids enhancement References

ZDS Cauliflower mosaic 
virus (CaMV) 35S

3.96–2.37 increase in β-carotene and lutein 
and, 2.23-fold increase in total carotenoids 
accompanied with enhanced salt tolerance

[153]

PSY Tuber-specific primer 6.3-fold increase in carotenoid, 19-fold increase 
in β-carotene

[154]

LCYb Cauliflower mosaic 
virus (CaMV) 35S

1.4–1.8 times higher in β-carotene, increased 
tolerance to drought stress

[128]

LCYe 5.44-fold to 6.59-fold
Increase in β-carotene and 1.77–2.75 times 
increase in total carotenoids

[155]

BHY Cauliflower mosaic 
virus (CaMV) 35S

Twofold increase in total carotenoids and 16-fold 
increase in β-carotene

[152]

CrtW Cauliflower mosaic 
virus (CaMV) 35S

Novel carotenoids with epoxy and keto 
groups were produced including a series of 
ketocarotenoids

[127]

CrtO Cauliflower mosaic 
virus (CaMV) 35S

10–12% increase in total carotenoid [156]

BHY Silencing of BHY 117 μg/g (dry weight) increase in total 
carotenoids and 34.43 lg/g (dryweight) in 
β- carotene

[134]

IbOr-R96H cauliflower mosaic 
virus (CaMV) 35S 
promoter

19.6- and 186.2-fold higher total carotenoid and 
β-carotene contents, respectively

[157]

Table 1. 
Role of metabolic engineering in carotenoids enhancement in sweetpotato*.
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of lycopene ϵ-cyclase (LCYe) gene, via β-branch-specific biosynthetic pathway 
yielding β-carotene. By downregulating the expression of IbLCYe through RNA 
interference (RNAi) technology, higher amounts of β-carotene were recorded 
[162]. To increase the β-carotene contents in sweetpotato, researchers have also 
made use of the molecular markers along with the evaluation and screening of 
available germplasm.

This combined approach is thought very useful in selecting the desirable parents 
for breeding new sweetpotato varieties with the higher levels of β-carotenes [163]. 
To analyze the gene diversity and evolutionary relationships among various culti-
vars of sweetpotato, Hwang et al. [164] have applied the use of Simple Sequence 
Repeats (SSRs). Their results showed that polycross-derived cultivars have higher 
levels of genetic diversity suggesting the application of polycross breeding that 
overcomes the challenges of cross-incompatibility. For breeding high β-carotene 
sweetpotato varieties, Quantitative Trait Loci (QTLs) for β-carotene content in a 
cross sweetpotato were reported for the first time by Cervantes-Flores et al. [165] 
which led to the understanding of the inheritance pattern and is considered the 
foundation of the development of marker-assisted breeding techniques for breeding 
high β-carotene (provitamin A) accumulating sweetpotato cultivars.

Orange-fleshed sweetpotato, which is a genetically modified crop, is now well 
accepted by consumers [166, 167] and has appeared as a sound supply of provita-
min A. To achieve the daily provitamin A needs, mere 125 g of fresh orange-fleshed 
sweetpotato roots from most varieties are enough [35].

4. Conclusion

The rapidly increasing world population demands sustainable supply of 
ample quantities of quality food, especially under the changing climatic condi-
tions. Food insecurity accompanied with already existing malnutrition among 
the developing countries is a grand challenge of the day. Foods rich in phyto-
nutrients not only contribute toward enhancing the health but also reduce the 
risk of many diseases including early aging. In this regard, genetic improvement 
of the major staple crops such as sweetpotato needs additional strategies of the 
molecular plant breeding to overcome the genetic complexity. The application of 
metabolic engineering supplemented with the omics and the recently developed 
gene editing tools and technologies are the potential strategies to be adopted 
which promise scope for improving the quantity of phytonutrients, especially the 
carotenoids in sweet potato. It will contribute to prevent the malnutrition and 
the diseases linked with foods deficit in quality nutrients. There is a dire need to 
apply multiple gene engineering approaches for multi-phytonutrients improve-
ment to meet the need.

5. Recent development and future scope

Recent developments in carotenoids gene manipulations have helped to make 
insight that engineering sweetpotato with IbOr gene manipulations would be a 
potential strategy to improve the total carotenoids and specially the β-carotene 
through enhancing sink strength in storage roots of sweet potato. Moreover, 
site-directed mutagenesis supplanted with the genome editing tools such as 
CRISPR-Cas9 such as CRISPR-Cas9 and its different modifications will further lead 
to a fruitful biofortification of sweet potato for nutritional enhancement through 
carotenoids improvement.
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