
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

142,000 180M

TOP 1%154

5,800

Chapter

Introduction to Evolutionary
Algorithms
S. Tamilselvi

Abstract

Real-world has many optimization scenarios with multiple constraints and
objective functions that are discontinuous, nonlinear, non-convex, and multi-modal
in nature. Also, the optimization problems are multi-dimensional with mixed types of
variables like integer, real, discrete, binary, and having a different range of values
which demands normalization. Hence, the search space of the problem cannot be
smooth. Evolutionary algorithms have started gaining attention and have been
employed for computational processes to solve complex engineering problems.
Because it has become an instrument for research scientists and engineers who need to
apply the supremacy of the theory of evolution to shape any optimization-based
research problems and articles. In this chapter, there is a comprehensive introduction
to the optimization field with the state-of-the-art in evolutionary computation.
Though many books have described such areas of optimization in any form as evolu-
tion strategies, genetic programming, genetic algorithms, and evolutionary program-
ming, evolutionary algorithms, that is, evolutionary computation is remarkable for
considering it to discuss in detail as a general class.

Keywords: evolutionary algorithms, genetic operators, non-convex, multi-modal,
optimization process

1. Introduction

Darwin’s principle of evolution says that the existence of any creature is based on
the law “strongest creature survives.” Before computers have entered the human
world, in the 50s, knowledge to apply Darwinian principles for automated problem
solving was invented. Darwin also proved that the survival of any organism can be
maintained with genetic inheritance, such as reproduction, crossover, and mutation.
Thus, Darwin’s evolution theory was deployed by computational optimization
algorithm to search for a solution to any real-world optimization problem in a natural
way [1].

In the 60s, three various interpretations of this idea were introduced at different
places. Evolutionary programming was developed by Lawrence J. Fogel in the USA
when John Henry at Holland started his methodology as a genetic algorithm,

1

stimulated by Darwin’s evolutionary concepts. Similarly, Ingo Rechenberg and Hans-
Paul Schwefel have invented evolution strategies in Germany. Following this fourth
one had emerged as genetic programming, in the early 90s. These four different
terminologies are seen as different representatives of one technology called evolu-
tionary algorithms (EAs), which denote the whole field by considering evolutionary
programming, evolution strategies, genetic algorithms, and genetic programming as
sub-areas and is well depicted in Figure 1 [1, 2].

2. Need for evolutionary algorithms

Real-world has many optimization scenarios. Optimization, by definition, is a
methodology of making the decision as fully perfect as possible to achieve the maxi-
mum possible goal, in an engineering system. Nature is a very good optimizer. An
optimization problem can be stated as follows [2, 3].

Figure 1.
Evolutionary algorithms and their subtypes.

2

Genetic Algorithms

Find x ¼ x1, x2, … xnf g, which

Minimize=Maximize f xð Þ

Subject to

g j xð Þ≤0, j ¼ 1, 2, … ,m

h j xð Þ ¼ 0, j ¼ 1, 2, … , p

Any engineering system can be represented with a set of quantities. Certain quan-
tities are usually fixed called as pre-assigned constants. Remaining quantities can be
treated as decision variables in the optimization process, xi = {x1, x2, … xn}. ‘f(x)’ is
the objective function or goal to be attained, ‘gj(x)’ represent ‘m’ the count of
inequality constraints and ‘hj(x)’ represent ‘p’ count of equality constraints to be
satisfied for attaining feasibility [3].

In real-world engineering problems, the objective function is discontinuous,
nonlinear, non-convex, and multi-modal. Also, the problems are multi-dimensional as
the number of design variables are more and they are mixed in type like integer, real,
discrete, binary. Hence, the search space is not smooth. It may require accessing look-
up table data for objective function evaluation. The constraint functions are very
complex and the amount of violation of each constraint does not cover the same
range, which requires normalization [4].

In general, the optimization problems are categorized based on the existence of
constraints, nature of the decision variables, permissible values of the design vari-
ables, nature of the equations involved, deterministic nature of the variables, separa-
bility of the functions, number of objective functions, etc. Some of them are static
optimization problem, dynamic optimization problem, linear programming problem,
convex programming problem, nonlinear programming problem, geometric pro-
gramming, quadratic programming problem, separable programming problem, multi-
objective optimization problem, single-variate optimization problem, multi-variate
optimization problem [5].

Two different techniques to find the solution for optimization problems are
mathematical programming techniques and meta-heuristic techniques. When
derivative-based mathematical programming methods are applied in solving
nonlinear programming problems, there are several shortcomings. Traditional
optimization methods:

• Yields results that are caught at premature convergence, that is, local optima
often, due to the search space with multi-modality.

• Requires mathematically well-defined objective and constraint functions.

• Requires existence of derivatives for objective function and constraint functions.

• Find difficulty to handle mixed variables.

For a real-world optimization problem, the surface plot obtained even for opti-
mizing two design variables gives greater number of local minima/maxima. Figure 2
depicts the surface plot obtained for the design optimization of the distribution trans-
former problem with two decision variables, width of the core leg, height of the core
window, by minimizing the transformer lifetime cost (TLTC) of the transformer. It is

3

Introduction to Evolutionary Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.104198

very clear from Figure 2 that the real-world problem is very complex with its multi-
modal search space [3].

Of course, when it is a multi-dimensional engineering problem, which requires opti-
mization of more decision variables, the multi-modality cannot be imagined. So, the
conventional derivative-basedmathematical programming technique cannot handle such
complex nature of the optimization problem, accurately. It may yield a feasible design;
however, it will not be an optimal solution. If there is no knowledge or little knowledge
about the behavior of the objective function related to the presence of local minima,
location of feasible region, infeasible region in themulti-dimensional parameter space, it
is advisable to start the meta-heuristic technique, which is a stochastic strategy [2, 3].

Of all the meta-heuristic techniques, evolutionary algorithms (EAs) are especially
effective in the solution of high-complexity, non-convex, nonlinear, multi-
dimensional, mixed variable, multi-objective, constrained optimization problems, for
which a traditional mathematical model is difficult to build, where the nature of the
input/output relationship is neither well defined nor easily computable. The stages of
EAs have not yet been investigated in detail steps with illustration, despite their
performances are better in terms of convergence, consistency in obtaining the solu-
tion, and computational speed in solving any multi-modal problems.

Hence, this chapter discusses in detail the step-by-step evolutionary process that
happens behind the optimization algorithm. It highly helps to find solution for any
multi-modal real-world engineering optimization problem, by optimizing design
objective, while satisfying simultaneously various constraints imposed by interna-
tional standards and user specifications.

3. Known optimization problems

Evolutionary optimization algorithms minimize or maximize an objective function
and they are search algorithms. The algorithm checks all the way through a large

Figure 2.
Search space for minimization of TLTC objective optimizing two decision variables.

4

Genetic Algorithms

search space of possible solution set for the optimal best solution. In day-to-day
practical life as well as professional life, there are numerous activities that seek opti-
mization. Some of the common well-known real-world optimization problems are the
traveling salesman problem, classification problem, economic power dispatch, base
station location problem, antenna design, scheduling problem, etc.

In traveling salesman problem, a salesman wants to visit all the towns, with
information of list of towns and distances between all the towns. The constraint is that
each town has to be visited only once. The optimization problem statement is
searching for the optimum shortest distance/route that the salesman travel and visits
each town exactly only once and returns to the place where he started [6].

Base station location problem is setting radio and optimizing maximum coverage.
Given a set of spots for installing base stations, feasible configurations for every base
station, antenna tilt, maximum power, antenna height, sectors orientation, etc. along
with the information of traffic and strength of the signal propagation, the optimiza-
tion algorithm is to choose the right location and appropriate configuration of the base
station such that the installation cost is minimum while meeting the traffic demand
simultaneously [7].

The job of optimal generator maintenance scheduling problem is to find out the
optimum period for which, the generator units must be taken offline for maintenance
over the stipulated time horizon, so that the operating costs involved are minimized,
meeting the maintenance constraints during the considered time period such as load
demand, maintenance window, maintenance duration and manpower availability [8].

Previous research works have applied only machine learning techniques for the
prediction and classification of any disease/tumor. However, nowadays due to the
capability of evolutionary algorithms, such classification problems have been stated as
an optimization problem and solved using the integrated machine learning-
optimization technique. Thus, optimal classification problem aims to select optimum
elite features from intelligent liver and kidney cancer diagnostic systems of huge data
sets, by filtering the redundant features, minimizing the error rate, in order to
improve the quality of heart disease classification [9].

Economic power dispatch is a vital optimization problem in power system plan-
ning. The aim of the economic dispatch is to schedule the optimum power output for
the available generator units of the power system such that the production cost is
minimum and power demand is met [10].

4. Optimization process of simple evolutionary algorithm

EA handles a population of possible random solutions. Each solution is represented
through a chromosome. The fitness of each chromosome is calculated to call for a com-
petition among the chromosomes. Competition results in the selection of those better
chromosomes/solutions (with high fitness value) that are suited for the environment. The
process of the first level of filtration based on the fitness value is called parent selection
[3]. The selected individuals, that is, parents act as seeds for creating children through
genetic inheritance, that is, recombination and mutation. These genetic operators aid the
necessary diversity. Few pairs of chromosomes from the parent pool are chosen based on
the random probability to undergo crossover for forming offspring. The resulted off-
spring individuals obtained after crossover are allowed to take up mutation randomly.
Different regions of the search space are explored for identifying possible optimal indi-
viduals through “recombination and mutation” operation known as “exploration.” The

5

Introduction to Evolutionary Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.104198

new individuals/children thus formed have their fitness evaluated to compete for survival
in the next generation. As an end to an iteration, in a replacement stage, 80%worst
solutions of the initial random population are substituted by the best offspring children
filtered after survival selection process based on the evaluated fitness value. Over time
and several iterations, “natural selection” operation, which is called exploitation leads to
the identification of an individual in the population as global optimum. The complete
working of the evolutionary algorithm is pictured in Figure 3 [11]. The major steps
involved in the process of optimization in an evolutionary algorithm are as follows [1, 3].

• Solution representation

• Random population generation

• Fitness function evaluation

• Parent selection

• Reproduction—(crossover, mutation)

• Survival selection

• Replacement

• Stopping criteria

5. Iterative process behind evolutionary algorithms

To define problem statement:
Consider an equality function, x + 2y + 3z + 4u = 30. We shall apply the evolution-

ary algorithm to find the appropriate values for x, y, z, u, such that the equity equation
gets satisfied [12].

5.1 Formulation of optimization problem

a. Formulate objective function: f(k)

Figure 3.
Working of evolutionary algorithms.

6

Genetic Algorithms

The objective/aim is to Minimize f(k) = [(x + 2y + 3z + 4u) � 30].

b. Identify decision variables/type: In this equity problem, there are four decision
variables [x, y, z, u]. Variables that possess a larger influence on the objective
function and constraint functions are appropriate ones to be chosen as decision
variables.

c. Find problem dimension:

Total number of decision variables is the problem dimension = 4.

d. Representation:

A solution generated by an evolutionary algorithm is called a chromosome/
individual, which is made up of genes [1]. After selecting the decision variables,
and problem dimension, choice of suitable type for these variables is another
important task. The nature of the decision variables is completely problem
dependent and thus in this example, [x, y, z, u]—they are integers. However, the
genes can be mixed like binary, real, integer, discrete variables, etc., depending
upon the need of the problem under consideration. Chromosome/solution is
thus represented as an integer variable as under:

e. Impose boundary constraint:

This range selection for setting the search space is more often done on a trial
basis, in case the problem dimension is high. On contrary, if the objective
function is very simple, clear, and possesses straight relationship (mathematical
equation) with lesser number of decision variables, then the search space can be
decided by inspection [2]. For this example, it is very clear that the integer
values of decision variables [x, y, z, u] can be restricted to vary between 1 and
30, in order to speed up the computational search.

5.2 Different stages in optimization process

To illustrate solving a minimization type optimization problem using EA, integer
type for decision variables, six for population size, single-point method for crossover,
and roulette wheel for selection are assumed. The various stages involved in the
process of optimization are given for one iteration in this section [13–15].

Stage 1: Population generation: Initial solution set
Four genes [x, y, z, u] are generated randomly satisfying the lower and upper limits

of the boundary constraint. A chromosome thus generated is a vector comprising of
four genes. Chromosome refers to the solution/individual of the formulated optimi-
zation problem, while the collection of such chromosomes is referred to as a popula-
tion. For example, Solution [1] = [x; y; z; u] = [12, 05, 23, 08]. Then, the initial
population will have an array of sizes [population size, problem dimension]. That is,
[(6, 4)] as shown in Table 1.

Stage 2: Function evaluation: Feval
All the chromosomes of random population will then go through a process known

as fitness evaluation to measure the quality of the solution created by EA. Evaluation

x y z U

7

Introduction to Evolutionary Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.104198

of fitness value of chromosome/solution is carried out by calculating the objective
function value as Feval = Modulus[f(k)].

f kð Þ ¼ xþ 2yþ 3zþ 4uð Þ � 30½ �:

For Solution 1½ �, Feval 1½ � ¼ Modulus f Solution 1½ �ð Þ½ �

¼ mod 12þ 2 x 5þ 3 x 23þ 4 x 8ð Þ � 30½ �

Feval [1] = mod [(12 + 10 + 69 + 32) � 30] = 93. Similarly, the solutions of entire
population can be calculated and tabulated as under in Table 1. It is found that
Chromosome 4 has the least objective function value 46.

Stage 3: Parent selection
The chromosomes are selected from the initial population to act as parent for

reproduction, based on the fitness of the solution/individual. The selection procedure
tells how to choose individuals in the population that will create offspring for the next
generation. The fittest solution will have a higher probability to be selected as a
parent. Two-step selection process is discussed as follows [13, 15].

A.To compute the probability of selection: Prob[i]

Prob i½ � ¼
Fit i½ �

P6
i¼1Fit i½ �

where,

Fit i½ � ¼
1

1þ Feval i½ �ð Þ

(to avoid undefined divide by zero error, which may encounter for the optimal
solution, it is advisable to add 1 with Feval).

Fit [1] = 1/(1 + Feval [1]) = 1/94 = 0.0106 and so on, till i = 6.

Total fitness = 0.0845 (refer Table 2).

Prob [1] = 0.0106/0.0845 = 0.1254

B. To select the parent pool: Roulette-wheel (RW) selection process:

Parent selection is vital for the convergence of optimization algorithm as efficient
parents force solutions/individuals to optimality. There are different methods in the

Initial random population Feval [k] Remarks

Solution [1] 12 05 23 08 93

Solution [2] 02 21 18 03 80

Solution [3] 10 04 13 14 83

Solution [4] 20 01 10 06 46 Best Solution

Solution [5] 01 04 13 19 94

Solution [6] 20 05 17 01 55

Table 1.
Functional evaluation of initial population.

8

Genetic Algorithms

process of selecting parents such as stochastic universal sampling, fitness proportion-
ate selection, tournament selection, rank selection, and random selection. In this
chapter, roulette wheel selection has been implemented for identifying the right
parent pool.

Consider a wheel that is split into ‘6’ pies. Pie refers to the individual in the
population. Each solution occupies a portion of the wheel, proportional to its fitness
value. It is clear that a fitter solution takes a larger pie on the wheel and has larger
probability chance of being selected as a parent when the wheel is made to spin ‘6’
times. Hence, the probability of choosing a chromosome depends on its fitness only.
The steps involved in the roulette wheel selection process are:

• Compute cumulative probability values for all the solutions—Cum[i].

• Allot pie in sequence for all the ‘6’ individuals, based on the cumulative
probability. That is, Chromosome 1 has occupied light blue pie with cumulative
probability ranging between [0–0.1254]. Chromosome 4 which has the highest
fitness value ‘0.0213’ has the highest probability ‘0.2521’ among all the solutions
of the population. Naturally, it will take larger sized pie, which is yellow in color
on the wheel. It is clearly explained in Figure 4, and Tables 3 and 4.

• To arrange the order of chromosomes (6) in the parent pool, equivalent to
spinning the wheel ‘6’ times, generate random number ‘6’ times, ‘rand[i]’ < 1,
six.

rand [place 1] = 0.2; rand [place 2] = 0.285; rand [place 3] = 0.098;

rand [place 4] = 0.812; rand [place 5] = 0.397; rand [place 6] = 0.50.

• Fit the random number of each place in the respective range of cumulative
probabilities and fetch the color of the pie. For example, rand [place 2] = 0.285,
which is between Cum [2] and Cum [3]. So, the gray pie which is individual/
chromosome [3] will occur in place2 of the parent/mating pool.

Stage 4: Crossover
The crossover operation involves three steps: (A) selecting mating chromosomes,

(B) determining cut point for crossover, and (C) updating the population.

Initial population Feval [i] Fit [i] Prob [i] Cum [i]

12 05 23 08 93 0.0106 0.1254 0.1254

02 21 18 03 80 0.0123 0.1456 0.2710

10 04 13 14 83 0.0119 0.1408 0.4118

20 01 10 06 46 0.0213 0.2521 0.6639

01 04 13 19 94 0.0105 0.1243 0.7882

20 05 17 01 55 0.0179 0.2118 1

Total fitness 0.0845

Table 2.
Selection probability computation.

9

Introduction to Evolutionary Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.104198

In this operation pairs of parents are chosen and many children/off-springs are
generated using the information available in the gene of the parents. Usually, cross-
over operation is deployed in EA with high probability(pc). Some of the commonly
used crossover operators are whole arithmetic recombination, one point crossover,
uniform crossover, multi-point crossover, Davis’ order crossover, etc. In the equity
problem chosen for illustration, one-point crossover has been used for offspring
creation. In one-point crossover, a randomly point of crossover has been chosen and
the tail ends of the parent pairs are swapped to produce new children. The process is
evident in Table 5.

A.To select chromosome:

Parent chromosome from parent pool that undergoes the mating process is ran-
domly selected and the number of mate solutions is decided using crossover rate, pc.
Solution ‘i’ will become a parent, if random number, rand[i]falls below the crossover
rate. Let us assume the pc = 25% for solving the problem. Generate number randomly
‘6’ times (population size) below 1.

Figure 4.
Roulette wheel—Parent selection process.

Position Chromosome Initial population

Place 1 I Solution [1] 12 05 23 08

Place 2 II Solution [2] 02 21 18 03

Place 3 III Solution [3] 10 04 13 14

Place 4 IV Solution [4] 20 01 10 06

Place 5 V Solution [5] 01 04 13 19

Place 6 VI Solution [6] 20 05 17 01

Table 3.
Place and position of solution—Before RW selection process.

10

Genetic Algorithms

rand [1] = 0.19; rand [2] = 0.249; rand [3] = 0.750; rand [4] = 0.005
rand [5] = 0.149; rand [6] = 0.320

Thus, for the generated random numbers, three chromosomes/solutions [1, 4, 5]
are selected for crossover operation. Hence, the number of crossovers becomes 3, that
is, 3 pairs.

Solution [1] >< Solution [4] — First Crossover
Solution [4] >< Solution [5] — Second Crossover
Solution [5] >< Solution [1] — Third Crossover

B. To determine cut point:

Followed by mating chromosome selection, the next phase is to determine the
position of the crossover point. The steps involved are:

• Generate random numbers between 1 to (Problem dimension—1) in order to get
the crossover point. That is, between 1 and 3. Assume, Cut [1] = 1; Cut [2] = 1;
Cut [3] = 2

• Parent individuals get cut at the crossover point and their genes are interchanged.
For first, second, and third crossovers, parents’ genes are cut at positions 1, 1, and
2, respectively.

Position Chromosome Population after selection

Place 1 II 02 21 18 03

Place 2 III 10 04 13 14

Place 3 I 12 05 23 08

Place 4 VI 20 05 17 01

Place 5 III 10 04 13 14

Place 6 IV 20 01 10 06

Table 4.
Chromosomes in the MATING POOL after RW selection process.

Population after selection Population after crossover

02 21 18 03 02 05 17 01

10 04 13 14 10 04 13 14

12 05 23 08 12 05 23 08

20 05 17 01 20 04 13 14

10 04 13 14 10 04 18 03

20 01 10 06 20 01 10 06

Table 5.
Population after and before crossover operation.

11

Introduction to Evolutionary Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.104198

First Crossover: New Chromosome [1] = Solution [1] >< Solution [4]

Second Crossover: New Chromosome [4] = Solution [4] >< Solution [5]

Third Crossover: New Chromosome [5] = Solution [5] >< Solution [1]

C. To update the population after crossover:

Stage 5: Mutation
Mutation operation is a small random sharp change in the chromosome necessary

to obtain a new solution. Mutation is used to sustain population diversity and it
generally has a low probability, pm. Mutation in EA refers “exploration” of search
space. It has been proven that mutation operation is crucial for the convergence of the
algorithm, however, crossover operation is not so. Some of the commonly used muta-
tion operators are bit flip mutation, swap mutation, scramble mutation, random
resetting, inversion mutation, etc. Like the crossover operators, this is not an exten-
sive list since EA designer may deploy a hybrid approach as a combination of these
operators or prefer problem-specific mutation operators as more practical.

• Calculate the total number of genes in the population = 24 genes.

• Calculate number of mutable genes.

Number of solutions that undergo mutations in a population is decided by mutation
rate pm. Let, ρm = 10%; Number of mutations = 0.1 � 24 = 2.4 = 2.

• Calculate gene positions.

Generate two random numbers below 24, say 12 and 18. Mutable genes and
chromosomes are Chromosome [3]-gene 4 and Chromosome [5]-gene 2. This process
is seen in Table 6.

• The value of mutable genes at the mutation point is substituted with random
number, satisfying the boundary constraint of decision variables/genes. That is,
between 0 and 30; Say 02, 05.

Stage 6: Survival selection and replacement mechanism
After mutation operation one iteration/generation of EA is over. Functional evalu-

ation is again performed on the offspring for survival selection. From the functional
evaluation of population after mutation, it is evident that the objective function value

12

Genetic Algorithms

of the best solution is reducing—37 in comparison with the minimum objective value
—47 of initial random population, as shown in the table. Hence the minimization
objective, f(k) = [(x + 2y + 3z + 4u) � 30] is met. This means that the solutions
obtained by EA at the end of the first iteration is better than the solutions of random
population.

To execute the iteration process continuously, population is to be revised at the
end of each iteration, as a final process, which is referred to as replacement mecha-
nism. In each iteration end, 80–90% of best solutions from offspring population (4–5
best children) and 20–10% best solutions from the initial population (2–1 random
solution) are selected to form new population for next generation [15]. Chromosomes
of the next generation will then become as shown in Tables 7 and 8.

Population after selection Population after crossover Population after mutation

02 21 18 03 02 05 17 01 02 05 17 01

10 04 13 14 10 04 13 14 10 04 13 14

12 05 23 08 12 05 23 08 12 05 23 02

20 05 17 01 20 04 13 14 20 04 13 14

10 04 13 14 10 04 18 03 10 05 18 03

20 01 10 06 20 01 10 06 20 01 10 06

Table 6.
Population after and before mutation operation.

Population after mutation Feval Remarks

02 05 17 01 37 Best Solution and survive in the next generation

10 04 13 14 77 Survive in next generation

12 05 23 02 47 Survive in next generation

20 04 13 14 93 Rejected solution

10 05 18 03 56 Survive in next generation

20 01 10 06 46 Survive in next generation

Table 7.
Survival selection.

Population after mutation Next generation initial population Feval Remarks

02 05 17 01 02 05 17 01 37

10 04 13 14 10 04 13 14 77

12 05 23 02 12 05 23 02 47

20 04 13 14 20 01 10 06 47 Replaced solution

10 05 18 03 10 05 18 03 56

20 01 10 06 20 01 10 06 46

Table 8.
Replacement-population for the next iteration.

13

Introduction to Evolutionary Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.104198

Stage 7: Stopping the iteration
The optimization process is repeated until when objective function value or deci-

sion variables values become stagnant, that is, have no/very little change for a greater
number of iterations. Thus, over period, the solution will get converge to the final best
minimum optimal solution and the optimization process will be stopped, based on any
stopping criteria such as the maximum number of iterations, or maximum number of
functional evaluations, etc.

6. Conclusion

The basic processes that occur behind an evolutionary algorithm have been
explained and illustrated in this chapter with steps covering solution representation,
population generation, functional evaluation, parent selection, genetic operations,
offspring evaluations, survival selection, and stopping criteria for a simple optimiza-
tion problem. This knowledge can be extended very well by researchers across any
discipline, working in the field of optimization and for applying evolutionary algo-
rithms to solve any complex engineering problem using computers. Although the
process behind EA may appear to be simple, the details of the optimization process
form the base and are very much necessary in applying the learned concepts for
modifying the existing evolutionary concepts and evolving into better optimization
methods in the research level.

Author details

S. Tamilselvi
Sri Sivasubramaniya Nadar College of Engineering, Chennai, India

*Address all correspondence to: tamilselvis@ssn.edu.in

© 2022TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

14

Genetic Algorithms

References

[1]Michalewicz Z. Genetic Algorithms +
Data Structures = Evolution Programs. 3rd
ed. Berlin, Heidelberg: Springer; 1996.
p. 387. DOI: 10.1007/978-3-662-03315-9

[2] Gen M, Cheng R. GA & Engineering
Design. Hoboken, New Jersey, United
States: John Willey & Sons, Inc.; 1997

[3] Tamilselvi S, Baskar S,
Anandapadmanaban L, Kadhar K,
Varshini PR. Chaos-assisted
multiobjective evolutionary algorithm to
the design of transformer. Soft
Computing. 2017;21(19):5675-5692. DOI:
10.1007/s00500-016-2145-7

[4] Tamilselvi S, Baskar S,
Anandapadmanaban L, Karthikeyan V,
Rajasekar S. Multi objective evolutionary
algorithm for designing energy efficient
distribution transformers. Swarm and
Evolutionary Computation. 2018;1(42):
109-124

[5] Tamilselvi S, Baskar S, Sivakumar T,
Anandapadmanaban L. Evolutionary
algorithm-based design optimization for
right choice of transformer conductor
material and stepped core. Electrical
Engineering. 2019;101(1):259-277

[6] Agatz N, Bouman P, Schmidt M.
Optimization approaches for the
traveling salesman problem with drone.
Transportation Science. 2018;4(52):
965-981

[7] Lakshminarasimman N, Baskar S,
Alphones A, Willjuice Iruthayarajan M.
Evolutionary multiobjective
optimization of cellular base station
locations using modified NSGA-II.
Wireless Networks. 2011;17(3):597-609

[8] Tamil Selvi S, Baskar S, Rajasekar S.
An Intelligent Approach Based on
Metaheuristic for Generator

Maintenance Scheduling—Classical and
Recent Aspects of Power System
Optimization. 1st ed. Cambridge,
Massachusetts, United States: Academic
Press; 2018. pp. 99-136

[9] Gunasundari S, Janakiraman S,
Meenambal S. Multiswarm
heterogeneous binary PSO using Win-
Win approach for improved feature
selection in liver and kidney disease
diagnosis. Computerized Medical
Imaging and Graphics. 2018;70:135-154

[10] Bhattacharya A, Chattopadhyay PK.
Solving complex economic load dispatch
problems using biogeography-based
optimization. Expert Systems with
Applications. 2010;37(5):3605-3615

[11]De Jong KA. Evolutionary
Computation—A Unified Approach. 1st
ed. Berlin/Heidelberg, Germany:
Springer; 2017. p. 268

[12]Hermawanto D. Genetic Algorithm
for Solving Simple Mathematical
Equality Problem. 2013 [arXiv preprint
arXiv:1308.4675]

[13] Available from: https://www.tutoria
lspoint.com/genetic_algorithms/gene
tic_algorithms_parent_selection.htm

[14] Goldberg DE. Genetic Algorithms in
Search, Optimization, and Machine
Learning. 13th ed. Boston,
Massachusetts, United States: Addison
Wesley; 1989. p. 432

[15]Hancock PJ. An empirical
comparison of selection methods in
evolutionary algorithms. In: AISB
Workshop on Evolutionary Computing
1994 Apr 11. Berlin, Heidelberg:
Springer; 1994. pp. 80-94

15

Introduction to Evolutionary Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.104198

