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Chapter

Methods of Conditionally Optimal
Forecasting for Stochastic
Synergetic CALS Technologies
Igor N. Sinitsyn and Anatoly S. Shalamov

Abstract

Problems of optimal, sub- and conditionally optimal filtering and forecasting in
product and staff subsystems at the background noise in synergistical organization-
technical-economical systems (SOTES) are considered. Nowadays for highly available
systems the problems of creation of basic systems engineering principles, approaches
and information technologies (IT) for SOTES from modern spontaneous markets at
the background inertially going world economics crisis, weakening global market
relations at conditions of competition and counteraction reinforcement is very
important. Big enterprises need IT due to essential local and systematic economic loss.
It is necessary to form general approaches for stochastic processes and parameters
estimation in SOTES at the background noises. The following notations are intro-
duced: special observation SOTES (SOTES-O) with own organization-product
resources and internal noise as information from special SOTES being enact noise
(SOTES-N). Conception for SOTES structure for systems of technical, staff and
financial support is developed. Linear, linear with parametric noises and nonlinear
stochastic (discrete and hybrid) equations describing organization-production block
(OPB) for three types of SOTES with their planning-economical estimating divisions
are worked out. SOTES-O is described by two interconnected subsystems: state
SOTES sensor and OPB supporting sensor with necessary resources. After short sur-
vey of modern modeling, sub- and conditionally optimal filtering and forecasting
basic algorithms and IT for typical SOTES are given. Influence of OTES-N noise on
rules and functional indexes of subsystems accompanying life cycle production, its
filtration and forecasting is considered. Experimental software tools for modeling and
forecasting of cost and technical readiness for parks of aircraft are developed.

Keywords: sub- and conditionally optimal filtering and forecasting (COF and COFc),
continuous acquisition logic support (CALS), organizational-technical-economical
systems (OTES), probability modeling, synergetical OTES (SOTES)

1. Introduction

Stochastic continuous acquisition logic support (CALS) is the basis of integrated
logistic support (ILS) in the presence of noises and stochastic factors in
organizational-technical-economic systems (OTES). Stochastic CALS methodology
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was firstly developed in [1–5]. According to contemporary notions in broad sense ILS
being CALS basis represents the systems of scientific, design-project, organization-
technical, manufactural and informational-management technologies, means and
fractial measures during life cycle (LC) of high-quality manufacturing products (MP)
for obtaining maximal required available level of quality and minimal product
technical exploitational costs.

Contemporary standards being CALS vanguard methodology in not right measure
answer necessary purposes. CALS standard have a debatable achievement and the
following essential shortcoming:

• informational-technical-economic models being not dynamical;

• integrated database for analysis of logistic support is super plus on one hand and
on the other hand does not contain information necessary for complex through
cost LC estimation according to modern decision support algorithms;

• computational algorithms for various LC stage are simplified and do not permit
forecasting with necessary accuracy and perform at conditions of internal and
external noises and stochastic factors.

So ILS standard do not provide the whole realization of advantages for modern and
perspective information technologies (IT) including staff structure in the field of
stochastic modeling and estimation of two interconnected spheres: techno-sphere
(techniques and technologies) and social ones.

These stochastic systems (StS) form the new systems class: OTES-CALS systems.
Such systems destined for the production and realization of various services including
engineering and other categorical works providing exploitation, aftersale MP support
and repair, staff, medical, economical and financial support of all processes. New
developed approach is based on new stochasting modeling and estimating approaches.
Nowadays such IT are widely used in technical application of complex systems
functioning in stochastic media.

Estimation of IT is based on: (1) model of OTES; (2) model of OTES-O (observa-
tion system); (3) model OTES-N (noise support); (4) criteria, estimation methods
models and for new generations of synergetic OTES (SOTES) measuring model and
organization-production block (OPB) in OTES-O are separated.

Synergetics being interdisciplinary science is based on the principle of self-
realization of the open nonlinear dissipative and nonconservative systems. According
to [6, 7] in equilibrium when all systems parameters are stable and variation in it arise
due to minimal deviations of some control parameters. As a result, the system begins
to move off from equilibrium state with increasing velocity. Further the non-stability
process lead to total chaos and as a result appears bifurcation. After that gradually new
regime establishes and so on.

The existence of big amount of free entering elements and subsystems of various levels
is the basic principle of self-organization. One of inalienable properties of synergetical
system is the existence of “attractors”. Attractor is defined as attraction set (manifold) in
phase space being the aim of all nonlinear trajectories of moving initial point (IP). These
manifolds are time invariant and are defined from equilibrium equation. Invariant mani-
folds are also determined as constraints of non-conservative synergetical system. In
synergetical control theory [8] transition from natural, unsupervised behavior according
to algorithms of dissipative structure to control motion IP along artificially in putted
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demanded invariant manifolds. As a control object of synergetical system always
nonlinear its dynamics may be described by nonlinear differential equations. In case of big
dimension the parameters of order are introduced by revealing most slow variable and
more quick subordination variables. This approach in hierarchical synergetic system is
called subordination principle. So at lower hierarchy level processors go with maximal
velocity. Invariant manifolds are connected with slow dynamics.

Section 1 is devoted to probabilistic modeling problems in typical StS. Special
attention is paid to hybrid systems. Such specific StS as linear, linear with the Gaussian
parametric noises and nonlinear reducible to quasilinear by normal approximation
method. For quick off-line and on-line application theory of conditionally optimal
forecasting in typical StS is developed in Section 2. In Section 3 basic off-line algo-
rithm of probability modeling in SOTES are presented. Basic conditionary optimal
filtering and forecasting quick – off-line and on-line algorithms for SOTES are given in
Section 4. Peculiarities of new SOTES generalizations are described in Section 5.
Simple example illustrating the influence of SOTES-N noise on rules and functional
indexes of subsystems accompanying life cycle production, its filtration and forecast-
ing is presented in Section 6. Experimental software tools for forecasting of cost and
technical readiness for aircraft parks are developed.

2. Probabilistic modeling in StS

Let us consider basic mathematical models of stochastic OTES:

• continuous models defined by stochastic differential equations;

• discrete models defined by stochastic difference equations;

• hydride models as a mixer of difference and differential equations.

Probabilistic analytical modeling of stochastic systems (StS) equations is based on
the solution of deterministic evolutionary equations (Fokker-Plank-Kolmogorov,
Pugachev, Feller-Kolmogorov) for one- and finite dimensions. For stochastic
equations of high dimensions solution of evolutionary equation meets principle
computationary difficulties.

At practice taking into account specific properties of StS it is possible to design rather
simple stochastic models using a priori data about StS structure, parameters and stochas-
tic factors. It is very important to design for different stages of the life cycle (LC) models
based on available information. At the last LC stage we need hybrid stochastic models.

Let us consider basic general and specific stochastic models and basic algorithms of
probabilistic analytical modeling. Special attention will paid to algorithms based on
normal approximation, statistical linearization and equivalent linearization methods.
For principally nonlinear non Gaussian StS may be recommended corresponding
parametrization methods [9].

2.1 Continuous StS

Continuous stochastic models of systems involve the action of various random
factors. While using models described by differential equations the inclusion of
random factors leads to the equations which contain random variables.
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Differential equations for a StS (more precisely for a stochastic model of a system)
must be replaced in the general case by the Equations [9, 10].

_Z ¼ F Z, x, tð Þ, Y ¼ G Z, tð Þ, (1)

where F z, x, tð Þ and G z, tð Þ are random functions of the p-dimensional vector,
z, n-dimensional vector x and time t (as a rule G is independent of x). In consequence
of the randomness of the right-hand sides of Eq. (1) and also perhaps of the initial
value of the state vector Z0 ¼ Z t0ð Þ the state vector of the system Z and the output Y
represent the random variables at any fixed time moment t. This is the reason to
denote them by capital letters as well as the random functions in the right-hand sides
to the Eq. (1). The state vector of the system Z tð Þ and its output Y tð Þ considered as the
functions of time t represent random functions of time t (in the general case vector
random functions). In every specific trial the random functions F z, x, tð Þ and G z, tð Þ
are realized in the form of some functions f z, x, tð Þ and g z, tð Þ and these realizations
determine the corresponding realizations z tð Þ, y tð Þ of the state vector Z tð Þ and the
output Y tð Þ satisfying the differential equations (which are the realizations of Eq. (1)

_z ¼ f z, x, tð Þ, y ¼ g z, tð Þ:

Thus we come to the necessity to study the differential equations with random
functions in the right-hand sides.

At practice the randomness of the right-hand sides of the differential equations
arises usually from the fact that they represent known functions some of whose
arguments are considered as random variables or as random functions of time t and
perhaps of the state and the output of the system. But in the latter cased these
functions are usually replaced by the random functions of time which are only
obtained by assuming that their arguments Z and Y are known functions of time
corresponding to the nominal regime of system functioning. In practical problems
such an assumption usually provides sufficient accuracy.

So we may restrict ourselves to the case where all uncertain variables in the right-
hand sides of differential equations may be considered as random functions of time.
Then Eq. (1) may be written in the form

_Z ¼ f Z, x,N1 tð Þ, tð Þ, Y ¼ g Z,N2 tð Þ, tð Þ, (2)

where f and g are known functions whose arguments include random functions of
time N1 tð Þ and N2 tð Þ. The initial state vector of the system Z0 in practical problems is
always a random variable independent of the random functions N1 tð Þ and N2 tð Þ
(independent of random disturbances acting of the system).

Every realization n1 tð ÞTn2 tð ÞT
h iT

of the random function N1 tð ÞTN2 tð ÞT
h iT

deter-

mines the corresponding realizations f z, x, n1 tð Þ, tð Þ, g z, n2 tð Þ, tð Þ of the functions
f z, x,N1 tð Þ, tð Þ, g z,N2 tð Þ, tð Þ, and in accordance with this Eq. (2) determine respective
realizations z tð Þ and y tð Þ of the state vector of the system Z tð Þ and its output Y tð Þ.

Following [9, 10] let us consider the differential equation

dX=dt ¼ a X, tð Þ þ b X, tð ÞV, (3)

where a x, tð Þ, b x, tð Þ being functions mapping Rp � R into Rp and Rpq, respec-
tively, is called a stochastic differential equation if the random function (generalized)
V tð Þ represents a white noise in the strict sense. Let X0 be a random vector of the same
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dimension as the random function X tð Þ. Eq. (3) with the initial condition X t0ð Þ ¼ X0

determines the stochastic process (StP)X tð Þ .
In order to give an exact sense to Eq. (3) and to the above statement we shall

integrate formally Eq. (3) in the limits from t0 to t with the initial condition
X t0ð Þ ¼ X0. As result we obtain

X tð Þ ¼ X0 þ

ð

t

t0

a X τð Þ, τð Þdτ þ

ð

t

t0

b X τð Þ, τð ÞV τð Þdτ

where the first integral represents a mean square (m.s.) integral. Introducing the
StP with independent increments W tð Þ whose derivative is a white noise V tð Þ we
rewrite the previous equation in the form

X tð Þ ¼ X0 þ

ð

t

t0

a X τð Þ, τð Þdτ þ

ð

t

t0

b X τð Þ, τð ÞdW τð Þ: (4)

This equation has the exact sense. Stochastic differential Eq. (3) or the equivalent
equation

dX ¼ a X, tð Þdtþ b X, tð ÞdW (5)

with the initial condition X t0ð Þ ¼ X0 represents a concise form for of Eq. (4).
Eq. (5) in which the second integral represents a stochastic Ito integral is called a

stochastic Ito integral equation and the corresponding differential Eq. (3) or (5) is
called a stochastic Ito differential Eq.

A random process X tð Þ satisfying Eq. (4) in which the integral represent the m.s.
limits of the corresponding integral sums is called a mean square of shortly, an m.s.
solution of stochastic integral Eq. (4) and of the corresponding stochastic differential
Eq. (3) or (5) with the initial condition X t0ð Þ ¼ X0.

If the integrals in Eq. (4) exist for every realization of the StPW tð Þ and X tð Þ and
equality (4) is valid for every realization then the random process X tð Þ is called a
solution in the realization of Eq. (4) and of the corresponding stochastic differential
Eq. (3) and (5) with the initial condition X t0ð Þ ¼ X0.

Stochastic Ito differential Eqs. (3) and (5) with the initial condition X t0ð Þ ¼ X0,
where X0 is a random variable independent of the future values of a white noise
V sð Þ, s> t0 (future increments W sð Þ �W tð Þ, s> t≥ t0, of the process W) determines
a Markov random process.

In case of W being vector StP with independent in increments probabilistic

modeling of one and n-dimensional characteristic functions g1 ¼ Eeiλ
TZ tð Þ and

gn ¼ E exp i
Pn

k¼1λ
T
kZ tkð Þ

� �

and densities f 1 and f n is based on the following

integrodifferential Pugachev Eqs:

∂g1 λ; tð Þ

∂t
¼

1

2πð Þp

ð

∞

�∞

ð

∞

�∞

iλTa z, tð Þ þ χ b z, tð ÞTλ; t
� �h i

ei λTþμTð Þzg1 μ; tð Þdμdz, (6)

∂

∂tn
gn λ1, … , λn; t1, … , tnð Þ ¼

1

2πð Þpq

ð

∞

�∞

ð

∞

�∞

iλTna zn, tnð Þ þ χ b zn, tnð ÞTλn; tn
� �h i

� exp i
X

n

k¼1

λTk � μTk
� �

zK

( )

gn μ1, … , μn; t1, … , tnð Þdμ1, … , dμn; dz1, … , dzn,

(7)
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∂ f 1 z; tð Þ

∂t
¼

1

2πð Þp

ð

∞

�∞

ð

∞

�∞

iλTa ζ, tð Þ þ χ b ζ, tð ÞTλ; t
� �h i

eiλ
T ζ�zð Þ f 1 ζ, tð Þdζdλ, (8)

∂

∂tn
f n z1, … , zn; t1, … , tnð Þ ¼

1

2πð Þnp

ð

∞

�∞

…

ð

∞

�∞

iλTna ζn, tnð Þ þ χ b ζn, tnð ÞTλn; tn
� �h i

� exp i
X

n

k¼1

λTk ζk � zkð Þ

( )

f n ζ1, … , ζn; t1, … , tnð Þdζ1, … , dζn; dλ1, … , dλn,

(9)

f 1 z; t0ð Þ ¼ f 0 zð Þ, (10)

where i being imaginary unit,

χ μ; tð Þ ¼
1

h1 μ; tð Þ

∂h1 μ; tð Þ

∂t
, (11)

f n z1, … , zn�1, zn; t1, … , tn�1, tn�1ð Þ ¼ f n�1 z1, … , zn�1; t1, … , tn�1ð Þδ zn � zn�1ð Þ:

(12)

For the WienerW StP with intensity matrix v tð Þwe use Fokker-Plank-Kolmogorov
Eqs:

∂ f n z; tð Þ

∂t
¼

∂
T

∂z
a z, tð Þ f n z; tð Þ
� 	

þ
1

2
tr

∂

∂z

∂
T

∂z
b z, tð Þv tð Þb zð , tÞT f n z; tÞð g




(13)

at initial conditions (12).

2.2 Discrete StS

For discrete vector StP yielding regression and autoregression StS

Xkþ1 ¼ ωk Xk,Vkð Þ k ¼ 1, 2, …ð Þ, (14)

Xkþ1 ¼ ak Xkð Þ þ bk Xkð ÞVk k ¼ 1, 2, …ð Þ: (15)

Eqs for one and n dimensional densities and characteristic functions are described by:

f k xð Þ ¼
1

2πð Þp

ð

∞

�∞

e�iλTxgk λð Þdλ, gk λð Þ ¼ E exp iλTXk

� �

, (16)

f k1,… ,kn
x1, … , xnð Þ ¼

1

2πð Þnp

ð

∞

�∞

exp i
X

n

h¼1

λTh xh

( )

gk1,… ,kn
λ1, … , λnð Þdλ1, … , dλn,

(17)

gk1,… ,kn
λ1, … , λnð Þ ¼ E exp i

X

n

l¼1

λTl xkl

( )

, (18)

gkþ1 λð Þ ¼ E exp iλωk Xk,Vkð Þ ¼

ð

∞

�∞

ð

∞

�∞

e�iλTω! x,υð Þ f k xð Þhk υð Þdxdυ,

8

<

:

(19)
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gk1,… ,kn
λ1, … , λnð Þ ¼ E exp i

X

n

l¼1

λTl xkl þ iλTnωkn Xkn ,Vknð Þ

( )

¼

ð

∞

�∞

…

ð

∞

�∞

ð

∞

�∞

exp i
X

n

h¼1

λTh xh þ iλTnωkn xn, υnð Þ

( )

f k1,… ,kn
x1, … , xnð Þηn υnð Þdx1 … dxn, dυn:

(20)

Here E being symbol of mathematical expectation, hk being Vk characteristic
function

gk1,… ,kn�1,kn�1
λ1, … , λnð Þ ¼ gk1,… :kn�1

λ1, … , λn�1 þ λnð Þ,

gk1,… ,kn
λ1, … , λnð Þ ¼ gs1,… ,sn

λs1 , … , λsnð Þ,
(21)

where s1, … , snð Þ – permutation of 1, … , nð Þ at ks1 < ks2 < … < ksn :
In case of the autoregression StS (1.14) basic characteristic functions are given by

Eqs:

gkþ1 λ1, … , λnð Þ ¼ E exp iλTak xkð Þ þ iλTbk Xkð ÞVk

� �

¼

ð

∞

�∞

ð

∞

�∞

eiλ
Tak xð ÞþiλTak xð Þυ f k xð Þhk υð Þdxdυ ¼ E exp iλTak Xkð Þ

� �

þ hk bk Xkð ÞTλ
� �h i

,

(22)

gk1,… ,kn
λ1, … , λnð Þ ¼ E exp i

X

n�1

l¼1

λTl xkl þ iλTn akn Xknð Þ þ iλTn bkn Xknð ÞVkn

( )

¼

ð

∞

�∞

…

ð

∞

�∞

ð

∞

�∞

exp i
X

n�1

h¼1

λTl xl þ iλTnakn xnð Þ þ iλTn bkn xnð Þυn

( )

�E exp i
X

n�1

l¼1

λTl xkl þ iλTnakn Xknð Þ

( )

þ hn bn Xnð ÞTλn

� �

" #

:

(23)

2.3 Hybrid continuous and discrete StS

When the system described by Eq. (2) is automatically controlled the function
which determines the goal of control is measured with random errors and the control
system components forming the required input x ∗ are always subject to noises, i.e. to
random disturbances. Forming the required input and the real input including the
additional variables necessary to transform these equations into a first-order equation
may be written in the form

_X ¼ φ X,U, tð Þ, _U ¼ ψ X,Z,U,N3 tð Þ, tð Þ (24)

where U is the vector composed of the required input and all the auxiliary vari-
ables, and N3 tð Þ is some random function of time t (in the general case representing a
vector random function). Writing down these equations we have taken into account
that owing to the action of noises described by the random function N3 tð Þ, the vector
U and the input X represent random functions of time and in accordance with this we
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denoted them by capital letters. These equations together with the first Eq. (2) form
the set of Eqs

_Z ¼ f Z,X,N1 tð Þ, tð Þ, _X ¼ φ X,U, tð Þ, _U ¼ ψ X,Z,U,N3 tð Þ, tð Þ:

These equations may be written in the form of one equation determining the

extended state vector of the system Z1 ¼ ZTXTUT
� 	T

:

_Z1 ¼ f 1 Z1,N4 tð Þ, tð Þ

where N4 tð Þ ¼ N1 tð ÞTN3 tð ÞT
h iT

, and

f 1 Z1,N4 tð Þ, tð Þ ¼ f Z,X,N1, tð ÞT φ X,U, tð ÞT ψ X,Z,U,N3, tð ÞT
h iT

:

As a result rejecting the indices of Z1 and f 1 we replace the set of the Eqs. (2) and
(24) by the equations

_Z ¼ f 1 Z1,N4 tð Þ, tð Þ, Y ¼ g Z,N2 tð Þ, tð Þ:

In practical problems the random functions N1 tð Þ and N2 tð Þ are practically always
independent. But the random function N3 tð Þ depends on N1 tð Þ and N2 tð Þ due to the
fact that the function h Y, tð Þ ¼ h g Z,N2 tð Þ, tð Þ, tð Þ and its total derivative with respect to
time t enter into Eq. (24). Therefore, the random function N2 tð Þ and N4 tð Þ are depen-

dent. Introducing the composite vector random functionN tð Þ ¼ N1 tð ÞTN2 tð ÞTN3 tð ÞT
h iT

we rewrite the equations obtained in the form

_Z ¼ f 1 Z1,N tð Þ, tð Þ, Y ¼ g Z,N tð Þ, tð Þ: (25)

Thus in the cased of an automatically controlled system described by Eq. (2), after
coupling Eq. (2) with the equations of forming the required and the real inputs we
come to the equations of the form of (23) containing the random function N tð Þ.

If a control StS based on digital computers we decompose the extended state vector

Z into two subvectors Z0, Z00, Z ¼ Z0TZ00T
h iT

one of which Z0 represents a continu-

ously varying random function, and the other Z00 is a step random function varying by

jumps at prescribed time moments t kð Þ k ¼ 0, 1, 2, …ð Þ: Then introducing the random
function

Z00 tð Þ ¼
X

∞

k¼0

Z00
k1Ak

tð Þ

and putting Z0
k ¼ Z0 t kð Þ

� �

k ¼ 0, 1, 2, …ð Þ we get the set of equations describing the

evaluation of the extended state vector of controlled

_Z ¼ f Z,N tð Þ, tð Þ, Z00
kþ1 ¼ φk Zk,Nkð Þ (26)

where Nk k ¼ 0, 1, 2, …ð Þ are some random variables, and N tð Þ some random
function.
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For hybrid StS (HStS) let us now consider the case of a discrete-continuous system

whose state vector Z ¼ Z0TZ00T
h iT

(extended in the general case) is determined by the

set of equations

_Z
0
¼ a Z, tð Þ þ b Z, tð ÞV, Z00 ¼

X

∞

k¼0

Z00
k1Ak

tð Þ, Z00
kþ1 ¼ ωk Zk,Vkð Þ (27)

where is the value of Z tð Þ at t ¼ t kð Þ, Zk ¼ Z0T
k Z

00T
k

h iT
¼ Z t kð Þ

� �

k ¼ 0, 1, 2, …ð Þ,

a, b, ωk are functions of the arguments indicated 1Ak
tð Þ is the indicator of the interval

Ak ¼ t kð Þt kþ1ð Þ
� �

k ¼ 0, 1, 2, …ð Þ, V is a white noise in the strict sense, Vkf g is a
sequence of independent random variables independent of the white noise V. The
one-dimensional characteristic function h1 μ; tð Þ of the process with independent
increments W tð Þ whose weak m.s. derivative is the white noise V, and the distribu-
tions of the random variables Vk will be assumed known.

Introducing the random processes

Z00 tð Þ ¼
X

∞

k¼0

Z0
k1Ak

tð Þ, Z tð Þ ¼ Z0 tð ÞTZ00 tð ÞTZ‴ tð ÞT
h iT

:

we derive in the same way as before the equation for the one-dimensional charac-
teristic function

g1 λ; tð Þ ¼ Eeiλ
TZ tð Þ ¼ E exp iλ0

T
Z0 tð Þ þ iλ00

T
Z00 tð Þ þ iλ‴

T
Z‴ tð Þ

n o

¼ E exp iλ0
T
Z0 tð Þ þ iλ00

T
Z00
k þ iλ‴

T
Z0
k

n o

of the StP Z tð Þ

∂g1 λ; tð Þ

∂t
¼ E iλTa Z, tð Þ þ χ b Zðð , tÞTλT; tÞeiλ

TZ
n o

: (28)

Taking the initial moment t0 ¼ t 0ð Þ the initial condition for Eq. (25) is

g1 λ; t0ð Þ ¼ E iλ0
T
þ iλ‴

T
� �

Z0
0 þ iλ00

T
Z00
0

n o

¼ g0 λ0
T
þ λ‴

T
λ00

T
h iT
� �

(29)

where g0 ρð Þ is the characteristic function of the initial value Z0 ¼ Z t0ð Þ of the
process Z tð Þ.

At the moment t kð Þ the value of g1 λ; tð Þ is evidently equal to

E exp i λ0
T
þ λ‴

T
� �

Z0
k þ iλ00

T
Z00
k

n o

,

i.e. to the value gk λ0
T
þ λ‴

T
λ00

T
h iT
� �

of the characteristic function gk ρð Þ of the

random variable Zk ¼ Z00T
k Z00T

k

h iT
. If the function χ μ; tð Þ is continuous function of t at

any μ the g1 λ; tð Þ tends to
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E iλ0
T
Z0
kþ1 þ iλ00

T
Z00
k þ iλ‴

T
Z0
k

n o

when t ! t kþ1ð Þ, i.e. to the joint characteristic function g0k λ0, λ00, λ‴
� �

of the random

variables Z0
kþ1,Z

00
k:Z

0
k

g1 λ; t kþ1ð Þ � 0
� �

¼ lim
t!t kþ1ð Þ

g1 λ; tð Þ ¼ g0k λ0, λ00, λ‴
� �

:

At the moment t kþ1ð Þg1 λ; tð Þ changes its value by the jump and becomes equal to

E exp i λ0
T
þ λ‴

T
� �

Z0
kþ1 þ iλ00

T
Z00
kþ1

n o

¼ gkþ1 λ0
T
þ λ‴

T
λ00

T
h iT
� �

:

To evaluate this, we substitute here the expression of Z00
kþ1 from the last Eq. (27).

Then we get

g1 λ; t kþ1ð Þ
� �

¼ E exp i λ0
T
þ λ‴

T
� �

Z0
kþ1 þ iλ00

T
ωk Zkð ,VkÞ

n o

: (30)

Owing to the independence of the sequence of random variables Vkf g of the white
noise V and independence of Vk of V0,V1, … ,Vk�1 the random variables Zk and Z0

kþ1

are independent of Vk. Hence, the expectation in the right-hand side of Eq. (30) is
completely determined by the known distribution of the random variableVk and by

the joint characteristic function g0k λ0, λ00, λ‴
� �

of the random variables Z0
kþ1,Z

00
k,Z

0
k, i.e.

by g1 λ; t kþ1ð Þ � 0
� �

. So Eq. (26) with the initial condition (27) and formula (28)
determine the evolution of the one-dimensional characteristic function g1 λ; tð Þ of the

process Z tð Þ ¼ Z0 tð ÞTZ00 tð ÞTZ‴ tð ÞT
h iT

and its jump-wise increments at the moments

t kð Þ k ¼ 1, 2, …ð Þ.
In the case of the discrete-continuous HStS whose state vector is determined by Eqs

_Z ¼ a Z, tð Þ þ b Z, tð ÞV (31)

we get in the same way the equation for the n-dimensional characteristic function

gn λ1, … , λn; t1, … , tnð Þ of the random process Z tð Þ ¼ Z0 tð ÞTZ00 tð ÞTZ‴ tð ÞT
h iT

,

∂gn λ1, … , λn; t1, … , tnð Þ=∂tn

¼ E iλTna Z tnð Þ, tnð Þ þ χ b Z tnð Þ, tnð ÞTλn; tn
� �h i

iλT1 Z t1ð Þ þ⋯þ iλTnZ tnð Þ
� �

,
(32)

And the formula for the value of gn λ1, … , λn; t1, … , tnð Þ at tn ¼ t kþ1ð Þ ≥ tn�1,

gn λ1, … , λn; t1, … , tn�1, t
kþ1ð Þ

� �

¼ E iλT1 Z t1ð Þ þ⋯þ iλTn�1Z tn�1ð Þ

(

þ i λ0Tn þ λ000Tn

� �

Z0
kþ1 þ iλ00Tn ωk Zk,Vkð Þ

)

:

(33)
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At the point tn ¼ t kþ1ð Þgn λ1, … , λn; t1, … , tnð Þ changes its value by jump from

gn λ1, … , λn; t1, … , tn�1, t
kþ1ð Þ � 0

� �

¼ E iλT1 Z t1ð Þ þ⋯þ iλTn�1Z tn�1ð Þ þ iλ0Tn Z0
kþ1

(

þ iλ00Tn Z00
k þ iλ000Tn Z0

k

)

to gn λ1, … , λn; t1, … , tn�1, t kþ1ð Þ
� �

given by (33).

The right-hand side of (33) is completely determined by the known distribution of
the random variable Vk and by the joint characteristic function

gn λ1, … , λn; t1, … , tn�1, t kþ1ð Þ � 0
� �

of the random variables

Z t1ð Þ, … ,Z tn�1ð Þ,Z0
kþ1,Z

00
k,Z

0
k: Hence, Eq. (32) with the corresponding initial condi-

tion and formula (33) determine the evolution and the jump-wise increments of

gn λ1, … , λn; t1, … , tnð Þ at the points t kþ1ð Þ when tn increases starting from the value tn�1.

2.4 Linear StS

For differential linear StS and W being StP with independent increments V ¼ _W

_Z ¼ aZ þ a0 þ bV (34)

corresponding Eqs for n-dimensional characteristic function are as follows:

∂gn
∂tn

¼ λTna tnð Þ
∂gn
∂λn

þ iλTn a0 tnð Þ þ χ b tnð ÞTλn; tn
� i

gn:
h

(35)

Explit formulae for n-dimensional characteristic function is described by formulae

gn λ1, … , λn; t1, … , tnð Þ ¼ g0
X

n

k¼1

u tk, t0ð ÞTλk

 !

exp i
X

n

k¼1

λTk

ð

tk

t0

u tk, τð ÞTa0 τð Þdτ

8

<

:

þ
X

n

k¼1

ð

tk

tk�1

χ b τð ÞT
X

n

l¼k

u t1ð , τÞTλl; τ

 !

dτ

)

n ¼ 1, 2, …ð Þ:

(36)

Here u ¼ u tk, τð Þ being fundamental solution of Eq _u ¼ au at condition: u t, tð Þ ¼ I
(unit n� nð Þ matrix).

In case of the Gaussian white noise V with intensity matrix v characteristic
function gn is Gaussian

gn λ1, … , λn; t1, … , tnð Þ ¼ g0
X

n

k¼1

u tk, t0ð ÞTλk

 !

exp i
X

n

k¼1

λTk

ð

tk

t0

u tk, τð Þa0 τð Þdτ

8

<

:

�
1

2

X

n

l; h¼1

λTl

ð

min tt, thð Þ

t0

u tl, τð Þb τð Þv τð Þb τð ÞTu thð , τÞTdτλh

9

>

=

>

;

n ¼ 1, 2, …ð Þ:

(37)
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2.5 Linear StS with the parametric Gaussian noises

In the case of StS with the Gaussian discrete additive and parametric noises
described by Eq

_Z ¼ aZ þ a0 þ b0 þ
X

p

h¼1

bhZh

 !

V: (38)

we have the infinite set of equations which in this case is decomposed into
independent sets of equations for the initial moments αk of each given order

_αk ¼
X

p

r¼1

kr ar,0αk�er þ
X

p

q¼1

ar,eqαkþeq�er

 !

þ
1

2

X

p

r¼1

kr kr � 1ð Þ σrr,0αk�2er þ
X

p

q¼1

σrr,eqαkþeq�2er þ
X

p

q, u¼1

σrr,eqþeuαkþeqþeu�2er

 !

þ
X

p

r¼2

X

p�1

s¼1

krks σrs,0αk�er�es þ
X

p

q¼1

σrs,eqαkþeq�er�es þ
X

p

q, u¼1

σrs,eqþeuαkþeqþeu�er�es

 !

,

(39)

ar,0 ¼ a0,r, ar,eq ¼ arq k1, … , kp ¼ 0, 1, 2, … ; σ kð Þ ¼ 1, 2, :…
� �

:

Corresponding Eqs of correlational theory are as follows:

_m ¼ amþ a0; (40)

_K ¼ aK þ KaT þ b0vb
T
o þ

X

p

h¼1

bhvb
T
0 þ b0vb

T
h

� �

m0 þ
X

p

h, l¼1

bhvb
T
l mhml þ khlð Þ: (41)

where khl is the covariance of the components Zh and Zl of the vector

Z h, l ¼ 1, … , pð Þ. Eq. (41) with the initial condition K t0ð Þ ¼ Ko kpq t0ð Þ ¼ k0pq

� �

completely determines the covariance matrix K tð Þ of the vector Z tð Þ at any time
moment t after funding its expectation m:

For discrete StS with the Gaussian parametric noises correlational Eqs may be
presented in the following form:

Xkþ1 ¼ akXk þ a0l þ b0l þ
X

p

j¼1

bkjXkj

 !

Vk, (42)

mkþ1 ¼ akmk þ a0k, mk ¼ EYk, (43)

Kkþ1 ¼ akKka
T
k þ b0kvkb

T
0k þ

X

p

j¼1

b0kvlb
T
jk þ bjkvlb

T
0k

� �

mjk

þ
X

p

j¼1

X

p

h¼1

bjkvkb
T
hk mkjmkh þ kkjh
� �

,

K1 ¼ E Y1 �m1ð Þ Y1 �m1ð ÞT,

(44)
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K j, hþ 1ð Þ ¼ K j, hð ÞaTh , K j, jð Þ ¼ K: (45)

2.6 Normal approximation method

For StS of high dimensions methods of normal approximation (MNA) are the only
used at engineering practice. In case of additive noises b x, tð Þ ¼ b0 tð Þ MNA is known
as the method of statistical linearization (MSL).

Basic Eqs of MNA are as follows [9]:

g1 λ; tð Þ≈ exp iλTmt �
1

2
λTKtλ


 


,

f 1 x; tð Þ≈ 2πð ÞpjKtj½ �
�1=2

exp �
1

2
xT �mT

t

� �

K�1
t x�mtð Þ


 


,

(46)

_mt ¼ φ1 mt,Kt, tð Þ m t0ð Þ ¼ m0,φ1 mt,Kt, tð Þ ¼ EN a Y t, tð Þ, (47)

_Kt ¼ φ2 mt,Kt, tð Þ K t0ð Þ ¼ K0, (48)

φ2 mt,Kt, tð Þ ¼ φ21 mt,Kt, tð Þ þ φ21 mt,Kt, tð ÞT þ φ22 mt,Kt, tð Þ,

φ21 mt,Kt, tð Þ ¼ EN a Xt, tð Þ XT
t �mT

t

� �

,φ22 mt,Kt, tð Þ ¼ EN b Xt, tð Þv tð Þb Xt, tð ÞT,

∂K t1, t2ð Þ

∂t2
¼ K t1, t2ð ÞK t2ð Þ�1

φ21 m, t2ð ÞK t2ð Þ, t2ð ÞT,
�

(49)

gn λ1, … , λn; t1, … , tnð Þ ¼ exp iλTmn �
1

2
λ
T
Knλ


 


n ¼ 1, 2, …ð Þ,

f n x1, … , xn; t1, … , tnð Þ ¼ 2πð Þn Kn

�

�

�

�

�1=2
exp

1

2
xTn �mT

n

� �

K
�1
n xn �mnð Þ


 


n ¼ 1, 2, …ð Þ,

�

(50)

λ ¼ λT1 λ
T
2 … λTn

� 	T
, mn ¼ mx t1ð ÞTmx t2ð ÞT …mx tnð ÞT

h iT
,

Kn ¼

K t1, t1ð Þ K t1, t2ð Þ … K t2, tnð Þ

K t2, t1ð Þ K t2, t2ð Þ … K t2, tnð Þ

⋮ ⋮ ⋮ ⋮

K tn, t1ð Þ K tn, t2ð Þ … K tn, tnð Þ

2

6

6

6

6

6

4

3

7

7

7

7

7

5

, where xn ¼ xT1 x
T
2 … xTn

� 	T
:

(51)

Eq. (49) may be rewritten in form

∂K t1, t2ð Þ

∂t2
¼ φ3 K t1, t2ð Þ, t1, t2ð Þ (52)

where

φ3 K t1, t2ð Þ, t1, t2ð Þ ¼ ½ 2πð Þ2nx K2

�

�

�

�

�1=2
ð

∞

�∞

ð

∞

�∞

x1 �mt1ð Þφ x2, t2ð Þ

� exp � xT1 x
T
2

� �

�mT
2 ÞK

�1
2 xT1 x

T
2

� �

�mT
2 Þ

n o

dx1dx2;

m2 ¼ mT
t1
mT

t2

h iT
; K2 ¼

K t1, t1ð Þ K t1, t2ð Þ

K t2, t1ð Þ K t2, t2ð Þ

" #

:

(53)
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For discrete StS equations of MNA may be presented in the following form:

mlþ1 ¼ ENωl Xl,Vlð Þ m1 ¼ EX1 l ¼ 1, 2ð Þ, (54)

Klþ1 ¼ ENωl Xl,Vlð Þωl Xl,Vlð ÞT � ENωl Xl,Vlð ÞENωl Xl,V lð ÞT, (55)

at conditions

K1 ¼ EN X1 �m1ð Þ X1 �m1ð ÞT l ¼ 1, 2ð Þ,

Klh ¼ ENXlωh Xh,Vhð ÞT �mlENωh Xh,Vhð ÞT,

Kll ¼ Kl at l< h h ¼ 1, 2, …ð Þ, K ln ¼ K h, lð Þ ¼ K h, lð ÞTat l< h:

(56)

Corresponding MNA equations for Eq. (15) are the special case of Eqs. (54)–(56).

3. Conditionally optimal forecasting in StS

Optimal forecasting is well developed for linear StS and off-line regimes [9]. For
nonlinear StS linear StS with the parametric Gaussian noises and on-line regimes
different versions approximate (suboptimal) methods are proposed. In [9] general
results for complex statistical criteria and Bayes criteria are developed. Let us consider
m.s. conditionally optimal forecasters for StS being models of stochastic OTES.

3.1 Continuous StS

Conditionally optimal forecasting (COFc) for mean square error (mse) criterion
was suggested by Pugachev [10]. Following [9] we define COFC as a forecaster from
class of admissible forecasters which at any joint distributions of variables Xt (state

variable) X̂t (estimate of Xt), Y t (observation variable) at forecasting time Δ>0 and
time moments t≥ t0 in continuous (differential) StS

dXt ¼ a Xt,Y t, tð Þdtþ b Xt,Y t, tð ÞdW1, dY t ¼ a1 Xt,Y t, tð Þdtþ b1 Xt,Y t, tð ÞdW2

(57)

(W1,W2 being independent white noises with the independent increments;
φφ1ψψ1 being known nonlinear functions) gives the best estimate of XsþΔ at infini-

tesimal time moment s> t, s ! t realizing minimum E X̂s � X̂sþΔ

�

�

�

�

2
. Then COFc at

any time moment t≥ t0 is reduced to finding optimal coefficients αt, βt, γt in the
following Eq:

dX̂t ¼ αtξ X̂t,Y t, t
� �

dtþ βtη X̂t,Y t, t
� �

dY t þ γtdt: (58)

Here ξ ¼ ξ X̂t,Y t, t
� �

, η ¼ η X̂t,Y t, t
� �

are given functions of current observations Y t,

estimate X̂t and time t.
Using theory of conditionary optimal estimation (13, 17, 18) for Eq

dXtþΔ ¼ a XtþΔ, tþ Δð Þdtþ b XtþΔ, tþ Δð ÞdW1 tþ Δð Þ: (59)

we get the following Eqs for coefficients αt, βt, γt
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αtm1 þ βtm2 þ γt ¼ m0, m0 ¼ Ea Xt,Y t, tð Þ, m1 ¼ Eξ Y t, X̂tþΔ, t
� �

,

m2 ¼ Eη Y t, X̂tþΔ, t
� �

a1 Xt,Y t, tð Þ,
(60)

βt ¼ κ02κ
�1
22 , κ02 ¼ E Xt � X̂tþΔ

� �

a1 Xt,Y t, tð ÞTη Y t, X̂tþΔ, t
� �T

þEb Xt,Y t, tð Þv tð Þb1 Xt,Y t, tð ÞTη Y t, X̂tþΔ, t
� �T

,
(61)

κ22 ¼ E Y t, X̂tþΔ, t
� �

b1 Xt,Y t, tð Þv tð Þb1 Xt,Y t, tð ÞTη Y t, X̂tþΔ, t
� �T

þEb Xt,Y t, tð Þv tð Þb1 Xt,Y t, tð ÞTη Y t, X̂tþΔ, t
� �T

(62)

at condition det κ22 6¼ 0ð Þ.
The theory of conditionally optimal forecasting gives the opportunity for simulta-

neous filtering of state and identification of StS parameters for different forecasting
time Δ. All complex calculations for COFc design do not need current observations
and may be performed on a priori data during design procedures. Practical application
of such COFc is reduced to Eq. (58) integration. The time derivative for the error
covariance matrix Rt is defined by formulae

_Rt ¼ E XtþΔ � X̂t

� �

a XtþΔ, tþ Δð ÞT þ a XtþΔ, tþ Δð Þ XT
tþΔ

� X̂
T

t

� �

"

� βtη Y t, X̂tþΔ, t
� �

b1 Xt,Y t, tð Þv2 tð Þb1 Xt,Y t, tð ÞTη Y t, X̂tþΔ, t
� �T

βTt

þ b XtþΔ, tþ Δð Þv1 tþ Δð Þb X̂tþΔ, tþ Δ
� �T

#

:

(63)

Mathematical expectations in Eq. (60)–(63) are computed on the basis of joint

distribution of random variables XT
t X

T
tþΔ

,YT
t , X̂

T

t X̂
T

tþΔ

h iT
by solution of the following

Pugachev Eq for characteristic function g2 λ1, λ2, λ3, μ1, μ2, μ3; t, sð Þ for StP XT
t Y

T
t X̂

T

t

h iT

at s> t:

∂g2 λ1, λ2, λ3, μ1, μ2, μ3; t, sð Þ=∂s ¼ E iμT1 a1 Y s,Xs, sð Þ þ iμT2 a Xs, sð Þ

(

þ iμT3 αsξ Y s, X̂s, s
� �

þ βsη Y s,Xs, sð Þ þ γs
� 	

þ χ b1 Y s,Xs, sð ÞTμ1 þ b Xs, sð Þμ2

�

þ b1 Y s,Xs, sð ÞTη Y s, X̂s, s
� �T

βTs μ3; s

�

)

� exp iλT1 Y t

(

þ iλT2Xt þ iλT3 X̂t þ iμT1 Y s þ iμT2Xs þ iμT3 X̂s

)

:

(64)

at condition

g2 λ1, λ2, λ3, μ1, μ2, μ3; t, tð Þ ¼ g1 λ1 þ μ1, λ2 þ μ2, λ3 þ μ3; t, sð Þ: (65)
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Basic algorithms are defined by the following Proposals .3.1.1–3.1.3.
Proposal 3.1.1. At the conditions of the existence of probability moments (60), (61)

nonlinear COFc is defined by Eqs. (58) and, (63).
Proposal 3.1.2. For linear differential StS

dXt ¼ a1Xt þ a0ð Þdtþ bdW1, dY t ¼ bY t þ b1Xt þ b0ð Þdtþ b1dW2: (66)

Eqs of exact COFc are as follows:

dX̂t ¼ a1 tþ Δð Þ εtX̂1t þ ht
� �

þ a0 tþ Δð Þ
� 	

dtþ εtβ1t dY t � bX̂1t þ b0
� �

dt
� 	

: (67)

_εt ¼ a1 tþ Δð Þεt � εta1: (68)

_ht ¼ a1 tþ Δð Þ � εta0 þ a1 tþ Δð Þht: (69)

_Rt ¼ a1 tþ Δð ÞRt þ Rta1 tþ Δð ÞT � βt b1v2b
T
1

� �

βTt þ ψ1 tþ Δð Þv1 tþ Δð Þb1 tþ Δð ÞT :

(70)

In case of the linear StS with the parametric Gaussian noises:

dXt ¼ a1Xt þ a0ð Þdtþ c10 þ
X

nx

r¼1

c1,nyþrXr

 !

dW1,

dY t ¼ bY t þ b1Xt þ b0ð Þdtþ c20 þ
X

ny

r¼1

c2rYr þ
X

nx

r¼1

c2r,nyþrXr

 !

dW2:

(71)

COFc is defined by exact Eqs (Proposal 3.1.3):

dX̂t ¼ a1 tþ Δð Þ εtX̂1 þ ht
� �

þ a0 tþ Δð Þ
� 	

dtþ εtβ1t dY t � bX̂1 þ b0
� �

dt
� 	

: (72)

_εt ¼ a1 tþ Δð Þεt � εta1, _ht ¼ a0 tþ Δð Þ � εta0 þ a1 tþ Δð Þht, (73)

_Rt ¼ a1 tþ Δð ÞRt þ Rta1 tþ Δð ÞT

�βt c20 þ
X

nyþnx

r¼1

c2rmr

 !"

v1 cT20 þ
X

nyþnx

r¼1

cT2rmr

 !

þ
X

nyþnx

r¼1

c2rv1c
T
2skrs

#

βTt þ c10 tþ Δð Þ þ
X

nyþnx

r¼nyþ1

c1r tþ Δð Þmr tþ Δð Þ

2

4

3

5v2 tþ Δð Þ

� c10 tþ Δð ÞT þ
X

nyþ1

r¼nyþ1

c1r tþ Δð ÞTmr tþ Δð Þ

2

4

3

5

þ
X

nyþnx

r¼nyþ1

c1r tþ Δð Þv2 tþ Δð Þc1s tþ Δð ÞTkrs:

(74)

For nonlinear StS in case of the normal StP Xt,Y t, X̂t Eqs of normal COFc (NCOFc)
are defined by Proposal 3.1.1 for joint normal distribution.
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3.2 Discrete and hybrid StS

Let us consider the following nonGaussian nonlinear regression StS

Xkþ1 ¼ ωk Xk,Vkð Þ, Yk ¼ ω1k Xk,Yk,Vkð Þ k ¼ 1, 2…ð Þ: (75)

In this case Eqs of the discrete COFc are as follows:

Xkþrþ1 ¼ δkζk Xk, X̂k

� �

þ γk, (76)

δk ¼ DkB
�1
k , γk ¼ mkþrþ1 � δkρk, (77)

mkþrþ1 ¼ Eωkþr Xkþr,Vkþrð Þ, (78)

ρk ¼ Eζk Xk, X̂k

� �

, Bk ¼ E ζk Xk, X̂k

� �

� ρk
� 	

ζk Xk, X̂k

� �T
,

Dk ¼ E ωkþr Xkþr,Vkþrð Þ �mkþrþ1½ �ζk ωk Xk, X̂k

� �� �T
, (79)

g2,k,kþr λ1, λ2, μð Þ ¼ E iλT1 Xk þ iλT2Xkþr þ iμTX̂k

� �

, (80)

g2,k,kþrþ1 λ1, λ2, μð Þ ¼ Eexp iλT1 Xk þ iλT2ωkþr Xkþr,Vkþrð Þ þ iμTX̂k

� �

(81)

at initional condition

g2,k,k λ1, λ2, μð Þ ¼ g1,k λ1 þ λ2, μð Þ: (82)

So for the nonlinear regression StS (14) we get Proposal 3.2.1 defined by
Eqs. (75)–(82).

In case of the nonlinear autoregression discrete StS (15) we have the following Eqs
of Proposal 3.2.2:

Xkþ1 ¼ ak Xkð Þ þ bk Xkð ÞVk, Yk ¼ a1k Xk,Ykð Þ þ b1k Ykð ÞVk, (83)

Xkþrþ1 ¼ αkξk X̂k

� �

þ βkηk X̂k

� �

Yk þ γk, (84)

αkκ
kð Þ
11 þ βkκ

kð Þ
21 ¼ κ

kð Þ
01 , αkκ

kð Þ
12 X̂k

� �

þ βkκ
kð Þ
22 ¼ κ

kð Þ
02 , (85)

γk ¼ ρ
kþrþ1ð Þ
0 � αkρ

kð Þ
1 X̂k

� �

� βkρ
kð Þ
2 ¼ κ

kð Þ
02 , (86)

ρ
kþrþ1ð Þ
0 ¼ Eakþr Xkþrð Þ, (87)

ρk ¼ ρ
kð ÞT
1 ρ

kð ÞT
2

h iT
, ρ

kð Þ
1 ¼ Eξk X̂k

� �

, ρ
kð Þ
2 ¼ Eηk X̂k

� �

a1k Xkð Þ, (88)

Bk ¼
κ

kð Þ
11 κ

kð Þ
12

κ
kð Þ
11 κ

kð Þ
22

" #

, det∣Bk∣ 6¼ 0, (89)

κ
kð Þ
11 ¼ E ξk X̂k

� �

� ρ
kð Þ
1

h i

ξk X̂k

� �T
,

κ
kð Þ
12 ¼ κ

kð Þ
21 ¼ E ξk X̂k

� �

� ρ
kð Þ
1

h i

a1k Xkð ÞTηk X̂k

� �T
,

κ
kð Þ
22 ¼ E ηk X̂k

� �

a1k Xkð Þ � ρ
kð Þ
2

h i

a1k Xkð ÞTηk X̂k

� �T
þ Eηk X̂k

� �

b1k Xkð Þvkb1k Xkð ÞTηk X̂k

� �T
,

(90)
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Dk ¼ κ
kð Þ
01 κ

kð Þ
02

h i

, (91)

κ
kð Þ
01 ¼ E ak Xkð Þ �mkþ1½ �ξk X̂k

� �T
,

κ
kð Þ
02 ¼ E ak Xkð Þ �mkþ1½ �a1k Xkð ÞTηk X̂k

� �T
þ Eb1k Xkð Þvkb1k Xkð ÞTηk X̂k

� �T
,

(92)

mkþ1 ¼ ρ
kð Þ
0 , ρ kð Þ

0 ¼ Eak Xkð Þ, EVk ¼ 0, EVkV
T
k ¼ vk: (93)

Analogously we get from Proposal 3.2.2 COFc for discrete linear StS and linear
with the Gaussian parametric noises. For hybrid StS we recommend mixed algorithm
based on joint normal distribution and Proposal 3.1.1.

3.3 Generalizations

Mean square results (Subsection 2.1 and 2.2) may be extended to StS described by
linear, linear with the Gaussian parametric noises and nonlinear Eqs or reducible to
them by approximate suboptimal and conditionally optimal methods.

Differential StS with the autocorrelated noises in observations may be also reduced
to differential StS.

Special COFc algorithms based on complex statistical criteria and Bayesian creteria
are developed in [11].

4. Probability modeling in SOTES

Following [3, 4] let as consider general approach for the SOTES modeling as
macroscopic (multi-level) systems including set of subsystems being also macro-
scopic. In our case these sets of subsystems will be clusters covering that part of MP
connected with aftersales production service. More precisely the set of subsystems of
lower level where input information about concrete products, personal categories etc.
is formed.

For typical continuous-discrete StP in the SOTES production cluster we have the
following vector stochastic equation:

dXt ¼ φ Xt, tð Þ þ S vð Þρ Xt, tð Þ½ �dtþ S vð ÞdP0 tð Þ: (94)

Here P0 tð Þ being the centered Poisson StP; ρ Xt, tð Þ being np � 1
� �

intensity of

vector of StP P tð Þ, ρ Xt, tð Þ ¼ ρ12 Xt, tð Þρ13 Xt, tð Þ… ρuk Xt, tð Þ½ �T; ρuk Xt, tð Þ being intensi-

ties of streams changes of states; φ Xt, tð Þ being continuous np � 1
� �

vector function of

quality indicators in OPB; S vð Þ being np � nρ
� �

matrix Poisson stream of resources
(production) with volumes v according to the SOTES state graph. Analogously we get
corresponding equations for SOTES-O and SOTES-N:

dY t ¼ q Xt, tð Þ þ φ1 Y t, tð Þ þD rð Þγ Y t, tð Þ½ �dtþD rð ÞdP0
1 tð Þ, (95)

dζt ¼ φ2 ζt, tð Þ þ C ϑð Þμ ζt, tð Þ½ �dtþ C ϑð ÞdP0
2 tð Þ, (96)

where φ1 and φ2 being vector functions quality indicators in OPB for the SOTES-O
and the SOTES-N; D rð Þ being structional matrix of resources streams in the SOTES-N
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matrix; γ Y t, tð Þ and D rð Þ being the intensity function and vector of P0
1 tð Þ jumps in the

SOTES-O.
In linear case when ρuk Xt, tð Þ ¼ AρXt Eqs. (94)–(96) for the SOTES, SOTES-O and

the SOTES-N may be presented as

dXt ¼ a t, vð ÞXtdtþ S vð ÞdP0 tð Þ, (97)

dY t ¼ b r, tð ÞY tdtþ λ Y t, tð ÞXt þD rð ÞdP0 tð Þ þ ψ1 tð Þdζt, (98)

dζt ¼ c2 ϑ, tð Þζtdtþ C ϑð ÞdP0
2 tð Þ: (99)

Here notations

b1 r, tð Þ ¼ b1 tð Þ þ Aγ r, tð Þ, c2 ϑ, tð Þ ¼ c2 þ Aμ ϑ, tð Þ: (100)

Aγ r, tð Þ, Aμ ϑ, tð Þ are derived from Eqs:

D rð Þγ Y t, tð Þ � Aγ r, tð ÞY t, C ϑð Þμ ζt, tð Þ � Aμ ϑ, tð Þζt: (101)

At practice a priori information about SOTES-N is poor than for the SOTES and
SOTES-O. So introducing theWiener StPW tð Þ,W1 tð Þ,W2 tð Þwe get the following Eqs:

dXt ¼ aXt þ a1Y t þ a0ð Þdtþ S vð ÞdP0 tð Þ þ ψ 0 tð ÞdW tð Þ, (102)

dY t ¼ qXt þ b1Y t þ b2ζt þ b0
� �

dtþD rð ÞdP0
1 tð Þ þ ψ1 tð Þdζt þ ψ 0

1 tð ÞdW1 tð Þ, (103)

dζt ¼ c2ζt þ c0ð Þdtþ C ϑð ÞdP0
2 tð Þ þ ψ 0

2 tð ÞdW2 tð Þ: (104)

R e m a r k 4.1. Such noises from OTES-N may act at more lower levels OTES-O
included into internal SOTES being with minimal from information point of view
maximal. For highest OTES levels intermediate aggregative functions may be
performed. So observation and estimation systems must be through (multi-level and
cascade) and provide external noise protection for all OTES levels.

R e m a r k 4.2. As a rule at administrative SOTES levels processes of information
aggregative and decision making are performed.

Finally at additional conditions:

1. information streams about OPB state in the OTES-O are given by formulae

Y t ¼ Gt Tstð Þ þ Tst (105)

and every StP Gt Tstð Þ is supported by corresponding resource (e.g. financial);

2. for SOTES measurement only external noise from SOTES-N and own noise due
to error of personal and equipment are essential.

We get the following basic ordinary differential Eqs:

_Xt ¼ aXt þ a1Gt þ a0 þ χxVΩ � LX, 2 (106)

_Gt ¼ q Tstð ÞXt þ b2ζt þ χgVΩ � LG, (107)

_ζt ¼ c2ζt þ c0 þ χζVΩ � Lζ, (108)
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_Tst ¼ bXt þ b1Tst þ b0 þ χτsVΩ � LT: (109)

Here VΩ tð Þ ¼ VT
x tð ÞVT

g tð ÞVT
ζ tð ÞVT

st tð Þ
h iT

being vector white noise, dimVΩ tð Þ ¼

nx þ ng þ nζ þ nts
� �

� 1
� �

, MVΩ tð Þ ¼ 0, with diagonal block intensity matrix vΩ ¼

diag vx½ � vg
� 	

vζ½ � vts½ �
� �

, dimvx tð Þ ¼ nx � ny
� �

, dimvg tð Þ ¼ ng � ng
� �

, dimvζ tð Þ ¼

nζ � nζð Þ, dimvts tð Þ ¼ nts � nnstð Þ, χx, χg, χζ, χst being known matrices:

Vx ¼ S vð ÞVP tð Þ þ ψ 0 tð ÞVW , Vg ¼ ψ1 tð ÞVζ þ ψ 0
1 tð ÞVW1, Vζ ¼ C ϑð ÞVp2 þ ψ 0

2 tð ÞVW2;

(110)

VP ¼ _P0 tð Þ, VP1 ¼ _P
0

1 tð Þ, VP2 ¼ _P
0

2 tð Þ, V st ¼ VP1, VW ¼ _W tð Þ, VW1 ¼ _W1 tð Þ,

VW2 ¼ _W2 tð Þ:

(111)

R e m a r k 4.3. Noises VP, VP1, VP2 (random time moments of resources or
production) in are non-Gaussian noises induced by Poisson noises in the OTES,
OTES-O, OTES-N, whereas noises VW , VW1, VW2 (personal errors, internal noises)
are Gaussian StP.

From Eqs. (110) and (111) we have the following equivalent expressions for
intensities of vector VΩ tð Þ:

vx ¼ S vð ÞρST vð Þ þ ψ 0vWψ 0T, vg ¼ ψ1vζψ
T þ ψ 0

1vW1ψ
0T
1 ,

vζ ¼ C ϑð ÞμCT ϑð Þ þ ψ 0
2vW2ψ

0T
2 , vts ¼ D rð ÞγDT rð Þ:

(112)

Here the following notations are used: S vð ÞρST vð Þ, C ϑð ÞμCT ϑð Þ, D rð ÞγDT rð Þ being
intensities of nonGaussian white noises S vð ÞVP tð Þ, D rð ÞVP1 tð Þ, C ϑð ÞVP2 tð Þ: ρ ¼
E diagρ Xt, tð Þ½ �, γ ¼ E diag γ Y t, tð Þ½ �, μ ¼ E diagμ ζt, tð Þ½ � being mathematical expecta-
tions of intensivity diagonal matrices of Poisson streams in the SOTES, SOTES-O,
SOTES-N; vW , vW1, vW2 being intensivities of Gaussian white noises VW , VW1, VW2.
Note the difference between intensity of Poisson stream and intensity of white noise.

In case of Eqs. (106)–(109) with the Gaussian parametric noises we use the fol-
lowing Eqs:

_Xt ¼ LX þ ~aXt þ ~a1Gtð ÞVΩ, (113)

_Gt ¼ LG þ ~qXt þ ~b2ζt

� �

VΩ, (114)

_ζt ¼ Lζ þ ~c2ζtVΩ, (115)

_Tst ¼ LT þ ~bXt þ ~b1Tst

� �

VΩ, (116)

where bar means parametric noises coefficients.

At additive noises VΩ presenting Eqs. (113)–(116) for Zt ¼ Xt Gt ζt Tst½ �T in form
of MSL:

_Zt ¼ B0 mz
t ,K

z
t , t

� �

þ B1 mz
t ,K

z
t , t

� �

Zt þ B0 mz
t ,K

z
t , t

� �

VΩ

t , (117)

we get following set of interconnected Eqs for mz
t ,K

z
t :

_mz
t ¼ B0 mz

t ,K
z
t , t

� �

, mz t0ð Þ ¼ mz
0, (118)
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_K
z

t ¼ B1 mz
t ,K

z
t , t

� �

Kz
t þ Kz

tB1 mz
t ,K

z
t , t

� �T
þ B0 mz

t ,K
z
t , t

� �

vΩt B
0 mz

t ,K
z
t , t

� �T
, Kz t0ð Þ ¼ Kz

0:

(119)

Eq for Kz t1, t2ð Þ is given by (49).

5. Basic SOTES conditionally optimal filtering and forecasting algorithms

Proposal 5.1. Let SOTES, SOTES-O, SOTES-N being linear, satisfy Eqs. (102)–(104)
and admit linear filter of the form:

_̂Xt ¼ aX̂t þ a1Gt þ a0
� �

þ βt
_Gt � qtX̂t þ b2ζt

� �� 	

, (120)

where coefficient qt in (120) does not depend upon Tst. Then Eqs of optimal and
conditionally optimal filters coincide with the Kalman-Bucy filter and may be
presented in the following form:

_̂Xt ¼ aX̂t þ a1Gt þ a0 þ Rtq
T
t v

�1
g Z � qtX̂t þ b2ζt

� �� 	

Zt ¼ _Gt

� �

, (121)

_Rt ¼ aRt þ Rta
T þ vx � Rtq

T
t v

�1
g qtRt: (122)

Proposal 5.2. At condition when measuring coefficient qt depends upon λt ¼ λ Tst, tð Þ

and admit statistical linearization

λ Tst, tð Þ≈ λ0 mst,Kst, tð Þ þ λ1 mst,Kst, tð ÞT0
st,

λ0 mst,Kst, tð Þ ¼ M λ Tst, tð Þ½ �≈ λ0 mst,Kst, tð Þ, λ1 mst,Kst, tð Þ≈0 (123)

sub- and conditionally optimal filter Eqs are follows:

_̂Xt ¼ aX̂t þ a1Gt þ a0 þ Rtq0 mst,Kstð ÞTv�1
g Zt � q0 mst,Kstð ÞX̂t þ b2ζt

� 	� �

, (124)

_Rt ¼ aRt þ Rtaþ vx � Rtq0 mst,Kstð Þv�1
g qTt mst,Kstð ÞRt: (125)

R e m a r k 5.1. Filtering Eqs defined by Proposals 5.1 and 5.2 give the m.s. square
optimal algorithms nonbias of Xt for OTES at conditions of internal noises of measur-
ing devices and external noise from OTES on measuring part of SOTES-O.

R e m a r k 5.2. Accuracy of estimation X̂t depends upon not only upon noise ζt
influencing on measuring signal but on rule and technical-economical quality SOTES
criteria but on line state of resources Tst OPB for SOTES-O.

Using [9–11] let us consider more general SOTES than Eqs. (113)–(116) for system

vector Xt ¼ XtGtζtTst½ �T and observation vector Y t ¼ Y1Y2Y3Y4½ �T defined by Eqs:

_Xt ¼ aY t þ a1Xt þ a0
� �

þ c10 þ
X

ny

r¼1

c1rYr þ
X

nx

r¼1

c1,nyþrXr

 !

V, (126)

Zt ¼
_Y t ¼ bY t þ b1Xt þ b0

� �

þ c20 þ
X

ny

r¼1

c2rYr þ
X

nx

r¼1

c2,nyþrXr

 !

V1: (127)
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Here a, a0, a1, b, b0, b1and cij i ¼ 1, 2; j ¼ 1, nx
� �

– vector–matrix functions t do

not depend from Xt ¼ X1 …Xnx½ �T and Y t ¼ Y1 …Yny

h iT
. Then corresponding

algorithm of conditionally optimal filter (COF) is defined by [9–11]:

_̂
Xt ¼ aY t þ a1

^Xt þ a0
� �

þ βt
_Zt � bY t þ b1

^Xt þ b0
� �h i

: (128)

For getting Eqs for βt it is necessary to have Eqs for mathematical expectation mt

and covariance matrix Kt of random vector Q t ¼ X1 …XnxY1 …Yny

h iT
error

covariance matrix Rt for ~Xt ¼
^Xt � Xt. Using Eqs

_mt ¼ amt þ a0, (129)

_Kt ¼ aKt þ Kta
T þ c0vc

T
0 þ

X

nyþnx

r¼1

c0vc
T
r þ crvc

T
0

� �

mr þ
X

nyþnx

r, s¼1

crvc
T
s mrms þ krsð Þ (130)

a ¼
b b1

a a1

� �

, a0 ¼
b0

a0

� �

, cr ¼
c2r

c1r

� �

r ¼ 0, ny þ nx
� �

� �

, (131)

we have the following Eq for the error covariance matrix

_Rt ¼ a1Rt þ Rta
T
1 � Rtb

T
1 þ c10 þ

X

nyþnx

r¼1

c1rmr

 !

v c20 þ
X

nyþnx

r¼1

cT2rmr

 !"

þ
X

nyþnx

r, s¼1

c1rvc
T
2rkrs

#

κ�1
11 �� Rtb1 þ c20 þ

X

nyþnx

r¼1

c2rmr

 !

v cT10 þ
X

nyþnx

r¼1

cT1rmr

 !"

þ
X

nyþnx

r, s¼1

c2rvc
T
2skrs

#

þþ c10 þ
X

nyþnx

r¼1

c1rmr

 !

v cT10 þ
X

nyþnx

r¼1

cT1rmr

 !

þ
X

nyþnx

r, s¼1

c1rvc
T
1skrs:

(132)

Here

κ11 ¼ c20 þ
X

nyþnx

r¼1

c2rmr

 !

v cT20 þ
X

nyþnx

r¼1

cT2rmr

 !

þ
X

nyþnx

r, s¼1

c2rvc
T
2skrs, (133)

mt ¼ mr½ � r ¼ 1, ny þ nx
� �� �

,Kt ¼ krs½ � r, s ¼ 1, my þ nx
� �� ��

; V being the white

nonGaussian noise of intensity v. Coefficient βt in Eq. (127) is defined by formula

βt ¼ Rtb
T
1 þ c10 þ

X

nyþnx

r¼1

c1rmr

 !

v cT20 þ
X

nyþnx

r¼1

cT2rmr

 !

þ
X

nyþnx

r, s¼1

c1rvc
T
2skrs

( )

κ�1
11 : (134)

R e m a r k 5.3. In case when observations do not influence the state vector we have
the following notations:
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a ¼ 0, b ¼ 0, c1r ¼ 0, c2r ¼ 0 r ¼ 1, 4
� �

, nx ¼ 4, ny ¼ 4;

a1 ¼

a a1 0 0

q 0 b2 0

0 0 c2 0

b 0 0 b1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

, a0 ¼

a0

0

c0

b0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

, c10 ¼

χx

χG

χζ

χst

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

,

c1,5 ¼ ~a ~a1 0 0½ �, c1,6 ¼ ~q 0 ~b2 0
h i

, c1,7 ¼ 0 0 ~c2 0½ �, c1,8 ¼ ~b 0 0 ~b1
h i

:

(135)

Proposal 5.3. Let SOTES is described by Eqs. (125) and (126). Then COF algorithm is
defined by Eqs. (127)–(133).

Theory of conditionally optimal forecasting [9–11] in case of Eqs:

_Xt ¼ a1Xt þ a0
� �

� c10 þ
X

nx

r¼1

c1,nyþrXr

 !

V1, (136)

Zt ¼
_Y t ¼ bY t þ b1Xt þ b0

� �

� c20 þ
X

ny

r¼1

c2rYr þ
X

nx

r¼1

c2,nyþrXr

 !

V2, (137)

where Δ being forecasting time, V1 and V2 are independent nonGaussian white
noises with matrix intensities v1 and v2, gives the following Eqs for COFc:

_̂
Xt ¼ a1 tþ Δð Þ^Xt þ a0 tþ Δð Þ

h i

þ βt Zt � bY t þ b1ε
�1
t

^Xt þ b0 � b1ε
�1
t ht

� �h i

: (138)

where the following notations are used: u s, tð Þ is fundamental solution of Eq:
du=ds ¼ a1 sð Þu at initial condition u t, tð Þ ¼ I, εt ¼ u tþ Δ, tð Þ,

βt ¼ εt Kx � Kx̂xð ÞbT1 κ
�1
11 , (139)

ht ¼ h tð Þ ¼

ð

tþΔ

t

u tþ Δ, τð Þa0 τð Þdτ, h tþ Δ, tð Þ ¼ εt, (140)

mx tþ Δð Þ ¼ εtmx tð Þ þ ht ¼ εtmx þ ht: (141)

R e m a r k 5.4. At practice COFc may be presented as sequel connection of COF,
amplifier with gain εt ¼ u tþ Δ, tð Þ and summater ht ¼ h tð Þ:

^Xt ¼ εt
^X1 þ ht, (142)

where ^Xt being the COF output or COF of current state Xt.
Eq. (137) may be presented in other form:

_̂
Xt ¼ a1 tþ Δð Þ εtX̂1 þ ht

� �

þ a0 tþ Δð Þ þ εtβ1 Zt � bX̂1 þ b0
� �� 	

:
�

(143)
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Accuracy of COFc is defined by the following Eq:

_Rt ¼ a1 tþ Δð ÞRt þ Rta1 tþ Δð ÞT � βt c20 þ
X

nyþnx

r¼1

c2rmr

 !

v1 c20 þ
X

nyþnx

r¼1

cT2rmr

 !"

þ
X

nyþnx

r, s¼1

c2rv1c
T
2skrs

#

βTt þþ c10 tþ Δð Þ þ
X

nyþnx

r¼nyþ1

c1r tþ Δð ÞTmr tþ Δð Þ

2

4

3

5

þ
X

nyþnx

s¼nYþ1

c1r tþ Δð Þv2 tþ Δð Þc1s tþ Δð ÞTkrs:

(144)

Proposal 5.5. At conditions of Proposal 5.3 COFc is described by Eqs. (137)–(140),
(143) or Eqs. (141)–(143).

Let us consider Eqs. (94)–(96) at conditions of possible subdivision of measuring
system and OPB in SOTES-O so that q Xt, tð Þ ¼ q tð ÞXt and noise ζt is additive. In this case
for SOTES, SOTES-O, SOTES-N Eqs. (94)–(96) may be presented in the following form:

_Xt ¼ φ Xt, tð Þ þ S vð Þρ Xt, tð Þ þ χxVΩ, (145)

_Gt ¼ q Tstð ÞXt þ b2ζt þ χgVΩ, (146)

_ζt ¼ φ2 ζt, tð Þ þ C ϑð Þμ ζt, tð Þ þ χζVΩ, (147)

_Tst ¼ φ1 Tst, tð Þ þD rð Þγ Tst, tð Þ þ χTsVΩ: (148)

At condition of statistical linearization we make the following replacements:

S vð Þρ Xt, tð Þ≈ S vð Þρ0 mx,Kx, tð Þ þ Aρ1 mx,Kx, tð ÞX0
t , (149)

C ϑð Þμ ζt, tð Þ≈C ϑð Þμ0 mζ,Kζ, tð Þ þ Aγ1 mζ,Kζð Þ, (150)

φζ ζt, tð Þ≈φζ0 þ φζ1ζ
0
t : (151)

So we get the following statistically linearized expressions:

φ Xt, tð Þ þ S vð Þρ Xt, tð Þ ¼ φX0 þ φX1Xt, φζ ζt, tð Þ þ C ϑð Þμ ζt, tð Þ ¼ φζ0 þ φζ1ζt,

(152)

where.

φX0 ¼ φX0 mx,Kx, tð Þ � φX1 mx,Kx, tð Þ þ Aρ1 mx,Kx, tð Þ
� 	

mx þ S vð Þρ0 mx,Kx, tð Þ,

φX1 ¼ φX1 mx,Kx, tð Þ þ Aρ1 mx,Kx, tð Þ,

φζ0 ¼ φζ0 mζ,Kζ, tð Þ � φζ1 mζ,Kζ, tð Þ þ Aμ1 mζ,Kζ, tð Þ
� 	

mζ þ C ϑð Þμ0 mζ,Kζ, 0ð Þ,

φζ1 ¼ φζ1 mζ,Kζ, tð Þ þ Aμ1 mζ,Kζ, tð Þ:

(153)

Proposal 5.6. For Eqs. (144)–(148) at statistical linearization conditions Eqs. (152)
and (153) when qt does not depend upon Tst suboptimal filtering algorithm is defined by
Eqs:
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_̂Xt ¼ φX1X̂t þ φX0 þ Rtq
T
t v

�1
g Zt � qtX̂t þ b2ζt

� �� 	

, (154)

_Rt ¼ φX1Rt þ Rtφ
T
X1 þ vx � Rtq

T
t v

�1
g qtRt: (155)

Proposal 5.7. At conditions λt ¼ λ Tst, tð Þ Eqs for SOTES, SOTES-O, SOTES-N may be
presented in the form:

_Xt ¼ φX1Xt þ φX0 þ χxVΩ, (156)

_Gt ¼ qXt þ b2ζt þ χgVΩ, (157)

_ζt ¼ φζ1ζ1 þ φζ0 þ χζVΩ, (158)

_Tst ¼ φst1Tst þ φst0 þ χstVΩ: (159)

Suboptimal algorithm at condition

λ Tst, tð Þ≈ λ0 mst,Kstð Þ (160)

is as follows:

_̂Xt ¼ φX1X̂t þ φX0 þ Rtλ
T
0v

�1
g Zt � λT0 mst,Kstð ÞX̂t þ b2ζt

� 	

,
�

(161)

_Rt ¼ φX1Rt þ Rtφ
T
X1 þ vx � Rtλ

T
0v

�1
g λ0Rt: (162)

6. Peculiarities of new SOTES generations

As it was mentioned in Introduction in lower levels of hierarchical subsystems of
SOTES arise information about nomenclature and character of final production and its
components.

Analogously in personal LC subsystems final production systems being categories
of personal with typical works and separate specialists with common works. In [1, 2] it
is presented methodology of personal structuration according to categories, typical
processes graphs providing necessary professional level and healthy. Analogous
approach to structuration may be used to elements macroscopic subsystems of various
SOTES levels. It gives possibility to design unified modeling and filtering methods in
SOTES, SOTES-O, SOTES-N and then implement optimal processes of unique budget.
So we get unique methodological potential possibilities for horizontal and vertical
integrated SOTES.

In case of Eqs. (107)–(111) for LC subsystems in case aggregate of given personal
categories defined by Eqs

_XP ¼ aXP þ a1PGP þ a0P þ χPVΩP, (163)

_GP ¼ qP TsPð ÞXP þ b2PζP þ χgPVΩP, (164)

_ζP ¼ с2PζP þ c0P þ χζPVΩP, (165)

_TsP ¼ bPXP þ b1PTsP þ b0P þ χstPVΩP, (166)
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where index P denotes variables and parameters in personal LS. According to
Section 4 the following filtering Eqs:

_̂XP ¼ aPX̂P þ a1pGP þ a0P þ RPq
T
Pv

�1
gP Z � qPX̂P þ b2PζP

� �� 	

, (167)

_RP ¼ aPRP þ RPa
T
P þ vP � RPq

T
Pv

�1
gP qPRP: (168)

Let us consider linear synergetical connection between X and XP:

XP ¼ κ1X þ κ0: (169)

Here κ1 and κ0 being known nP � nxð Þ and nP � 1ð Þ synergetical matrices. Putting
(151) into Eqs. (144)–(150) we get Eqs for personal subsystem and its observation
expressed by X:

_XP ¼ aP κ1X þ κ0ð Þ þ a1PGP þ a0P þ χPVΩP, (170)

_GP ¼ qP TsPð Þ κ1X þ κ0ð Þ þ b2PζP þ χgPVΩP: (171)

Corresponding Eqs with combined right hand for SOTES vector X are described by:

_X ¼
aX þ a1Gt þ a0VΩ XK ¼ 1, nx

� �

,

aP κ1X þ κ0ð Þ þ a1PGP Xð Þ þ a0P þ χPVΩP XK ¼ nxþ1, nx þ nPð Þ
� �

:

8

<

:

(172)

Analogously using Proposal 5.1 we get the Kalman-Bucy filter Eqs:

_̂X ¼
aX̂ þ a1Gt þ a0 þ RλTv�1

g ½Z � λX̂ þ b2ζ
� �

xK ¼ 1, nx
� �

,

aP κ1X̂ þ κ0
� �

þ a1PGP Xð Þ þ a0P þ RPλ
T
Pv

�1
gP ZP κ1X̂ þ κ0

� �

þ b2PζP
� 	

g xK ¼ nxþ1, nx þ nPð Þ,

(

(173)

_R ¼ aRþ RaT þ vx � RλTv�1
g λR, (174)

_RP ¼ aPRP þ RPa
T
P þ vP � RPλ

T
Pv

�1
gP λPRP: (175)

Eqs. (154)–(157) define Proposal 5.5 for SOTES filter including subsystems accom-
panying LC production and personal taking part in production LC.

Remark 6.1. Analogously we get Eqs for SOTES filter including for financial
subsystem support and other subsystems.

Remark 6.2. Eqs. (173) and (174) are not connected and may be solved a priori.

7. Example

Let us consider the simple example illustratingmodeling the influence of the SOTES-
N noise on rules and functional indexes of subsystems accompanying LC production, its
filtration and forecasting. System includes stocks of spare parts (SP), exploitation orga-
nization with park of MP and together with repair organization (Figure 1).

At initial time moment necessary supplement provides the required level of effec-
tive exploitation at time period 0,T½ �. Let consider processes in ASS connected with
one type of composite parts (CP) in number NT . During park exploitation CP failures
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appears. Non-repaired CP are or repaired again and returned into exploitation or
whiting off. If the level of park readiness in exploitation is less the critical the repaired
MP are taken from stocks.

In graph (Figure 1) the following notations are used: (1) being in stocks in number
X1, (2) exploitation in number X2, (3) repair in number X3, (4) witting off in number
X4. Using Figure 2 we nx ¼ 4; transitions: 1 ! 2v ¼ 1 (for the Poisson stream ρ12X1);
2 ! 3� ρ23X2; 2 ! 4� ρ24X2; 3 ! 2; number of transitions is equal to np ¼ 4. As
index of efficiency we use the following coefficient of technical readiness [1, 2]:

Ktr Tð Þ ¼
1

T

ð

T

0

X2 τð Þdτ

NT
¼

1

TNT

ð

T

0

X2 τð Þdτ, (176)

where

NT ¼ X2 þ X3 þ X4 (177)

Being constant number of CP of park in exploitation.
Note that the influence of the SOTES-N on SOTES and SOTES-O is expressed in

the following way: system noise ζt as factor of report documentation distortion leads

to fictive underestimated KTR tð Þ. In case when relation

Figure 1.
After Sale system (ASS) for MP.

Figure 2.
Graph of production state.
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KTR tð Þ≥K
∗

TR tð Þ (178)

is breaked down (K
∗

TR tð Þ being critical of floating park level) stocks will give
necessary CP amount. So we receive the possibility to exclude defined CP amount
from turn over.

Finally let us consider filtering and forecasting algorithms of ASS processes for
exposition of noise ζt.

Solution.

1. For getting Eq for KTR tð Þ we assume X ∗
TR tð Þ ¼ KTR tð Þ and take into account

Eqs. (106)–(109). So have the following scalar Eqs:

_XTR tð Þ ¼
1

TNT
X2 tð Þ,

_X1 ¼ �ρ12X1, _X2 ¼ ρ12X1 � ρ23 þ ρ24ð ÞX2, _X3 ¼ ρ23X2 � ρ32X3, _X4 ¼ ρ24X2:

(179)

In our case a1 ¼ a0 ¼ 0, VX ¼ 0 and Eq. (10.4) may be presented in vector form

_X ¼ aX (180)

where

a ¼

0 0 TNTð Þ�1 0 0

0 �ρ12 0 0 0

0 ρ12 � ρ23 þ ρ24ð Þ 0 0

0 0 ρ23 �ρ32 0

0 0 ρ24 0 0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

: (181)

At practice the reported documentation is the complete of documents containing
SP demands from stock and acknowledgement SP documents. So noise ζt acts only if
its realization take part delivery and acquisition sides. This is the reason to name this
noise as system noise and carried out by group of persons.

2. For setting Eqs for electronic control system we use of the following type
Eq. (108)

_G ¼ qX þ ζ þ χgVΩ (182)

where VΩ ¼ VTRV1V2V3V4½ �T being noises with intensity vg; λ ¼ λTRλ1λ2λ3λ4½ �T

being ecoefficiency of measuring block. In scalar form Eq. (181) may be presented as

_GTR ¼ λTRXTR þ ζ þ VTR, _G1 ¼ λ1X1 þ V1, _G2 ¼ λ2X2 þ V2,
_G3 ¼ λ3X3 þ V3, _G4 ¼ λ4X4 þ V4:

(183)

3. Algorithm for noise ζt description depends on participants. In simple case we use
error

δXTR tð Þ ¼ XTR tð Þ � K
∗

TR tð Þ: (184)
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In this case we get lag in GTR measurement on variable ζt:

ζt ¼ b2 XTRð Þ∣XTR tð Þ � K
∗

TR∣: (185)

By the choice of coefficient b2 necessary time temp of documentation manipula-
tion may be realized.

4. Using Eqs of Proposals 5.1 and 5.2 we get the following matrix filtering Eqs for
system noise ζt on background of measuring noise VTR

_̂X ¼ aX̂ þ RλTv�1
g Z � λX̂ þ ζ

� �� 	

, (186)

_R ¼ aRþ RaT � RλTv�1
g λR: (187)

at Z ¼ _G, ζ ¼ ζt 000½ �T.
R e m a r k 7.1. Realization of the described filtering solutions for internal noises

needs a priori information about basic OTES characteristics. So we need special
methods and algorithms.

5. Finally linear COFc is defined by Eqs. (137)–(104) for various forecasting times Δ.

R e m a r k 7.2. In case of SOTES with two subsystems using Eqs. (172)–(174) we
have the following Kalman-Bucy filter:

_̂X ¼
aX̂ þ RλTv�1

g Z � λX̂ þ ζ
� �� 	

, XK ¼ 1, nx;

aP κ1X̂ þ κ0
� �

þ RPλ
T
Pv

�1
gP ZP � λP κ1X̂ þ κ0

� �

ζP
� 	� �

, XK ¼ nxt, nx þ nP,

(

where ζP being noise acting on the functional index of personal attendant
subsystem.

These results are included into experimental software tools for modeling and
forecasting of cost and readiness for parks of aircraft [1, 2].

8. Conclusion

For new generations of synergetical OTES (SOTES) methodological support for
approximate solution of probabilistic modeling and mean square and forecasting
filtering problems is generalized. Generalization is based on sub- and conditionally
optimal filtering. Special attention is paid to linear systems and linear systems with the
parametric white Gaussian noises.

Problems of optimal, sub- and conditionally optimal filtering and forecasting in
product and staff subsystems at the background noise in SOTES are considered.
Nowadays for highly available systems the problems of creation of basic systems
engineering principles, approaches and information technologies (IT) for SOTES from
modern spontaneous markets at the background inertially going world economics
crisis, weakening global market relations at conditions of competition and counterac-
tion reinforcement is very important. Big enterprises need IT due to essential local and
systematic economic loss. It is necessary to form general approaches for stochastic
processes (StP) and parameters estimation (filtering, identification, calibration etc) in
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SOTES at the background noises. Special observation SOTES (SOTES-O) with own
organization-product resources and internal noise as information from special SOTES
being enact noise (SOTES-N). Conception for SOTES structure for systems of techni-
cal, staff and financial support is developed. Linear, linear with parametric noises and
nonlinear stochastic (discrete and hybrid) equations describing organization-
production block (OPB) for three types of SOTES with their planning-economical
estimating divisions are worked out. SOTES-O is described by two interconnected
subsystems: state SOTES sensor and OPB supporting sensor with necessary resources.
After short survey of modern modeling, sub- and conditionally optimal filtering and
forecasting basic algorithms and IT for typical SOTES are given.

Influence of OTES-N noise on rules and functional indexes of subsystems accom-
panying life cycle production, its filtration and forecasting is considered.

Experimental software tools for modeling and forecasting of cost and technical
readiness for parks of aircraft is developed.

Now we are developing presented results on the basis of cognitive approaches [12].
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