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Chapter

Methods of Conditionally Optimal
Forecasting for Stochastic
Synergetic CALS Technologies

Igor N. Sinitsyn and Anatoly S. Shalamov

Abstract

Problems of optimal, sub- and conditionally optimal filtering and forecasting in
product and staff subsystems at the background noise in synergistical organization-
technical-economical systems (SOTES) are considered. Nowadays for highly available
systems the problems of creation of basic systems engineering principles, approaches
and information technologies (IT) for SOTES from modern spontaneous markets at
the background inertially going world economics crisis, weakening global market
relations at conditions of competition and counteraction reinforcement is very
important. Big enterprises need IT due to essential local and systematic economic loss.
It is necessary to form general approaches for stochastic processes and parameters
estimation in SOTES at the background noises. The following notations are intro-
duced: special observation SOTES (SOTES-O) with own organization-product
resources and internal noise as information from special SOTES being enact noise
(SOTES-N). Conception for SOTES structure for systems of technical, staff and
financial support is developed. Linear, linear with parametric noises and nonlinear
stochastic (discrete and hybrid) equations describing organization-production block
(OPB) for three types of SOTES with their planning-economical estimating divisions
are worked out. SOTES-O is described by two interconnected subsystems: state
SOTES sensor and OPB supporting sensor with necessary resources. After short sur-
vey of modern modeling, sub- and conditionally optimal filtering and forecasting
basic algorithms and IT for typical SOTES are given. Influence of OTES-N noise on
rules and functional indexes of subsystems accompanying life cycle production, its
filtration and forecasting is considered. Experimental software tools for modeling and
forecasting of cost and technical readiness for parks of aircraft are developed.

Keywords: sub- and conditionally optimal filtering and forecasting (COF and COFc),
continuous acquisition logic support (CALS), organizational-technical-economical
systems (OTES), probability modeling, synergetical OTES (SOTES)

1. Introduction

Stochastic continuous acquisition logic support (CALS) is the basis of integrated
logistic support (ILS) in the presence of noises and stochastic factors in
organizational-technical-economic systems (OTES). Stochastic CALS methodology
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was firstly developed in [1-5]. According to contemporary notions in broad sense ILS
being CALS basis represents the systems of scientific, design-project, organization-
technical, manufactural and informational-management technologies, means and
fractial measures during life cycle (LC) of high-quality manufacturing products (MP)
for obtaining maximal required available level of quality and minimal product
technical exploitational costs.

Contemporary standards being CALS vanguard methodology in not right measure
answer necessary purposes. CALS standard have a debatable achievement and the
following essential shortcoming:

* informational-technical-economic models being not dynamical;

* integrated database for analysis of logistic support is super plus on one hand and
on the other hand does not contain information necessary for complex through
cost LC estimation according to modern decision support algorithms;

 computational algorithms for various LC stage are simplified and do not permit
forecasting with necessary accuracy and perform at conditions of internal and
external noises and stochastic factors.

So ILS standard do not provide the whole realization of advantages for modern and
perspective information technologies (IT) including staff structure in the field of
stochastic modeling and estimation of two interconnected spheres: techno-sphere
(techniques and technologies) and social ones.

These stochastic systems (StS) form the new systems class: OTES-CALS systems.
Such systems destined for the production and realization of various services including
engineering and other categorical works providing exploitation, aftersale MP support
and repair, staff, medical, economical and financial support of all processes. New
developed approach is based on new stochasting modeling and estimating approaches.
Nowadays such IT are widely used in technical application of complex systems
functioning in stochastic media.

Estimation of IT is based on: (1) model of OTES; (2) model of OTES-O (observa-
tion system); (3) model OTES-N (noise support); (4) criteria, estimation methods
models and for new generations of synergetic OTES (SOTES) measuring model and
organization-production block (OPB) in OTES-O are separated.

Synergetics being interdisciplinary science is based on the principle of self-
realization of the open nonlinear dissipative and nonconservative systems. According
to [6, 7] in equilibrium when all systems parameters are stable and variation in it arise
due to minimal deviations of some control parameters. As a result, the system begins
to move off from equilibrium state with increasing velocity. Further the non-stability
process lead to total chaos and as a result appears bifurcation. After that gradually new
regime establishes and so on.

The existence of big amount of free entering elements and subsystems of various levels
is the basic principle of self-organization. One of inalienable properties of synergetical
system is the existence of “attractors”. Attractor is defined as attraction set (manifold) in
phase space being the aim of all nonlinear trajectories of moving initial point (IP). These
manifolds are time invariant and are defined from equilibrium equation. Invariant mani-
folds are also determined as constraints of non-conservative synergetical system. In
synergetical control theory [8] transition from natural, unsupervised behavior according
to algorithms of dissipative structure to control motion IP along artificially in putted
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demanded invariant manifolds. As a control object of synergetical system always
nonlinear its dynamics may be described by nonlinear differential equations. In case of big
dimension the parameters of order are introduced by revealing most slow variable and
more quick subordination variables. This approach in hierarchical synergetic system is
called subordination principle. So at lower hierarchy level processors go with maximal
velocity. Invariant manifolds are connected with slow dynamics.

Section 1 is devoted to probabilistic modeling problems in typical StS. Special
attention is paid to hybrid systems. Such specific StS as linear, linear with the Gaussian
parametric noises and nonlinear reducible to quasilinear by normal approximation
method. For quick off-line and on-line application theory of conditionally optimal
forecasting in typical StS is developed in Section 2. In Section 3 basic off-line algo-
rithm of probability modeling in SOTES are presented. Basic conditionary optimal
filtering and forecasting quick — off-line and on-line algorithms for SOTES are given in
Section 4. Peculiarities of new SOTES generalizations are described in Section 5.
Simple example illustrating the influence of SOTES-N noise on rules and functional
indexes of subsystems accompanying life cycle production, its filtration and forecast-
ing is presented in Section 6. Experimental software tools for forecasting of cost and
technical readiness for aircraft parks are developed.

2. Probabilistic modeling in StS
Let us consider basic mathematical models of stochastic OTES:
* continuous models defined by stochastic differential equations;
* discrete models defined by stochastic difference equations;
* hydride models as a mixer of difference and differential equations.

Probabilistic analytical modeling of stochastic systems (StS) equations is based on
the solution of deterministic evolutionary equations (Fokker-Plank-Kolmogorov,
Pugachev, Feller-Kolmogorov) for one- and finite dimensions. For stochastic
equations of high dimensions solution of evolutionary equation meets principle
computationary difficulties.

At practice taking into account specific properties of StS it is possible to design rather
simple stochastic models using a priori data about StS structure, parameters and stochas-
tic factors. It is very important to design for different stages of the life cycle (LC) models
based on available information. At the last LC stage we need hybrid stochastic models.

Let us consider basic general and specific stochastic models and basic algorithms of
probabilistic analytical modeling. Special attention will paid to algorithms based on
normal approximation, statistical linearization and equivalent linearization methods.
For principally nonlinear non Gaussian StS may be recommended corresponding
parametrization methods [9].

2.1 Continuous StS

Continuous stochastic models of systems involve the action of various random
factors. While using models described by differential equations the inclusion of
random factors leads to the equations which contain random variables.
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Differential equations for a StS (more precisely for a stochastic model of a system)
must be replaced in the general case by the Equations [9, 10].

Z=FZ,x,t), Y=G(Z1), (1)

where F(z,x,t) and G(z,t) are random functions of the p-dimensional vector,
z,n-dimensional vector x and time ¢ (as a rule G is independent of x). In consequence
of the randomness of the right-hand sides of Eq. (1) and also perhaps of the initial
value of the state vector Zy = Z(to) the state vector of the system Z and the output Y
represent the random variables at any fixed time moment ¢. This is the reason to
denote them by capital letters as well as the random functions in the right-hand sides
to the Eq. (1). The state vector of the system Z(¢) and its output Y (¢) considered as the
functions of time ¢ represent random functions of time ¢ (in the general case vector
random functions). In every specific trial the random functions F(z,x,t) and G(z,t)
are realized in the form of some functions f'(z,x,¢) and g(z, ) and these realizations
determine the corresponding realizations z(¢),y(¢) of the state vector Z(¢) and the
output Y (¢) satisfying the differential equations (which are the realizations of Eq. (1)

z=f(z,%x,t), y=gz1).

Thus we come to the necessity to study the differential equations with random
functions in the right-hand sides.

At practice the randomness of the right-hand sides of the differential equations
arises usually from the fact that they represent known functions some of whose
arguments are considered as random variables or as random functions of time ¢ and
perhaps of the state and the output of the system. But in the latter cased these
functions are usually replaced by the random functions of time which are only
obtained by assuming that their arguments Z and Y are known functions of time
corresponding to the nominal regime of system functioning. In practical problems
such an assumption usually provides sufficient accuracy.

So we may restrict ourselves to the case where all uncertain variables in the right-
hand sides of differential equations may be considered as random functions of time.
Then Eq. (1) may be written in the form

Z =f(Z,x,N1(t),t), Y =g(Z,N,(t),1), ()

where f and g are known functions whose arguments include random functions of
time N (t) and N(¢). The initial state vector of the system Z, in practical problems is
always a random variable independent of the random functions N;(¢) and N(t)
(independent of random disturbances acting of the system).

. T 7T . T T
Every realization [nl(t) n,(t) } of the random function [Nl(t) N,(t)" | deter-

mines the corresponding realizations f (z,x,71(t),t), g(z,72(t),t) of the functions

f(z,x,N1(t),t), g(2,N2(t),), and in accordance with this Eq. (2) determine respective

realizations z(¢) and y(¢) of the state vector of the system Z(¢) and its output Y (z).
Following [9, 10] let us consider the differential equation

dX/dt = a(X,t) + b(X,t)V, (3)

where a(x,t), b(x,t) being functions mapping R¥ x R into R and RF?, respec-
tively, is called a stochastic differential equation if the random function (generalized)
V (t) represents a white noise in the strict sense. Let X be a random vector of the same
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dimension as the random function X (¢). Eq. (3) with the initial condition X (z¢) = Xo
determines the stochastic process (StP)X () .

In order to give an exact sense to Eq. (3) and to the above statement we shall
integrate formally Eq. (3) in the limits from ¢, to ¢ with the initial condition
X(to) = Xo. As result we obtain

X(t)=Xo+ Jﬂ(X(T),T)dT + Jb(X(T),T)V(T)dT

where the first integral represents a mean square (m.s.) integral. Introducing the
StP with independent increments W (¢) whose derivative is a white noise V(z) we
rewrite the previous equation in the form

t t

X(t) =Xo + Ja(X(r), 7)dt + Jb(X(T), 7)dW (7). (4)

to to

This equation has the exact sense. Stochastic differential Eq. (3) or the equivalent
equation

dX = a(X,t)dt + b(X,t)dW (5)

with the initial condition X (t¢) = X, represents a concise form for of Eq. (4).

Eq. (5) in which the second integral represents a stochastic Ito integral is called a
stochastic Ito integral equation and the corresponding differential Eq. (3) or (5) is
called a stochastic Ito differential Eq.

A random process X (t) satisfying Eq. (4) in which the integral represent the m.s.
limits of the corresponding integral sums is called a mean square of shortly, an m.s.
solution of stochastic integral Eq. (4) and of the corresponding stochastic differential
Eq. (3) or (5) with the initial condition X (¢o) = Xo.

If the integrals in Eq. (4) exist for every realization of the StPW(t) and X(¢) and
equality (4) is valid for every realization then the random process X(t) is called a
solution in the realization of Eq. (4) and of the corresponding stochastic differential
Eq. (3) and (5) with the initial condition X (¢o) = Xo.

Stochastic Ito differential Egs. (3) and (5) with the initial condition X (¢¢) = X,
where X is a random variable independent of the future values of a white noise
V(s), s>to (future increments W(s) — W(t), s>t >to, of the process W) determines
a Markov random process.

In case of W being vector StP with independent in increments probabilistic

modeling of one and #-dimensional characteristic functions g, = — B¢’ 2() and

g, = Eexp {i>;_14;Z(t)} and densities f, and f,, is based on the following
integrodifferential Pugachev Egs:

aglc()i;t) N (2711)1” T T [iﬂa( ,t) +x<b(z,t>%t)i g (ust)dpdz,  (6)

a%gn(ﬂl, s A3 By s 271)” ]o ]o iAla(znst,) +)(<b(zn,tn) /ln,tn)}

n
X exp {i (/IZ —y,f)zlg}gn(,ul, e s H3 Bl e s B Ay s dp s d2e, . A2y,
=1

)
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R J | [#ae.0 +x(btenase) | f cozar, (o)

y ' B 75 b T s

at_nfn(ZIa w5251, ...,tn) - (27[);1}7 J .ee J [Z na(gn’t") +}(( (é’n’tn) n,tn>]

= )

X exp {iZ&Z(Ck —zk)}fn(Cl, s Cnstas s tn)ACe, vy dC 3 dis, oy d,

k=1
f1(zs80) = fo(=), (10)
where i being imaginary unit,

1 Ohi(pst) (11)

x\pst) = >
(k51) hi(u;t) ot
fn(zlz 3 Zn—12n5015 weestn—1, tn—l) :fn_l(zl; v s Zn—15t15 ot atn—l)é(zn _Zn—l)-

(12)

For the Wiener W StP with intensity matrix »(t) we use Fokker-Plank-Kolmogorov
Egs:

LB 2 latenf )] +yu{ S b ipObE G0 (3

at initial conditions (12).

2.2 Discrete StS

For discrete vector StP yielding regression and autoregression StS

Xk+1 = a)k(Xk, Vk) (k = 1, 2, ), (14)
Xpi1 = ak(Xk) —|—bk(Xk)Vk (k =1,2, ... ) (15)

Egs for one and # dimensional densities and characteristic functions are described by:

frle) = 227 J e # g (Ndl, g,(4) = Eexp {iATX,}, (16)

1 [ee]
Frewo (X1 ey ) = ) J { Z/lhxh}gk (M ooy )ty oo s

(17)

Ehny g s s Eexp{ Zﬂl xk,} (18)

Zpi1(4) = Eexp {z/la)k X, Vi) = J J gt 0= (x0) £ () (v)dxdv, (19)



Methods of Conditionally Optimal Forecasting for Stochastic Synergetic CALS Technologies
DOI: http://dx.doi.org/10.5772/intechopen.103657

v (M, o r4n) = Eexp {i ZﬂlTxkl + i/IZa)kn (X, » an)}
=1

Here E being symbol of mathematical expectation, /;, being V), characteristic
function

é%z

exp { Z/lhxh + Al ay, (%, 1),1)}fk1 (X1 s X0 )0, (0 )1 .y, AUy

(20)

gkl, )knflsknfl (ﬂl, ceey j’}’l) == gkl, Aknfl (ﬂ/l, ey ﬂn_l + An),

(21)
gkl,...,kn (/11’ o ’/1/”) :gS1,...,Sn(/1S1’ o ’j‘xﬂ)’

where (51, ...,s,) — permutation of (1, ...,n) at k, <k, < ... <k;,.
In case of the autoregression StS (1.14) basic characteristic functions are given by
Egs:

Zpia(My s An) = Eexp {idTap (xx) +i2 by (Xi) Vi }

- J JeMT“k( a0 £ () (v )dxdu:E[exp (2T ap(Xe)} + by (bk(xk)%ﬂ,
(22)
n—1
Zo g (A1, s dy) = Eexp {z Mo, +idlay, (X)) +iﬁfbkn(an)an}
=1
(e o] [ee] [ee] n 1
— J J exp {;Zﬂ x; +illay, (x,) +m,{bkn(xn)un} (23)

XE | exp {znZl Xk, + z/l ar, (X, )} + h, <bn(Xn)T,1n)].

2.3 Hybrid continuous and discrete StS

When the system described by Eq. (2) is automatically controlled the function
which determines the goal of control is measured with random errors and the control
system components forming the required input x* are always subject to noises, i.e. to
random disturbances. Forming the required input and the real input including the
additional variables necessary to transform these equations into a first-order equation
may be written in the form

X =¢X,U,t), U=w(X,Z U,N;t),t) (24)

where U is the vector composed of the required input and all the auxiliary vari-
ables, and N3(¢) is some random function of time ¢ (in the general case representing a
vector random function). Writing down these equations we have taken into account
that owing to the action of noises described by the random function N3(t), the vector
U and the input X represent random functions of time and in accordance with this we

7
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denoted them by capital letters. These equations together with the first Eq. (2) form
the set of Eqs

Z=f(Z,X,N1(t),t), X=X, U,t), U=w(X,Z,U,Nst)t).

These equations may be written in the form of one equation determining the
T
extended state vector of the system Z; = [Z"X U] :

Zy = f1(Z1,Na(t), 1)

where N4 (t) = [N1 (t)"N; (t)T] " and

F1(Z1, Nat), £) = [ FZ,XNL )T oX, U0 w(X,Z,U,N5, 07|

As a result rejecting the indices of Z; and f, we replace the set of the Egs. (2) and
(24) by the equations

Z = f1(ZuNu0),1), Y =g(Z,Na(0), 1),

In practical problems the random functions N1(¢) and N,(¢) are practically always
independent. But the random function N3(¢) depends on N;(¢) and N,(t) due to the
fact that the function (Y, t) = h(g(Z,N,(t),t),t) and its total derivative with respect to
time ¢ enter into Eq. (24). Therefore, the random function N;(¢) and N4(z) are depen-

T
dent. Introducing the composite vector random function N(¢) = |N(¢) TN, ()" N5 (t) T]

we rewrite the equations obtained in the form
Z=f1(Z1,N@),t), Y =g(Z,N(t)¢t). (25)

Thus in the cased of an automatically controlled system described by Eq. (2), after
coupling Eq. (2) with the equations of forming the required and the real inputs we
come to the equations of the form of (23) containing the random function N(t).

If a control StS based on digital computers we decompose the extended state vector

T
Z into two subvectors Z', Z", Z = [Z' T T] one of which Z' represents a continu-

ously varying random function, and the other Z” is a step random function varying by

jumps at prescribed time moments t*) (k = 0,1,2, ...). Then introducing the random
function

Z'(t) = Zy1a (t)
k=0

and putting Z}, = Z'(t™)) (k = 0,1,2, ...) we get the set of equations describing the
evaluation of the extended state vector of controlled

Z=f(Z,N(t),t), Zj1 = @p(ZrsNp) (26)

where N, (k = 0,1,2, ...) are some random variables, and N(¢) some random
function.
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For hybrid StS (HStS) let us now consider the case of a discrete-continuous system

T
whose state vector Z = [Z/TZ” T} (extended in the general case) is determined by the

set of equations

Z =a(Z,t) +b(Z,t)V, Z'= Zz 14,(8), Z},1 = on(Zr, Vi) (27)

where is the value of Z(t) att = t*), Z), = [Z’,ZZ”,QT] ) =+ Z(t(k)) (k=0,1,2, ..),
a, b, wy, are functions of the arguments indicated 14, (¢) is the indicator of the interval
A, = [t(k)t(k“)) (k=0,1,2, ...), V is a white noise in the strict sense, {V}} is a
sequence of independent random variables independent of the white noise V. The
one-dimensional characteristic function %1 (u;t) of the process with independent
increments W (t) whose weak m.s. derivative is the white noise V, and the distribu-

tions of the random variables V), will be assumed known.
Introducing the random processes

T

Z"(t) szuk AR AC AR

we derive in the same way as before the equation for the one-dimensional charac-
teristic function

g105) = B2 — Bexp {i2"Z/(0) +i2""Z" (1) +iA”' 2 (0) |
— Eexp {i/l’TZ’ (t) +i2"TZ) + m”’Tz;e}

of the StP Z(¢)

% —E{il"a(Z,t) + 2(b(Z, 1) T30 7 |, @

Taking the initial moment ¢y = (9 the initial condition for Eq. (25) is

giisto) = B{ (" +i2"" )z + 2"z} = g < SR T> 293

where g, (p) is the characteristic function of the initial value Zy = Z(t¢) of the
process Z(t).

At the moment t*) the value of g, (4;¢) is evidently equal to
E exp {i (l’T + z”’T)Z; + M"Tz;;},

T
ie. to the valueg, < [/I/T w27 T] ) of the characteristic function g, (p) of the

T
random variable Z;, = [Z”T Z”kT] . If the function y(u;¢) is continuous function of ¢ at

any u the g, (4;t) tends to

9
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B{i2 "7} +id7Z) + i 2, |

when ¢ — t*+1i.e. to the joint characteristic function FAVIVIR /1) of the random
variables Z,_,, 7.7,

gy (B4 —0) = lim &(41) =g (2,4, 4).

t—>t<k+1

At the moment t**Vg, (1;1) changes its value by the jump and becomes equal to

” ” T
E exp {i(ﬂ + A T)z;+1 + M”ngﬂ} =g ( [A’T + 27 z”T} )

To evaluate this, we substitute here the expression of Z,,; from the last Eq. (27).
Then we get

g1 (525Y) =B exp {i(2T+27)Z s + il T on (2, Vi) | (30)

Owing to the independence of the sequence of random variables {V},} of the white
noise V and independence of V}, of V, V3, ..., V;_; the random variables Z; and Z, "
are independent of V. Hence, the expectation in the right-hand side of Eq. (30) is

completely determined by the known distribution of the random variableV}, and by

the joint characteristic function g, (1, 1", /1) of the random variables 7}, , |, Z}, Z,,, i.e.

by g, (l;t(k“) — 0). So Eq. (26) with the initial condition (27) and formula (28)
determine the evolution of the one-dimensional characteristic function g, (4;¢) of the

_ T
process Z(t) = [Z’ O 'z"t)'z (t)T} and its jump-wise increments at the moments

t® (k=1,2, ...).
In the case of the discrete-continuous HStS whose state vector is determined by Eqs

Z = a(Z,t) + b(Z,t)V (31)

we get in the same way the equation for the #-dimensional characteristic function

. _ 1y NT 11 ( \NT " s NT T
g,(A1, ooy dusta, ..y t,) of the random process Z(¢) = |Z'(t) Z"(t) Z (¢)" | ,

6gn(/11, vy A3ty e ,l’n)/atn

_ _ 32

- E[iﬂZa(Z(tn),tn) +;((b(2(tn),tn)T/1n;tn>} {i7Z(0) + - + i3 Z(5,) ), (32)
And the formula for the value of g (11, ..., Ap;t1, ..., 1y) At t, = t*tD) >¢p

£ (ﬂl, s I3ty ,tn_l,t“e“)) = E{iﬁ(tl) e il 1 Z(tna) (33)

(A + ) 2y + i 0 (Za, Vi) }

10



Methods of Conditionally Optimal Forecasting for Stochastic Synergetic CALS Technologies
DOI: http://dx.doi.org/10.5772/intechopen.103657

At the point ¢, = t(k“)gn (M5 ees An3t1, ... s t,) changes its value by jump from

& (/113 s Ay By s b1, £ — 0) = E{M{Z(l‘l) b il (Z () + ik Zjyiq
+iTzZ] +idl" 7, }

to g, (M, s A3t s ty_1,t*Y) given by (33).

The right-hand side of (33) is completely determined by the known distribution of
the random variable V}, and by the joint characteristic function
2, (M5 vy Anstay ooy ty1,t*7Y) — 0) of the random variables

Z(t1) w2 (tu-1)>Z} 1> Zy» Zy,. Hence, Eq. (32) with the corresponding initial condi-

tion and formula (33) determine the evolution and the jump-wise increments of
g,(A1, ooy Ansta, .., t,) at the points t*+1) when t,, increases starting from the value z,_;.
2.4 Linear StS
For differential linear StS and W being StP with independent increments V = W
Z=aZ +ag+bV (34)

corresponding Eqs for n-dimensional characteristic function are as follows:

(;i — Talt,) % + [i2Za0(tn) + 2 (b(6:) 2ustag, (35)

Explit formulae for #-dimensional characteristic function is described by formulae

n

gn(/h, e s Ay 1, ...,l’n) =9 (Z (tk,to ) exp Zﬂk J tk, do(‘[)dl’

k=1
t (36)
n k n
+ Z J X (b(T)T Z u(ty, )4 T) dr} n=1,2,..).
k=1, 1=k
k—1
Here u = u(tx, v) being fundamental solution of Eq & = au at condition: u(t,t) =1
(unit (7 X n) matrix).
In case of the Gaussian white noise V with intensity matrix v characteristic
function g, is Gaussian
n
g,(A15 s dnstr, sty) = g (Z (tk,to ) exp Z/lk J u(ty,7)ao(t)dr
k=1
" min (¢, 1) (37)
1
= > oA u(ty, )b () ()b () uty, ) ded, y (n=1,2,...).

11
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2.5 Linear StS with the parametric Gaussian noises

In the case of StS with the Gaussian discrete additive and parametric noises
described by Eq

p
Z=aZ +agy+ (bo + thzh) V. (38)
h=1

we have the infinite set of equations which in this case is decomposed into
independent sets of equations for the initial moments a;, of each given order

p p
dk — Zkr (ar,oak—e,, + Zﬂr,eqak—&-eq—er)
r=1 =1
1 p
+2Zkr k - 1) (Gw 0Q%—2e, + Zaweqak—i-eq 2e, + Z Gweq+euak+eq+eu ,,)

r=1 q=1 q,u=1

p p-1 r
+ 5 krks Ors, 0% —¢,—¢, T 5 Os,eq Mk-+e,—e,—e + § Orseq+ey Xhteg+e—e,—es |

q=1 q,u=1
(39)
Ar,0 = A0ys  Are, = Apg (kl, wsky=0,1,2, .5 o(k) =1,2,. )
Corresponding Eqs of correlational theory are as follows:
m = am + ao; (40)

p p
K =aK +Ka" +bovb] + > (byob{ + bovby )mo + > byvb] (mym + ky).  (41)
h=1 h,1=1

where ky; is the covariance of the components Z;, and Z; of the vector
Z (h,1=1, ...,p). Eq. (41) with the initial condition K (to) = K, (kpq (to) = k§q>

completely determines the covariance matrix K(t) of the vector Z(t) at any time
moment ¢ after funding its expectation .

For discrete StS with the Gaussian parametric noises correlational Eqs may be
presented in the following form:

P
Xier1 = X +ao + (boz + Zbijkj> Vi, (42)
=t
Mpi1 = apMmy, + aok, mp = EYy, (43)

P
Kp.q= ﬂkI<ka]Z + bo}evkbgk + Z <b0kvlbj7,; + bjkvlbgk>mjk
j=1
(44)

PP
+ Z Z bivibiy, (mimu, + ki),
j=1 h=1

Ky =E(Y1—my) (Y1 —my)",
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K(j,h+1) =K(j,h)al, K(j,j) =K. (45)
2.6 Normal approximation method
For StS of high dimensions methods of normal approximation (MNA) are the only
used at engineering practice. In case of additive noises b(x,¢) = bo(t) MNA is known

as the method of statistical linearization (MSL).
Basic Eqs of MNA are as follows [9]:

1
g2,(A3t) ~ exp {met — E/lTKt/l},

(46)
_ 1
Fasst) P T exp {3 67 = )R s =)
7’}"lt = (pl(mt, I(t, t) m(to) =moy, (pl(mt, I(t, t) = ENﬂ(Yt, t), (47)
K, = ¢,(my, Ky, 1) K(to) = Ko, (48)

(pZ(mt’ I(ta t) = ¢21(mt) I(ta t) + P2 (mta I<t, t)T + (p22(mt’ I<t’ t)’
¢21(mt) I<t3 t) = E/\/'a(Xb t) (X;T - mZ)’ Gﬂzz(mt,Kta t) = ENb(Xt’ t)v(t)b(Xt’t)T’
OK (t1,t -
% = K(t1,12)K(t) 1(,021 (m, (02)K(t2), (tz)T’
(49)

2,(Ms s sty wsty) = €XP {MT%, —

(X1, s Xn3 b1y ooy bn) = [(Zn)"‘ﬁn}_m exp {% (9?; — m}f)ﬁnl X,

. (50)
2= [0 AT = () () e (6)"]
[ K(t1,t1) K(t1,62) ... K(ta,t,) ]|
B K(tyt1) K(tats) ... K(tot, (51)
K, = (2 2 (2 2 ‘ (2 ) ,where X, = [xlszTxﬂT
| K(ty,t1) K(tp,t2) ... K(tu,tn) |
Eq. (49) may be rewritten in form
oK (t1,t
HELh) _ el ), 11,12) (52
2
where
03K (t1,12), 11, 12) = [(2m)™™ Fz\_l/z J J (x1 — my, ) p(x2,12)
X exp {— (x123) — K, " (x127) — Wg)}dxldxz; (53)

T _ K(t1,t1 K(t1,t
my = WlTWlT 5 I<2 = ( ) ) .
11"t

(
K(ty,t1) K(ta,12)

13
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For discrete StS equations of MNA may be presented in the following form:

miy1 = Eyoy (X, Vi) mi=EX; (I1=1,2), (54)
K11 = Exan (X5, V) (X5, V)T = Exan(Xy, Vi) Enan(X, V)T, (55)

at conditions

Ky = En(Xy —mq) (X1 —m1) (1 =1,2),
Ky, = ExXion, (X, Vi)" — mEyap (X, Vi), (56)
Ky=K, at l<h(h=1,2..), Kpn =K1 =Kh,1) ar 1<h.

Corresponding MNA equations for Eq. (15) are the special case of Egs. (54)-(56).

3. Conditionally optimal forecasting in StS

Optimal forecasting is well developed for linear StS and off-line regimes [9]. For
nonlinear StS linear StS with the parametric Gaussian noises and on-line regimes
different versions approximate (suboptimal) methods are proposed. In [9] general
results for complex statistical criteria and Bayes criteria are developed. Let us consider
m.s. conditionally optimal forecasters for StS being models of stochastic OTES.

3.1 Continuous StS

Conditionally optimal forecasting (COFc) for mean square error (mse) criterion
was suggested by Pugachev [10]. Following [9] we define COFC as a forecaster from
class of admissible forecasters which at any joint distributions of variables X, (state

variable) X, (estimate of X,), Y; (observation variable) at forecasting time A >0 and
time moments ¢ >t in continuous (differential) StS
dXt — a(Xt, Yt’ t)dt + b(Xt, Yt, t)dWl, dYt — ﬂl(Xt, Yt, t)dt + bl(Xt) Yt, t)sz
(57)

(W1, W, being independent white noises with the independent increments;
@@y, being known nonlinear functions) gives the best estimate of X;. 5 at infini-

. . .. .. S S 2
tesimal time moment s >¢, s — t realizing minimum E|XS — XHA‘ . Then COFc at
any time moment ¢ >t is reduced to finding optimal coefficients o, f3;, y; in the
following Eq:

dXt = atf(j(t, Yt, t)dt + ﬂtf’] (Xt, Yt, t)dYt —|— ]/tdt (58)

Here & = cf(f(t, Y., 1), n= ;7(5(“ Y,,t) are given functions of current observations Y;,

estimate X, and time .
Using theory of conditionary optimal estimation (13, 17, 18) for Eq

AXiin = a(Xepn,t + A)dt +b (X, t + A)dWq(t + A). (59)

we get the following Eqs for coefficients a, f,, 7,
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ami + By +y, =mo, mo = Ea(Xy,Yy,t), my=EE(Yy,Xiiat),

R (60)
my = En(Ye, Xeinst)a1(Xe, Yo, ),
B, = kookyts Koo = E(Xe — Xea)ar(Xe, Yoo ) 0 (Vs Xepant) -
+ED(X;, Yo, )0 (b1 (Xes Yoo ) 0 (Ve Ko ant)
kn = E(Y X, )b1(Xe, Vo 0001 (X, Yio )T (Vi K £) )

. T
+Eb(Xy, Ye, t)0(t)b1(X:, Yis t)T’Y(Yt, Xevas t)

at condition (det x; # 0).

The theory of conditionally optimal forecasting gives the opportunity for simulta-
neous filtering of state and identification of StS parameters for different forecasting
time A. All complex calculations for COFc design do not need current observations
and may be performed on a priori data during design procedures. Practical application
of such COFc is reduced to Eq. (58) integration. The time derivative for the error
covariance matrix R; is defined by formulae

. ~ AT
R, =E [(XH-A _Xt)a(XH-Aat + A)T +a(Xepa,t+ A) <X£LA - X, )

~ ~ T
- ﬁt”(YDXH-A’ t)bl(Xta Yt) t)UZ(t)bl(Xt) Yt) t)Tn(YDXH-Aa t) ﬂ;’fT (63)

~ T
+ b(Xt—I—A, t + A)Ul(t + A)b (Xt+A,t + A)

Mathematical expectations in Eq. (60)-(63) are computed on the basis of joint

AT A T
distribution of random variables [XtT Xgr A YtT , XtT XZ;r A} by solution of the following

1T
Pugachev Eq for characteristic function g, (41, A2, 43, sy, piy, p33 t, s) for StP [XtT YtT XtT }
ats >t

0g, (215 425 435 i1 o 133 1,5) [ 05 = E{w{ a1(Ys, X, ) + ipy a(Xs, )

+ l/’l_z: [(l;f(Y;,XS,S) + ﬁx”(YS’XS’S) + }/5}

+)((b1(Y;,XS,S)T,u1 + b(Xs,5)uy
T S T T
+b1<YS)XS,S> U(YSaXS’S) ﬂs /’53a5)}

X exp {M{ Yo+ il X, +idX, +ipl Vo il X, +ipl X, }
(64)
at condition
82 (M, 42, 435 s o 33 £, 8) = g4 (A1 + pa, Ao + g, A3 + 33, ). (65)
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Basic algorithms are defined by the following Proposals .3.1.1-3.1.3.

Proposal 3.1.1. At the conditions of the existence of probability moments (60), (61)
nonlinear COFc is defined by Eqs. (58) and, (63).

Proposal 3.1.2. For linear differential StS

dX, = (a1 X; + ao)dt +bdW,, dY, = (bY; + b1X; + bo)dt + b1dW. (66)
Egs of exact COFc ave as follows:

dX; = [a1(t + A) (e X1 + he) +ao(t + A)]dt + efpy, [dY: — (bXy +bo)dt].  (67)

& =a1(t+ A)e — ea,. (68)

he = ai(t + A) — gao + ar(t + A)h,. (69)

Ry = ai(t + AR, + Ruaq(t + A)" — B, (b1v2b]) BT + yri(t + A)os(t + A)ba(t + A)".

(70)
In case of the linear StS with the parametric Gaussian noises:
nx
dX, = (ﬂlXt + do)dt + (CIO + ch,ny+VXy> AWy,
r=1 (71)

ny Nx
Ay, = (bYt + b1 X; + bo)dt -+ (Cz() + ZCZVYV + Zc2r,ny+rxr> dW,.
r=1 r=1

COFc is defined by exact Eqs (Proposal 3.1.3):
dX, = [a1(t + A) (eX1 + he) +ao(t + A)|dt + efy, [dY: — (bX1 +bo)dt].  (72)
ét = a]_(t + A)gt — &a, I’.lt = ﬂ()(t + A) — &ag + a]_(t + A)ht, (73)

Rt - a]_(t —|— A)Rt + Rta:[(t —|— A)T

Myt 7y +nx
T T
cy0 + Couymy |V1| Cyg + Cy, My

P

r=1 r=1

My +y

E : T
+ CZVvlczgkrs

r=1

7y +71

B+ {clo(t +A) + Z cir(t + A)m,(t + A)] va(t +A)

r=n,+1

X [clo(t + AT + Z et + A) my (¢ + A)]

r=n,+1
My +-1y
+ Y et Aot + A)ess(t + A) k.
r=ny+1

(74)

For nonlinear StS in case of the normal StP X,, Y,, X, Egs of normal COFc (NCOFc)
are defined by Proposal 3.1.1 for joint normal distribution.
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3.2 Discrete and hybrid StS
Let us consider the following nonGaussian nonlinear regression StS
Xk+1 :a)k(Xk,Vk), Yk :a)lk(Xk;Yk,Vk) (k = 1,2...). (75)

In this case Egs of the discrete COFc are as follows:

Xieiri1 = 0l (Xie Xk) + 70 (76)
Sk =DiBpls 1k = Misrin — Sk (77)
Mitr+1 = EOpr(Xiotrs Vierr), (78)

Pr = EG (X Xi), B = E[G (X Xe) — ) (%o X0)
Dy = E[p+r(Xitrs Viesr) — M) G (1 (Xkan))T, (79)
Lappsr(Pas das i) = B{iAT Xy +i25 Xy + i X, |, (80)
G pserrat (s A2 1) = Eexp{id] X, + i) g s (Xpesr» Vierr) + i’ X } (81)

at initional condition

Lo A1s A2, 1) = g4, (A1 + Ao, ). (82)

So for the nonlinear regression StS (14) we get Proposal 3.2.1 defined by
Egs. (75)-(82).

In case of the nonlinear autoregression discrete StS (15) we have the following Eqs
of Proposal 3.2.2:

X1 =aprXe) +01(Xe) Vi, Yie=au(Xe, Yi) +b1(Yr) Ve, (83)
Xierri1 = A&, (Xi) + Bt (Xe) Ve + 705 (84)
k 2 k k) /< k k
agkyy + By = kol ankly (Xe) + Brksy = Koy » (85)
ketr k) /< J 2
re=ry " — @) (Xe) — B = K535 (86)
P Y = Bagy (Xisr), (87)
BT (k)T] T k A k A

Pr = [p§ TS )T} , A =Eg (%), AP = B (Xe)an(Xe), (88)

(k) (k)
Bo= "1 "2 1, detlByl £ 0, (89)

N

11 22

o =E[a®) - ol e X)),
K = K = B8 (%) — i Jan () e (%)

kyy =E [Wk (X )awe (Xe) — /)gk)}ﬂﬂe (Xe) s (Xk)T + B (X ) bk (X )bk (Xi) g (Xk)T,
(90)
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D, = [ngl) KE)]Z)] , (91)
A \T
Kg? = Ela(Xk) — me1)& (Xk) 92)
~ T A~ \T
Ky = Elar(Xe) — misalane(Xi) e (X1)" + Ebu(Xe)orbu (X)) i (X2)
M1 = py s py) = Eap(Xp), EVy = 0, EV,V] = ;. (93)

Analogously we get from Proposal 3.2.2 COFc for discrete linear StS and linear
with the Gaussian parametric noises. For hybrid StS we recommend mixed algorithm
based on joint normal distribution and Proposal 3.1.1.

3.3 Generalizations

Mean square results (Subsection 2.1 and 2.2) may be extended to StS described by
linear, linear with the Gaussian parametric noises and nonlinear Egs or reducible to
them by approximate suboptimal and conditionally optimal methods.

Differential StS with the autocorrelated noises in observations may be also reduced
to differential StS.

Special COFc algorithms based on complex statistical criteria and Bayesian creteria
are developed in [11].

4. Probability modeling in SOTES

Following [3, 4] let as consider general approach for the SOTES modeling as
macroscopic (multi-level) systems including set of subsystems being also macro-
scopic. In our case these sets of subsystems will be clusters covering that part of MP
connected with aftersales production service. More precisely the set of subsystems of
lower level where input information about concrete products, personal categories etc.
is formed.

For typical continuous-discrete StP in the SOTES production cluster we have the
following vector stochastic equation:

dX, = [p(Xs,t) + S)p(Xy, 1)]dt + S)dP°(¢). (94)

Here P°(¢) being the centered Poisson StP; p(X,t) being (n, x 1) intensity of
vector of StP P(t), p(X¢,t) = [p12(Xe, 1) p13(Xes 1) o pre (X t)]T;puk (X:,t) being intensi-
ties of streams changes of states; ¢(X;,t) being continuous (7, x 1) vector function of
quality indicators in OPB; S(v) being (, x 7,) matrix Poisson stream of resources

(production) with volumes v according to the SOTES state graph. Analogously we get
corresponding equations for SOTES-O and SOTES-N:

dY; = [q(X;,t) + ¢1(Y,t) + D(r)y(Yy,0)|dt + D(r)dP? (t), (95)
A, = [p(Cy,t) + C(Ou(Sp,t))dt + C(9)dP5 (t), (96)

where ¢; and ¢, being vector functions quality indicators in OPB for the SOTES-O
and the SOTES-N; D(r) being structional matrix of resources streams in the SOTES-N
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matrix; y(Y;,¢) and D(r) being the intensity function and vector of P?(t) jumps in the
SOTES-O.

In linear case when p,;,(X;,t) = A,X; Eqgs. (94)-(96) for the SOTES, SOTES-O and
the SOTES-N may be presented as

dX, = a(t,v)X,dt + S(v)dP°(t), (97)
dY; = b(r,t)Y.dt + A(Yy, )X, + D(r)dP°(t) + w1 (t)dE,, (98)
d¢, = ¢ (9,t)C,dt + C(9)dP) (¢). (99)
Here notations
bi(r,t) = bi(t) + A, (r,t), ©2(9,8) =2 + A, (8,1). (100)

A,(r,t), A,(9,t) are derived from Egs:
D(r)y(Ye,t) = A, (r,t)Y:,  C(O)u(lpt) = Au(9,8)E;. (101)

At practice a priori information about SOTES-N is poor than for the SOTES and
SOTES-O. So introducing the Wiener StP W (t), W1 (t), W,(t) we get the following Egs:

dX, = @X, +a1Y: + ao)dt + Sw)dP° (t) + v/ (t)dW (¢), (102)
dY: = (X, + b1 +boly + bo)dt + D(r)dPy(t) + wy(£)dS, + i ()dW1(t), (103)
de, = (€28, + co)dt + C(8)dPI(t) + w (1)dW (2). (104)

R e m ark4.1. Such noises from OTES-N may act at more lower levels OTES-O
included into internal SOTES being with minimal from information point of view
maximal. For highest OTES levels intermediate aggregative functions may be
performed. So observation and estimation systems must be through (multi-level and
cascade) and provide external noise protection for all OTES levels.

Remark4.2. As a rule at administrative SOTES levels processes of information

aggregative and decision making are performed.
Finally at additional conditions:

1. information streams about OPB state in the OTES-O are given by formulae
Y, = G(Ty) + Tx (105)
and every StP G;(T) is supported by corresponding resource (e.g. financial);

2. for SOTES measurement only external noise from SOTES-N and own noise due
to error of personal and equipment are essential.

We get the following basic ordinary differential Eqs:

X, =aX, +a1G, +ao +y, Vo =Ly, 2 (106)
G = q(Ta)X: + bal, +x,Va = Lg, (107)
é’t =8 +co+x:Va =L (108)
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Ty =bX, + b1 Ty +bo+y,Va =Lr. (109)

T
Here V() = [Vz(t) VgT () VCT(t) VI (t)] being vector white noise, dimVq(t) =
((nx +ng +ng +ny) x 1), MVgq(t) = 0, with diagonal block intensity matrix vg =

)
diag{ 0] o) [ocl o]} dimo (6) = (e x ), dimog (£) = (ng x ), dimo(t) =
(ne X ne), dimog(t) = (ny X n0g), Yy Xos Xes Xt being known matrices:

Ve =S@)Ve(t) +v'O)Vw, Vy=u1(O)Ve+wi(6)Vwi, Ve=C(9)Vp +y;y(t)Vwas
(110)

! . 0 . 0 - .
Vp=Po(t), Vpi=P,(t), Vp=P,(t), Vu=Vp, Vw=W({E), Vwi=Wi(),
Vwa = Wz(t).

(111)

Remark4.3. Noises Vp, Vpi, Vpr (random time moments of resources or
production) in are non-Gaussian noises induced by Poisson noises in the OTES,
OTES-O, OTES-N, whereas noises Vi, Vw1, Vw2 (personal errors, internal noises)
are Gaussian StP.

From Egs. (110) and (111) we have the following equivalent expressions for
intensities of vector Vg(z):

ve =S@)PST () +wowy'", vy =y’ +ypwiy, (112)
ve = C(9)ACT(9) + yhoww, v, = D(r)7DT(r).

Here the following notations are used: S()pS” (v), C(8)aC* (9), D(r)yD” (r) being
intensities of nonGaussian white noises S(v)Vp(t), D(r)Vp1(t), C(9)Vpy(2): p =
E[diagp(X;,t)],7 = E[diagy(Y:,t)], i = E[diagu({;,t)] being mathematical expecta-
tions of intensivity diagonal matrices of Poisson streams in the SOTES, SOTES-O,
SOTES-N; vw, vw1, vw2 being intensivities of Gaussian white noises Vi, V1, Vwo.
Note the difference between intensity of Poisson stream and intensity of white noise.

In case of Egs. (106)-(109) with the Gaussian parametric noises we use the fol-
lowing Egs:

X; = Lx + (aX; + 41G,)Vq, (113)
G =L¢ + (th n 122@) Vo, (114)

£ =Le + 68 Va, (115)
Ty =Lr+ (l;Xt n l;lTst) Vo, (116)

where bar means parametric noises coefficients.
At additive noises Vg presenting Egs. (113)-(116) for Z; = [X; G {; Tst]T in form
of MSL:

Z, = Bo(m?, K%, t) + By (m?,KZ,t)Z, + B (m?, K%, 1) V2, (117)
we get following set of interconnected Eqs for m?, K5:
m? = Bo(m?,K;,t), m*(to) =mj, (118)
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K, = By (m?, K2, 0)KZ + K2By (m?, K2,t) " + B (m?, K2, 0)2B (m?, K2,0) ', K(t0) = K5,
(119)

Eq for K*(t1,1,) is given by (49).

5. Basic SOTES conditionally optimal filtering and forecasting algorithms

Proposal 5.1. Let SOTES, SOTES-O, SOTES-N being linear, satisfy Eqs. (102)—(104)
and adwmit linear filter of the form:

j(t = (ﬁXt +a1Gy + ﬂo) + Py [Gt - (o]tf(t + bZCt)] ) (120)

where coefficient g, in (120) does not depend upon T;. Then Eqs of optimal and
conditionally optimal filters coincide with the Kalman-Bucy filter and may be
presented in the following form:

);(t = ﬁXt +a1Gy +ag + thtTUg_l [Z - (%Xt + szt)] (Zt = Gt)> (121)

R, =aR; + R’ + v, — Rig[v,'q,R;. (122)

Proposal 5.2. At condition when measuring coefficient q, depends upon 1, = A(Ty,t)
and admit statistical linearization
/I(Txt: t) ~ /10 (mst, I<St: t) + /11 (mst: I<St3 t) Tga

)~0 (msta I<sta t) — MM(TSI’ t)] ~ lO (mst’ I<Sta t)) /11 (msta I<5t, t) ~0 (123)

sub- and conditionally optimal filter Eqs are follows:

X, = aX, + ;G + ao + Rigo(ma, Ka) v, {2 — [qo(ma; Ka)Xe + bal,]}, (124)

Ry, = aR; + Rid@ + vy — Riqo(ms, Kyt v, g/ (ma, Kot )Ry (125)

R emarkb5.1. Filtering Eqs defined by Proposals 5.1 and 5.2 give the m.s. square
optimal algorithms nonbias of X; for OTES at conditions of internal noises of measur-
ing devices and external noise from OTES on measuring part of SOTES-O.

Remark5.2. Accuracy of estimation X; depends upon not only upon noise ¢,
influencing on measuring signal but on rule and technical-economical quality SOTES
criteria but on line state of resources T;; OPB for SOTES-O.

Using [9-11] let us consider more general SOTES than Egs. (113)-(116) for system

vector X; = [X;G,(,Ty]" and observation vector Y, = [Y1Y,Y3Y4]" defined by Egs:

. o o 7y o Ny .
X, = (aY +aiX, +ao) + (Clo +) enY, + ch,nwaV) v, (126)
r=1 r=1
- — — "y — " —
Zy =Y = (bY; + b:1X; + bo) + (020 +) ¥+ Zcz,nWXV) Vi, (127)
r=1 r=1
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Here a,a0,a1,b,bo,b1and ¢; (i =12 j=1, nx)— vector—matrix functions ¢ do

_ ot T
not depend from X; = [X; ...an]T and Y, = |Y;... Y,,y} . Then corresponding
algorithm of conditionally optimal filter (CO_F) is defined by [9-11]:

)%t = (a?t taX, + ao) + B, Zt — (b?t +hX, + boﬂ : (128)

For getting Eqs for p, it is necessary to have Eqs for mathematical expectation s,

T
and covariance matrix K; of random vector Q, = [X 10X, Y1 Yny} error

covariance matrix R; for Xt =X, - X,. Using Egs

me = amy; + ao, (129)
My +1x "y +1x

K, =aK, + K.a® + covcg + Z (covc,T + cyvcg)my + Z crvcsT(meS +ky) (130)
r=1 r,s=1

(a ) lb bll, o lbo}’ . [cﬂ (V:—O,nﬁnx)), (131)
a a ag Cir

we have the following Eq for the error covariance matrix

My +1x "y +1x
RtblT + (Cm + Z clrmr>v (czo + Z czTrm,>

r=1 r=1

Rt - alRt + Rtﬂ{ -

ny+"x
T ~1
+ E C1VC ks | Kp X X
rys=1

Ty +1x ny+1x
Ribq + (020 + Z czymy)v (cfo + Z c;’;my>

r=1 r=1

7y +1y 7 1y 7yt My +7y
T T T T
+ E e V0 Ry | + 4| €10 + E cymy |v| ey + E cy,my | + E C1VUC 1 Rys.
r=1 r=1

r,s=1 r,s=1

(132)
Here

ny+nx ny+nx ny+nx
K11 = (CZO + Z 627m7>v <C;O + Z C%;le> + Z CZVUC;;kma (133)

r=1 r=1 rys=1

me=[m,] (r=1,(n +n)),Ke = k] (r,s = (1, (my + nz)); V being the white
nonGaussian noise of intensity v. Coefficient f, in Eq. (127) is defined by formula

Ty 41y Ty 41y My +-1x
B, = {RtblT + (CIO + Z cmm)v <62TO + Z czT,mV> + Z clrvcgkm},ql. (134)

r=1 r=1 rys=1

Rem arkb5.3. In case when observations do not influence the state vector we have
the following notations:
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a=0, b=0, ¢,=0, =0 (V:]-’—4)’ ny = 4, n)’:4;

a4 0 07 Fdo T
qgq 0 b, O 0 XG
a1 = 5 ag = ) 10 — 5
0 0 ¢ O o Xe
b 0 0 b L bo L Xt
cis=[d a1 0 0], cig= [q 0 by 0, ci7=1[002¢ 0], crg= [i) 00 121].

(135)

Proposal 5.3. Let SOTES is described by Eqs. (125) and (126). Then COF algorithm is
defined by Eqs. (127)-(133).
Theory of conditionally optimal forecasting [9-11] in case of Egs:

X, = (ﬂl}_(t + ﬂo) — (Cl() + ch,ny+r}_{y> Vi, (136)
r=1
K _ o "y o Ty o
Zt — Yt — (byt + blxt + bO) - <620 + ZCZVYV + ZCZ,ny-i-VXV) VZ: (137)
r=1 r=1

where A being forecasting time, V7 and V;, are independent nonGaussian white
noises with matrix intensities v1 and v,, gives the following Eqs for COFc:

X, = [al(t + A)X, +aolt + A)} + 5, [zt - (b?t +bie X, + bo — blgt—lht)} . (138)

where the following notations are used: u(s, t) is fundamental solution of Eq:
du/ds = a;1(s)u at initial condition u(¢,2) =1, & =u(t+ A,t),

B, = &/(Ky — Kex )by k7, (139)
t+A
he = h(t) = J Wt + A, D)ao(D)de, h(t+A,E) = e, (140)
I3
my(t + A) = emy(t) + hy = emy + hy. (141)

Remark5.4. At practice COFc may be presented as sequel connection of COF,
amplifier with gain & = u(¢ + A,t) and summater 4, = h(t):

)L(t = '5'1‘}%1 + hy, (142)

where )%t being the COF output or COF of current state X,.
Eq. (137) may be presented in other form:

)%t = [aa(t + A) (X1 + ) +ao(t + A) + ey [Z: — (bX1 +bo)]. (143)
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Accuracy of COFc is defined by the following Eq:

My +1y My +x
T
cy0 + E CoyMmy | V1| €20 + E €My

r=1 r=1

R = a1(t + AR, + Rua1(t + AT —

Ty +-1x M+
+ Y cavichke | BT 4+ e+ A) + D et + A) m(t+ A)
7,5=1 r=ny+1
"y 41
+ > cnl(t+ Aot + A)ess(t + A) k.
s=n¥+1

(144)

Proposal 5.5. At conditions of Proposal 5.3 COFc is described by Eqs. (137)-(140),
(143) or Egs. (141)-(143).

Let us consider Egs. (94)—(96) at conditions of possible subdivision of measuring
system and OPB in SOTES-O so that ¢ (X;,t) = q(t)X; and noise {; is additive. In this case
for SOTES, SOTES-O, SOTES-N Eqgs. (94)-(96) may be presented in the following form:

X = p(Xp,t) + SW)p(Xps 1) + 4. Vas (145)
G, = q(Tw)X: + bal, + 2V, (146)

& = 92(8int) + COu(Et) + 2.V, (147)
Ty = ¢1(Ty,t) + D(r)y(Ts,t) + y1,Va. (148)

At condition of statistical linearization we make the following replacements:

S)p(Xsst) S(©)po (M, Ky t) + Apr (M, Ky, )X, (149)
C()u(&e>t) = C(9)po(me, Ke, 1) + Ap(me, K), (150)
P (G t) B o + 0l (151)

So we get the following statistically linearized expressions:

P(Xi,t) +S)p(Xest) = Pxo + Px1Xes @ ($est) + C(O)u(List) = Peo + Pl
(152)

where.

Pxo = Px0 (M, Kiyt) — [@x1 (M, Ky 1) + Api (i, K, 1) e + S(0)po (M, Ko, 1),
Ox1 = Px1(Max, Ky, 1) + Apr (M, Ky, 1),
Pro = eo(me, Koy t) — [@p(me, Ko t) + A (me, Ky t) Jme + C(8)ug(my, K, 0),
@ = @a(me, Koy t) + A (me, Ke, 1)
(153)

Proposal 5.6. For Eqs. (144)—(148) at statistical linearization conditions Eqs. (152)
and (153) when q, does not depend upon T; suboptimal filtering algovithm is defined by
Eqgs:
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X, = PxaXe + Pxo + Rl v, [Z — (0.X: + b22y)). (154)
Rt = aXlRt + Rt¢§1 T Uy — thtT 1’5 1%Rf' (155)

Proposal 5.7. At conditions A, = A(Ty,t) Egs for SOTES, SOTES-O, SOTES-N may be
presented in the form:

Xi = o Xs + Pxo + xx Vs (156)
G =gX, +baly + 2, Va, (157)
& =Pl + Ppo + Ve, (158)

Ty = @suTst + Puo + 1 Var- (159)

Suboptimal algorithm at condition

ATy, t) m Ag(mg, Kyt) (160)

is as follows:
X, = PxiXe + Pyo + Redbo, {20 — [25 (mae, Ke) X, + b2y, (161)
Ry = x1R: + Ripyy + vy — Ridg, "A0R:. (162)

6. Peculiarities of new SOTES generations

As it was mentioned in Introduction in lower levels of hierarchical subsystems of
SOTES arise information about nomenclature and character of final production and its
components.

Analogously in personal LC subsystems final production systems being categories
of personal with typical works and separate specialists with common works. In [1, 2] it
is presented methodology of personal structuration according to categories, typical
processes graphs providing necessary professional level and healthy. Analogous
approach to structuration may be used to elements macroscopic subsystems of various
SOTES levels. It gives possibility to design unified modeling and filtering methods in
SOTES, SOTES-O, SOTES-N and then implement optimal processes of unique budget.
So we get unique methodological potential possibilities for horizontal and vertical
integrated SOTES.

In case of Egs. (107)-(111) for LC subsystems in case aggregate of given personal
categories defined by Eqs

Xp =aXp + awGp + aop + ypVar, (163)
Gp = qp(Tsp)Xp + baplp + xopVar, (164)
Cp = caplp + cor + xzpVar, (165)

Tep = bpXp + b1pTep + bop + yapVars (166)
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where index P denotes variables and parameters in personal LS. According to
Section 4 the following filtering Eqs:

Xp = apXp + a1, Gp + aop + qugvg; Z — (9pXp +bwlp)], (167)

RP = apRp + Rp&_l'll; +vp — RPqIY;Ug_quPRP' (168)

Let us consider linear synergetical connection between X and Xp:
Xp =11X + Kg. (169)

Here k1 and ko being known (np x n,) and (np x 1) synergetical matrices. Putting
(151) into Egs. (144)-(150) we get Egs for personal subsystem and its observation
expressed by X:

Xp = 6_lp(K1X + Ko) + a1pGp + agp +)(PVQP, (170)
GP = qP(TsP)(KlX + KO) —+ bzpé_,,p +)(gPVQp. (171)

Corresponding Eqs with combined right hand for SOTES vector X are described by:

aX +a1G; +agVa (XK =1, nx): ( )
172

ap(k1X + ko) + a1pGp(X) + aop + xpVar <XK = N1, (Mx + nP))-

Analogously using Proposal 5.1 we get the Kalman-Bucy filter Egs:

{ aX + mG; +ao + R0 NZ — (X + b))  (xx = Tny),
ap (KlX + Ko) + a1pGp(X) + aop + Rp/lgvg’l}{Zp (K1X + Ko) + bzpCp]} (XK = Nx11,Mx +71p),

(173)
R =aR +Ra" +v, —RAv, IR, (174)
Rp = @pRp + Ry, +vp — RpApvgs ApRp. (175)

Egs. (154)—(157) define Proposal 5.5 for SOTES filter including subsystems accom-
panying LC production and personal taking part in production LC.

Remark 6.1. Analogously we get Eqs for SOTES filter including for financial
subsystem support and other subsystems.

Remark 6.2. Egs. (173) and (174) are not connected and may be solved a priori.

7. Example

Let us consider the simple example illustrating modeling the influence of the SOTES-
N noise on rules and functional indexes of subsystems accompanying LC production, its
filtration and forecasting. System includes stocks of spare parts (SP), exploitation orga-
nization with park of MP and together with repair organization (Figure 1).

At initial time moment necessary supplement provides the required level of effec-
tive exploitation at time period [0, T|. Let consider processes in ASS connected with
one type of composite parts (CP) in number Nt. During park exploitation CP failures
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SP supplement

Figure 1.
After Sale system (ASS) for MP.

anpln (XD t)

1 V101, (X, 1)

V)10 (X, 1)

Figure 2.
Graph of production state.

appears. Non-repaired CP are or repaired again and returned into exploitation or
whiting off. If the level of park readiness in exploitation is less the critical the repaired
MP are taken from stocks.

In graph (Figure 1) the following notations are used: (1) being in stocks in number
X1, (2) exploitation in number X5, (3) repair in number X3, (4) witting off in number
X4. Using Figure 2 we 7, = 4; transitions: 1 — 2v = 1 (for the Poisson stream p;,X1);
2 — 3 —ppXy;2 — 4 — pyXs; 3 — 2; number of transitions is equal to n, = 4. As
index of efficiency we use the following coefficient of technical readiness [1, 2]:

T T
o 1 Xz(‘[)dl' o 1
Kon(T) = TJ e sz(r)df, (176)
0 0
where
Nr =X, +X3+X4 (177)

Being constant number of CP of park in exploitation.

Note that the influence of the SOTES-N on SOTES and SOTES-O is expressed in
the following way: system noise {; as factor of report documentation distortion leads
to fictive underestimated K7g(t). In case when relation
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Krr(t) > Kpg(t) (178)

is breaked down (K (t) being critical of floating park level) stocks will give
necessary CP amount. So we receive the possibility to exclude defined CP amount
from turn over.

Finally let us consider filtering and forecasting algorithms of ASS processes for
exposition of noise ¢;.

Solution.

1. For getting Eq for K1 (t) we assume X7 (t) = Krg(¢) and take into account
Egs. (106)-(109). So have the following scalar Egs:

1

XTR(t) - WT

Xz(t),
Xl = —pX1, X2 = ppX1— (Pza +P24)X2a X3 = P23X2 - P32X3, X4 = puXa.

(179)

Inour casea; =ag =0, Vx = 0andEq. (10.4) may be presented in vector form

X =aX (180)
where
(0 0 (TN7)™* 0 O]
0 —P12 0 0 0
a=10 pp —(p3t+tpu) 0 O (181)
0 0 P23 —pn 0
| 0 0 P24 0 0]

At practice the reported documentation is the complete of documents containing
SP demands from stock and acknowledgement SP documents. So noise {; acts only if
its realization take part delivery and acquisition sides. This is the reason to name this
noise as system noise and carried out by group of persons.

2. For setting Eqs for electronic control system we use of the following type
Eq. (108)

G=qgX+{+xVa (182)

where Vo = [Vr V1V, V3 V4]T being noises with intensity v,; 4 = [ﬂTRﬂl/iz/lg/u]T
being ecoefficiency of measuring block. In scalar form Eq. (181) may be presented as

Grr = ArrX1R + ¢+ Vrr, Gi=MuX1+ Vi, Gy= X, + Vo,

. . (183)
G3 =A3X3+ V3, Gs=MuXs+ Vs

3. Algorithm for noise ¢, description depends on participants. In simple case we use
error

SX1r(t) = X1r(t) — Kpp(t). (184)

28



Methods of Conditionally Optimal Forecasting for Stochastic Synergetic CALS Technologies
DOI: http://dx.doi.org/10.5772/intechopen.103657

In this case we get lag in Gy measurement on variable {;:

& = ba(XrR)IX1R(t) — Kogl- (185)

By the choice of coefficient b, necessary time temp of documentation manipula-
tion may be realized.

4. Using Eqgs of Proposals 5.1 and 5.2 we get the following matrix filtering Eqs for
system noise ¢, on background of measuring noise Vg

X =aX + R0, [Z — (X + )], (186)

R=aR +Ra” — R/lTvg—uR. (187)

atZ =G, ¢ =1[¢, 000]".

R e m ark7.1. Realization of the described filtering solutions for internal noises
needs a priori information about basic OTES characteristics. So we need special
methods and algorithms.

5. Finally linear COFc is defined by Egs. (137)-(104) for various forecasting times A.

Remark72. In case of SOTES with two subsystems using Eqgs. (172)-(174) we
have the following Kalman-Bucy filter:

. {af( +RATNZ - (X +0)], Xk =T,ng
N ap (K1X + ko) + RPﬁgUg_pl{ZP — [4p (KIX +x0)¢p)}, Xk = ar, nix + 1ip,

where {p being noise acting on the functional index of personal attendant
subsystem.

These results are included into experimental software tools for modeling and
forecasting of cost and readiness for parks of aircraft [1, 2].

8. Conclusion

For new generations of synergetical OTES (SOTES) methodological support for
approximate solution of probabilistic modeling and mean square and forecasting
filtering problems is generalized. Generalization is based on sub- and conditionally
optimal filtering. Special attention is paid to linear systems and linear systems with the
parametric white Gaussian noises.

Problems of optimal, sub- and conditionally optimal filtering and forecasting in
product and staff subsystems at the background noise in SOTES are considered.
Nowadays for highly available systems the problems of creation of basic systems
engineering principles, approaches and information technologies (IT) for SOTES from
modern spontaneous markets at the background inertially going world economics
crisis, weakening global market relations at conditions of competition and counterac-
tion reinforcement is very important. Big enterprises need IT due to essential local and
systematic economic loss. It is necessary to form general approaches for stochastic
processes (StP) and parameters estimation (filtering, identification, calibration etc) in
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SOTES at the background noises. Special observation SOTES (SOTES-O) with own
organization-product resources and internal noise as information from special SOTES
being enact noise (SOTES-N). Conception for SOTES structure for systems of techni-
cal, staff and financial support is developed. Linear, linear with parametric noises and
nonlinear stochastic (discrete and hybrid) equations describing organization-
production block (OPB) for three types of SOTES with their planning-economical
estimating divisions are worked out. SOTES-O is described by two interconnected
subsystems: state SOTES sensor and OPB supporting sensor with necessary resources.
After short survey of modern modeling, sub- and conditionally optimal filtering and
forecasting basic algorithms and IT for typical SOTES are given.

Influence of OTES-N noise on rules and functional indexes of subsystems accom-
panying life cycle production, its filtration and forecasting is considered.

Experimental software tools for modeling and forecasting of cost and technical
readiness for parks of aircraft is developed.

Now we are developing presented results on the basis of cognitive approaches [12].
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