
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

142,000 180M

TOP 1%154

5,800



Chapter

Computer Vision-Based
Techniques for Quality Inspection
of Concrete Building Structures
Siwei Chang and Ming-Fung Francis Siu

Abstract

Quality performance of building construction is frequently assessed throughout
the construction life cycle. In Hong Kong, quality management system must be
established before commencing new building works. Regular building inspections are
conducted in accordance with the code of practice of new building works. Quality
managers are deployed in construction sites to inspect and record any building
defects. The concrete cracks must be identified, which is usually followed by proposed
rectifications, in order to protect the public and occupants from dangers. This chapter
is structured as follows: Background information of concrete cracks is firstly given.
Traditional technique of conducting regular manual inspection is introduced, in
accordance with Hong Kong’s code of practice “Building Performance Assessment
Scoring System (PASS)”. Then, an advanced technique of conducting crack inspection
intelligently based on computer vision is introduced. The procedures of defining,
training, and benchmarking the architecture of convolutional neural network models
are presented. The calculation steps are detailed and illustrated using a simple text-
book example. An experiment case study is used to compare the time, cost of
inspecting concrete cracks using both manual and advanced technique. The study
concludes with a presentation of the future vision of robot-human collaboration for
inspecting concrete cracks in building construction.

Keywords: building quality control, concrete crack, quality inspection, computer
vision, artificial intelligence

1. Introduction

Throughout the entire construction life cycle, quality assessment plays an impor-
tant role in ensuring the safety, economy, and long-term viability of construction
activities. Construction products that have been completely inspected and certificated
by quality inspectors are more inclined to be chosen by developers and buyers. Typi-
cally, the structural work is considered as an essential aspect for quality assessment
because structural problems directly influence the construction stability and integrity.
Among the construction structural forms, concrete structures are adopted as the most
common and basic construction structure. Therefore, exploring advanced
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technologies that enable effective concrete defect inspection can be deemed a worth-
while endeavor.

Normally, the types of concrete defects include blistering, delamination, dusting,
etc. Among them, concrete cracks, usually caused by deformation, shrinkage, swell-
ing, or hydraulic, appear most frequently in concrete components. Concrete cracking
is considered the first sign of deterioration. As reported by the BRE Group [1], cracks
up to 5 mm in width simply need to be re-decorated because they only affect the
appearance of the concrete. However, cracks with a width of 5–25 mm have the
possibility to trigger structural damage to concrete structures [2]. A 40-year-old
oceanfront condo building collapsed on June 27, 2021, in Florida because of the neglect
of cracks. Experienced engineers noticed the cracked or crumbling concrete, the
interior cracks, and the cracks at the corners of windows and doors are the significant
and earliest signs of this tragedy. Therefore, in order to prevent potential failures that
may pose a loss to society, crack problems should be thoroughly examined and
resolved.

In general, construction works are divided into two categories: new building works
and existing building works. The new works refer to a building that will be
constructed from scratch. The existing building works mean that a building has
existed for many years and residents are living inside. In Hong Kong, quality assur-
ance and control should be conducted by full-time quality managers on-site for both
new and existing buildings. Normally, the quality managers visually inspect implied
build quality and by appointing a score to the building’s quality in accordance to the
Building Performance Assessment Scoring System (PASS) for new buildings, the
Mandatory Building Inspection Scheme (MBIS), and the Mandatory Window Inspec-
tion Scheme (MWIS) for existing buildings. Meanwhile, to ensure a continuous and
in-depth inspection, Non-destructive (NDT) methods e.g., eddy current testing,
ultrasonic testing are also commonly applied in the quality inspection process.

Quality managers are commonly obliged to work 8 hours per day. Their salary
ranges from HKD 30,000 to HKD 50,000 per month. In PASS, more than 300 quality
assessment items are related to cracking-related problems. Cracks in all building
components, including floors, internal and external walls, ceilings, and others are
required to be strictly inspected during both structural and architecture engineering
stages. Therefore, both manual and NDT inspections are considered time-consuming,
costly, and dangerous, especially for large-scale and high-rise structures. To tackle this
issue, computer-vision technique is increasingly introduced for automated crack
inspection. For example, various convolutional neural network (CNN) architectures
have been developed and implemented to increase the efficiency of manual crack
inspection [3, 4].

Considering the aforementioned context, computer-vision-based automated
crack inspection techniques were introduced by the authors in 2022. To achieve this,
the theoretical background of CNN networks is firstly explained in the context of
convolution, pooling, fully-connected, and benchmarking processes. AlexNet and
VGG16 models were then implemented and tested to detail and illustrate the
calculation steps. Meanwhile, a practical case study is used to compare the
difference between manual and computer-vision-based crack inspection. The future
directions of combining robotics and computer-vision for automated crack
inspection are discussed. This study gives a comprehensive overview and solid
foundation for a computer-vision-based automated crack inspection technique that
contributes to high efficiency, cost-effectiveness, and low-risk quality assessment of
buildings.
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2. Computer vision-based automated concrete crack inspection

The term computer vision is defined as an interdisciplinary field that enables com-
puters to recognize and interpret environments from digital images or videos [5].
Computer vision techniques are rapidly being used to detect, locate, and quantify
concrete defects to reduce the limitations of manual visual inspection. By automati-
cally processing images and videos, computer vision-based defect detection technolo-
gies enable efficient, accurate, and low-cost concrete quality inspection. Various
techniques in the computer vision field, such as semantic segmentation and object
detection, have been developed and applied to date [6]. Among them, image classifi-
cation is considered the most basic computer vision technique and has been intro-
duced most frequently to predict and target concrete defects.

The motivation of image classification is to identify the categories of input images.
Different from human recognition, an image is first presented as a three-dimensional
array of numbers to a computer. The value of each number ranges from 0 (black) to
255 (white). An example is shown in Figure 1. The crack image is 256 pixels wide, 256
pixels tall, and has three color channels RGB (Red, Green, and Blue). Therefore, this
image generates 256 � 256 � 3 = 196,608 input numbers.

The input array is then computed using computer vision algorithms to transform
the numbers to a specific label that belongs to an assigned set of categories. One of the
computer vision algorithms is CNN, which has become dominant in image classifica-
tion tasks [7]. CNN is a form of a deep learning model for computing grid-shaped
data. The central idea of CNN is to identify the image classification by capturing its
features using filters. The features are then output to a specific classification by a
trained weight and biases matrix.

There are three main modules included in a CNN model: convolution, pooling, and
fully connected layer. The convolution and pooling layers are used to extract image
features. The fully connected layer is used to determine the weight and biases matrix
and to map the extracted features into specific labels.

Convolution layer is the first processing block in CNN. During the convolution
process, a set of convolution filters is used to compute the input array Α ¼ aij

� �
m�n

,

m, n∈ widthimage, heightimage

� �
. After computing, a new image Α ∗ ¼ a ∗

ij

� �
n�n

, is

Figure 1.
An example of the input number array.
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output and passed to the next processing layers. The size of the output image can be
calculated with Eq. (1). The values of output image pixels can be calculated with
Eq. (2). The output images are known as convolution feature map.

n ¼ m� f þ 2pð Þ=sð Þ þ 1 (1)

Here: n refers to the size of output image, m refers to the size of input image, f
refers to the size of convolution filter, p refers to the number of pooling layer, s refers
to the stride of convolution filter.

Α
∗

o ¼ f
X

k

Wo � Αo þ bo

 !

(2)

Here: Α ∗

o refers to the pixels of output image, f refers to an applied non-linear
function, Wo refers to the values of convolution filter matrix, k refers to the number
of convolution filters.Αo refers to the pixels of input image, and bo is an arbitrary real
number.

An example of a convolution process is shown in Figure 2. In this example, both
the width and height of the input image is 5. The pixels of the image are shown in
Figure 2. The convolution filter is in a shape of 3� 3. In this example, only one filter is
used. The initial value of the convolution filter is set randomly. The filter matrix is
adjusted and optimized in the following backpropagation process. In this example, the
non-linear function, padding layer is not used, and the biases value bo is set as 0. The
stride of convolution filter is set as 1. The convolution filter moves from left to right,
and from top to bottom. The size and value of the output feature map can be com-
puted using Eqs. (1) and (2). The detailed calculation process of the example feature
maps value and size is shown in Table 1. Seen from Figure 2, the value of size of input
image, size of filter is 5, 3, respectively. Suppose the number of the pooling layer, the
convolution stride is 0, 1, respectively.

A pooling layer is used to refine the feature maps. After pooling, the dimensions of
the feature maps can be simplified. In doing so, the computation cost can be effec-
tively decreased by reducing the number of learning parameters, whilst allowing only
the essential information of feature maps to be presented. Usually, pooling layers
follow behind convolution layers. Average pooling and maximum pooling are the
main pooling operations. Similar to convolution layers, pooling filters are used to
refine feature maps. For maximum pooling, the maximum value from the regions in
feature map that is covered by pooling filters is extracted. For average pooling, the
average value of the regions in feature maps covered by pooling filters is computed.
The pooling filters slide in the feature map from top to bottom, and from left to right.
The output of the pooling process is new feature maps that contain the most

Figure 2.
An example of convolution process.
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Variable Equation Calculation process

Size of feature map n ¼ m� f þ 2pð Þ=sð Þ þ 1 ((5–3 + 2 � 0)/1) +1 = 3

Value of feature map Α
∗

o ¼ f
P

kWo � Αo þ bo
� �

(�1) � 1 + 0 � 3 + 0 � 2 + 0 � 2 + 1 � 3 + 0 � 2 + 1 � 4 + (�1) � 1 + 0 � 3 = 5

(�1) � 3 + 0 � 2 + 0 � 1 + 0 � 3 + 1 � 2 + 0 � 1 + 1 � 1 + (�1) � 3 + 0 � 2 = �3

(�1) � 2 + 0 � 1 + 0 � 2 + 0 � 2 + 1 � 1 + 0 � 4 + 1 � 3 + (�1) � 2 + 0 � 1 = 0

(�1) � 2 + 0 � 3 + 0 � 2 + 0 � 4 + 1 � 1 + 0 � 3 + 1 � 3 + (�1) � 2 + 0 � 1 = 0

(�1) � 3 + 0 � 2 + 0 � 1 + 0 � 1 + 1 � 3 + 0 � 2 + 1 � 2 + (�1) � 1 + 0 � 3 = 1

(�1) � 2 + 0 � 1 + 0 � 4 + 0 � 3 + 1 � 2 + 0 � 1 + 1 � 1 + (�1) � 3 + 0 � 2 = �2

(�1) � 4 + 0 � 1 + 0 � 3 + 0 � 3 + 1 � 2 + 0 � 1 + 1 � 1 + (�1) � 4 + 0 � 3 = �5

(�1) � 1 + 0 � 3 + 0 � 2 + 0 � 2 + 1 � 1 + 0 � 3 + 1 � 4 + (�1) � 3 + 0 � 2 = 1

(�1) � 3 + 0 � 2 + 0 � 1 + 0 � 1 + 1 � 3 + 0 � 2 + 1 � 3 + (�1) � 2 + 0 � 4 = 1

Table 1.
Detailed calculation process of feature map value and size.
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prominent features or average features. An example of maximum pooling and average
pooling is shown in Figure 3.

After extracting image features, the fully connected layers are applied to map these
features with classification labels. The relationship between input feature maps and
output classifications is calculated using an artificial neural network (ANN). The ANN is
structured into input layers, hidden layers, and output layers. A group of neurons is
included in the three layers. The neurons connect to one another in a processed weight
matrix. The weights present the importance of input featuremaps to classification labels.
Therefore, the relationships between inputs and outputs can be obtained by calculating a
weight matrix that connects image feature neurons and classification neurons.

To achieve this, the cube-shaped feature maps are first flattened into one-
dimension vectors. The values of transformed vectors represent the values of input
neurons. Then Eq. (3) is applied to calculate the value of new neurons that connect
with input neurons. The initial weights and biases values are chosen at random.

y j xð Þ ¼ f
Xn

i¼1

w jxi þ b

 !

(3)

Here: y j refers to the weights of output neurons, w j refers to the weights that

connect different neurons, xi refers to the values of input neurons, b refers to the biases.
A Back-Propagation algorithm (BP) is commonly used to train and modify weights

and biases. BP updates weights and biases by computing the gradient of loss function.
In doing this, the optimal weights and biases matrix that enable the minimum loss
between model outputs and actual value are identified. For now, various loss func-
tions are developed and applied. For example, the mean square error (MSE), shown in
Eq. (4), is one of the most frequently used loss functions to calculate loss value.
Stochastic gradient descent (SGD) is then processed to determine updated weights
and biases using the gradient of loss function, shown as Eq. (5).

Loss ¼
1

n

Xn

i¼1

yi � byi
� �2

(4)

Here: Loss refers to the loss value of output neuron and actual value, n refers to the
number of neurons that connect to one specific output neuron, y refers to the actual
value, ŷ refers to the value of one output neuron.

Figure 3.
An example of max pooling and average pooling.
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w0 ¼ w� η
∂L

∂w
(5)

b0 ¼ b� η
∂L

∂b

Here: w0, b0 refers to updated weights and biases, η, η refers to former weights and
biases, η refers to the learning rate, ∂L

∂w,
∂L
∂b refers to the partial score of the loss function

for weights and biases, respectively.
An example of feature map updating using BP is explained. Figure 4 depicts an

example of a fully connected process. The initial weights and biases in this process are
determined randomly. Suppose the value of w11, w12, w21, w22, w5, w6 is 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, respectively. The value of x1, x2, actual output value is 5, 1, 0.24. The
detailed calculation of the updated weights, biases, feature map is shown in Table 2.

In conclusion, during the convolution and pooling processes in CNN, the features
of the input image are extracted first. The pooled feature maps are then flattened and
considered as input neurons in fully connected process. After several training periods,
the appropriate weights and biases can be determined using BP. The classifications of
input images can be predicted automatically and reliably using the optimal weights
and biases.

A confusion matrix is a table structure that permits the viewing of CNN perfor-
mance [8]. Each row of the matrix records the number of images from actual classes,
while each column records the number of images from predicted classes. There are
four type indicators in the matrix: (1) True positive (TP) represents the images that
are predicted correctly as the actual class; (2) False positive (FP) represents the
images that are wrongly predicted; (3) True negative (TN) represents the images that
are correctly predicted as another actual class; (4) False negative (FN) represents the
images that are wrongly predicted as another actual class. TP, FP, TN, FN can be
expressed in a 2 � 2 confusion matrix, shown in Figure 5.

Based on TP, FP, FN, and TN, four typical CNN performance evaluation indexes:
accuracy, precision, recall, and F1-score can be calculated using Eqs. (6)–(9). For the
crack inspection problem, accuracy shows how many images can be predicted cor-
rectly. The percentage of actual cracked photos to all predicted cracked images is
shown by precision. CNNs with a high precision score indicate a better inspection
ability of cracked images. Recall shows the ratio of predicted cracked images to all
actual cracked images. CNNs with a high recall score indicate a better distinguishing
capacity between cracked and uncracked images. F1-score shows the comprehensive

Figure 4.
An example of a fully connected process.
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Variable Equation Calculation process

h1 h1 ¼ w11 � 5þ w21 � 1 5 � 0.1 + 1 � 0.3 = 0.8

h2 h2 ¼ w12 � 5þw22 � 1 5 � 0.2 + 1 � 0.4 = 1.4

y y ¼ w5 � h1 þ w6 � h2 0.8 � 0.5 + 1.4 � 0.6 = 1.24

Loss
Loss ¼ 1

2 � yactual � youtput

� �2 1/2 � (0.24–1.24)^2 = 0.5

w5’ ∂L
∂w5

¼ ∂L
∂y �

∂y
∂w5

¼ 2� 1
2 � yactual � youtput

� �
� h1 � �1ð Þ 2 � 1/2 � (0.24–1.24) � 0.8 � (�1) = 0.8

w5 ’ ¼ w5 � η
∂L
∂w5

0.5–0.1 � 0.8 = 0.42

w6’ ∂L
∂w6

¼ ∂L
∂y �

∂y
∂w6

¼ 2� 1
2 � yactual � youtput

� �
� h2 � �1ð Þ 2 � 1/2 � (0.24–1.24) � 1.8 � (�1) = 1.8

w6
0 ¼ w6 � η

∂L
∂w6

0.6–0.1 � 1.8 = 0.42

w11’ ∂L
∂w11

¼ ∂L
∂y �

∂y
∂h1

� ∂h1
∂w11

¼ 2� 1
2 � yactual � youtput

� �
� �1ð Þ �w5 � x1

2 � 1/2 � (0.24–1.24) � (�1) � 0.5 � 5 = 2.5

w11
0 ¼ w11 � η

∂L
∂w11

0.1–0.1 � 2.5 = �0.15

w12’ ∂L
∂w12

¼ ∂L
∂y �

∂y
∂h2

� ∂h2
∂w12

¼ 2� 1
2 � yactual � youtput

� �
� �1ð Þ �w6 � x1

2 � 1/2 � (0.24–1.24) � (�1) � 0.6 � 5 = 3

w12
0 ¼ w12 � η

∂L
∂w12

0.2–0.1 � 3 = �0.1

w21’ ∂L
∂w21

¼ ∂L
∂y �

∂y
∂h1

� ∂h1
∂w21

¼ 2� 1
2 � yactual � youtput

� �
� �1ð Þ �w5 � x2

2 � 1/2 � (0.24–1.24) � (�1) � 0.5 � 1 = 0.5

w21
0 ¼ w21 � η

∂L
∂w21

0.3–0.1 � 0.5 = 0.25

w22’ ∂L
∂w22

¼ ∂L
∂y �

∂y
∂h2

� ∂h2
∂w22

¼ 2� 1
2 � yactual � youtput

� �
� �1ð Þ �w6 � x2

2 � 1/2 � (0.24–1.24) � (�1) � 0.6 � 1 = 0.6

w22
0 ¼ w22 � η

∂L
∂w22

0.4–0.1 � 0.6 = 0.34

Updated feature map h1
0 ¼ youtput � w5

0 1.24 � 0.42 = 0.5208

h2
0 ¼ youtput �w6

0 1.24 � 0.42 = 0.5208

x1
0 ¼ h1

0 �w11
0 þ h2

0 � w12
0 0.5208 � (�0.15) + 0.5208 � (�0.1) = 0.1302

x2
0 ¼ h1

0 � w21
0 þ h2

0 �w22
0 0.5208 � 0.5+ 0.5208 � 0.6 = 0.57288

Table 2.
Detailed calculation process of feature map updating using BP.
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performance of precision and recall. A CNN with a high F1-score indicates stronger
robustness.

Accuracy ¼
TPþ TN

TPþ TN þ FPþ FN
� 100 (6)

Precision ¼
TP

TPþ FP
� 100 (7)

Recall ¼
TP

TPþ FN
� 100 (8)

F1� score ¼ 2�
Precision� Recall

Precisionþ Recall
� 100 (9)

For example, the prepared dataset contains 10,000 photos, with 32,000 and 7000
cracked surface images and uncracked surface images, respectively. After CNN
processing, 2700 images are correctly predicted as cracked surfaces, 300 images out of
the 3000 real cracked surfaces are wrongly predicted as uncracked surfaces. 6500
images are correctly predicted as uncracked surfaces, and 500 images out of the 7000
uncracked surfaces are wrongly predicted as cracked surfaces. Then, based on above-
mentioned concepts, the values of TP, FN, FP, TN is 2700, 300, 500, 6500, respec-
tively. Table 3 shows the details of the accuracy, precision, recall, and F1 score
calculations.

Figure 5.
An example of a fully connected process.

Variable Equation Calculation process

Accuracy TPþTN
TPþTNþFPþFN � 100 (2700 + 6500) /(2700 + 300 + 500 + 6500) � 100 = 92%

Precision TP
TPþFP � 100 2700/(2700 + 500) � 100 = 84.375%

Recall TP
TPþFN � 100 2700/(2700 + 300) � 100 = 90%

F1-score 2� Precision�Recall
PrecisionþRecall � 100 2 � ((0.84375 � 0.9)/(0.84375 + 0.9)) � 100 = 87.23%

Table 3.
Detailed calculation process of accuracy, precision, recall, and F1 score.
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3. Example of concrete crack inspection using CNN

3.1 Textbook example of crack inspection using CNN

This chapter provides an example of how convolution, pooling, fully connected,
and benchmarking can be demonstrated in real-world concrete crack inspection using
CNN. The above-mentioned calculation was carried out using the Python program-
ming language and the Pytorch package.

3.1.1 Dataset

In this example, the input images were gathered from Kaggle, the world’s most
well-known data science community. Kaggle allows access to thousands of public
datasets covering a wide range of topics, including medical, agriculture, and con-
struction [9]. By searching “concrete crack” in Kaggle datasets module, 12 datasets
were found. The “SDNET2018” dataset was chosen from among them since it com-
prises sufficient and clean concrete surface images with and without cracks [10]. In
“SDNET2018”, 56,096 images were captured in the Utah State University Campus
using a 16-megapixel Nikon digital camera, including 54 bridge decks, 72 walls, and
104 pavements. In this example, only images of walls and pavements were used to
demonstrate the comparison analysis between manual inspection and CNN-based
automatic inspection. Therefore, 42,472 images were used as training and testing
dataset. Among them, 6459 cracked concrete surfaces are considered as positive class.
The captured cracks are as narrow as 0.06 mm and as wide as 25 mm, while 36,013
uncracked concrete surfaces are considered as negative class. Images in this dataset
contain a range of impediments, such as shadows, surface roughness, scaling, edges,
and holes. The diverse photographing backgrounds contribute to ensuring the robust-
ness of the designed CNN architecture. At a ratio of 80/20, the cracked and uncracked
concrete photos were randomly separated into training and testing datasets. The input
images’ pixels were standardized to 227 � 227 � 3 for AlexNet, and 224 � 224 � 3 for
VGG16. Table 4 shows the details of the input images. Figure 6 shows the examples
of the input images.

3.1.2 CNN architecture

In this section, two pre-trained CNN networks, AlexNet and VGG16, were intro-
duced to illustrate CNN computation process. AlexNet was designed as an eight-layer
architecture. VGG16 has a depth that is two twice that of AlexNet. According to
[11, 12], the depth of CNN network has a significant impact on model performance.

Total dataset Training dataset Testing dataset

Total images 42,472 33,978 8494

Cracked images 6227 4986 1238

Non-cracked images 36,245 28,992 7256

Image pixels AlexNet: 227 � 227 � 3

VGG16: 224 � 224 � 3

Table 4.
Details of prepared dataset.
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Therefore, by training and testing the prepared dataset with AlexNet and VGG16, the
comparison of network depth to prediction performance and computation cost can be
further highlighted.

1.AlexNet architecture

The AlexNet architecture, developed by Alex Krizhevsky, Ilya Sutskever, and
Geoffrey E. Hinton in 2012, is considered one of the most influential CNN architec-
tures [13]. AlexNet consists of five convolution layers and three fully-connected
layers. The max-pooling layers follow the first, second, and fifth convolution layers.
AlexNet was designed to predict 1000 object classifications. 1.2 million images with a
pixel size of 2,242,243 were used as input images. As a result, 60 million parameters
and 650,000 neurons are included in the computation process. The details of the
AlexNet architecture are shown in Figure 7.

In the first convolution stage, 96 convolution filters with size of 11 � 11 were
applied; they move with a stride with four pixels. The size of pooling filters is 3 � 3.
The pooling filters move with a stride of two. It is worth noticing that the error rate
can be reduced by applying overlapping pooling technique (the size of pooling filters
is smaller than its stride). In the second convolution stage, the size of convolution
filters becomes smaller from 11 � 11 to 5 � 5 while its number becomes larger from 96
to 256. The convolution filters in the third and the fourth convolution stage keep
minimizing, from 5� 5 to 3� 3, while its number keeps increasing from 256 to 384. In
the last convolution stage, the size of convolution filters remains same as 3 � 3, and its
number turns back to 256. The size and stride of pooling filters also remain the same in
the second and fifth convolution stage. Finally, 4096 neurons are included for both
first and second fully-connected layers. The final fully-connected layer contains 1000
neurons to output the probabilities of 1000 classifications. The 1000 neurons are
activated by softmax function.

The outputs of each convolution and fully-connected layer are activated by a non-
linear function, namely the Rectified Linear Units (ReLU) [14]. It is proved in

Figure 6.
Examples of cracked and non-cracked surface.
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AlexNet that using ReLU instead of other activation functions effectively solves the
overfitting problem and improves computation efficiency. Especially for the larger
architectures trained on larger datasets. The local response normalization [15] tech-
nique (LRN) is also applied following ReLUs to reduce the error rate. Moreover, to
avoid overfitting, drop-out techniques [16] are also applied in the first two fully-
connected layers. The dropout criteria was set at 0.5.

AlexNet was computed using SGD. The batch size, momentum [17], and weight
decay [18] were set as 128, 0.9, and 0.0005, respectively. The learning rate was set as
0.00001. AlexNet was computed for roughly 90 periods in NVIDIA GTX 580 3GB
GPUs. As a result, the error rate of AlexNet on test set of top-1 and top-5 achieved
37.5% and 17.0%, which was 10% lower than the out-performed CNN architecture at
that time.

2. VGG16 architecture

VGG16, designed by Karen Simonyan and Andrew Zisserman in 2015, was devel-
oped to investigate the influence of convolution network depth on prediction accu-
racy in larger datasets [19]. Therefore, VGG16 was designed as a deep architecture
with 16 weight layers, including 13 convolution layers and three fully-connected
layers. Convolution layers in VGG16 are presented as five convolution blocks. The
details of the VGG16 architecture are shown in Figure 8.

Figure 7.
Details of AlexNet architecture.
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As seen from Figure 8, there are two convolution layers in the first two convolution
blocks, respectively, and three convolution layers in the following three convolution
blocks, respectively. The size of all convolution filters is uniformly 3 � 3. All the
convolution filters move with a stride of one. The number of convolution filters
increases gradually from 64 to 128, 256, and 512 in the five convolution blocks. To
preserve information about image boundaries as completely as possible, spatial padding
is applied [20]. As with AlexNet, ReLU is applied as a non-linearity function for convo-
lution and fully-connected outputs to avoid overfitting problems. However, unlike in
AlexNet, LRN is not used in VGG16 because the authors stated that LRN has no influ-
ence on model performance and increases memory consumption and computation time.

Five max-pooling layers follow the last convolution layer in each block. The max-
pooling filters are uniformed with a size of 2 � 2, and a stride of two. As with AlexNet,
the first two fully-connected layers have 4096 neurons and 1000 output neurons. The
output neurons are activated by softmax. To avoid overfitting problems, drop-out
technique is also applied in the first two fully-connected layers. The dropout ratio is
set at 0.5. It can be concluded that the most important novelty of VGG16 compared
with AlexNet are: (1) the designed deep architecture; (2) the uniformed and small size
convolution filters.

In the training process, the training batch size, momentum, weight decay, and
learning rate were set as 256, 0.9, and 0.0005, 0.0001, respectively. As a result, the

Figure 8.
Details of VGG16 architecture.

13

Computer Vision-Based Techniques for Quality Inspection of Concrete Building Structures
DOI: http://dx.doi.org/10.5772/intechopen.104405



top-1 and top-5 errors of VGG16 achieved 24.4% and 7.2%, which is 13% and 9.8%
lower than AlexNet. The result proved that the deep architecture and small convolu-
tion filters have positive influences on CNN performance.

3.1.3 Training and benchmarking

Finally, the prepared dataset mentioned in Section 3.3.1 was used to train and test
AlexNet and VGG16, respectively. The training and testing process was conducted in
Kaggle kernels [21]. Kaggle kernel, provided by Kaggle community, is a virtual envi-
ronment equipped with NVIDIA Tesla K80, a dual GPU design, and 24GB of GDDR5
memory. This high computing performance enables 5–10 times faster training and
testing processes than CPU-only devices. Both AlexNet and VGG16 were trained
using SGD. Batch size was and learning rate set as 64, 0.0001, respectively. To avoid
overfitting problem, dropout was applied at the fully-connected stage, dropout prob-
ability was set as 0.5.

Python was used to program the computing process. Pytorch library was imported.
The whole computation time of AlexNet was roughly 2 h, and 4 h for VGG16. The
model’s performance in the training and testing datasets is shown in Figures 9 and 10,

Figure 9.
Training loss and accuracy of AlexNet and VGG16.

Figure 10.
Testing loss and accuracy of AlexNet and VGG16.
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respectively. The training and testing loss and accuracy values are represented on the
vertical axis, while the processing epochs are represented on the horizontal axis. Since
the loss and accuracy variation remained consistent after the 60th epoch overtraining
the model could lead to an overfitting problem [22]. The training epoch was set to 60
epochs.

As shown in Figure 9, both AlexNet and VGG16 converged successfully. The
training loss for AlexNet reduced steadily from 0.43 to 0.05 in the 58th epoch and
then remained constant in subsequent epochs. Similarly, at the 58th epoch, AlexNet’s
training accuracy increased from 0.85 to 0.98. At the 35th epoch, the training loss for
VGG16 dropped from 0.42 to 0.01 and subsequently stayed steady at approximately
0.008–0.01 in following epochs. At the 34th epoch, the training accuracy of VGG16
increased from 0.85 to 0.99 and then remained at 0.99. The results revealed that
VGG16 performed better during the training procedure. VGG16’s convergence speed
is roughly two times that of AlexNet. VGG16’s minimum training loss is 0.04 lower
than AlexNet’s, while its maximum accuracy is 0.01 times higher. It is observed that
deeper CNN designs assist in the faster processing of larger datasets, which contrib-
utes to producing more trustworthy weights and biased matrices. These results are in
accordance with those proposed by [23].

Figure 10 shows the loss and accuracy variations of AlexNet and VGG16 in the
testing dataset. The testing loss and accuracy consist of the fluctuation tendency of
training loss and accuracy. It indicated that neither AlexNet nor VGG16 had
overfitting or underfitting problems. VGG16 also out-performed AlexNet in the test-
ing process. AlexNet and VGG16 have minimum testing losses of 0.01 and 0.00003,
respectively. AlexNet’s maximum accuracy was 0.98, and VGG16’s was 0.99. In the
testing dataset, VGG16 converges at the 34th epoch, which is nearly 2 times faster
than AlexNet.

The confusion matrix of AlexNet and VGG16 is shown in Table 5. It can be shown
that the accuracy scores of AlexNet and VGG16 are nearly identical, indicating that
AlexNet and VGG16 have similar prediction abilities for cracked and uncracked con-
crete surfaces. VGG16 has a precision and recall of 96.5% and 89.6%, respectively,
which is nearly 1% and 5% greater than AlexNet. The results show that VGG16 out-
performs AlexNet for predicted positive variables (cracked surfaces). Meanwhile,
more cracked images from actual datasets can be correctly identified by applying
VGG16. AlexNet and VGG16 have F1-scores of 89.6% and 92.9%, respectively, indi-
cating that the VGG16 model is more robust.

AlexNet VGG16

TP 5242 5579

FN 985 648

TN 36,007 36,040

FP 238 205

Accuracy 0.971204558 0.97991618

Precision 0.956569343 0.9645574

Recall 0.84181789 0.895937048

F1-score 0.895532587 0.928981767

Table 5.
Confusion matrix of AlexNet and VGG16.
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In conclusion, VGG16 demonstrates better performance. Since it is important to
avoid ignoring any cracked surfaces, the model with the highest recall and F1-score is
more worthwhile. Meanwhile, AlexNet is also a preferable option when the number of
cracked and uncracked images is balanced because it shows a similar accuracy score as
VGG16 and has a lower computation cost.

3.2 Comparison of CNN and manual inspection

During on-site construction quality management process, quality control managers
(QCM) or registered inspectors (RI) are responsible for personally inspecting and
reporting quality problems with forms, reports, and photocopies. According to the
Mandatory Building Inspection Scheme (MBIS) and related contract regulations,
QCMs and RIs are obliged to examine cracks and other defects in building compo-
nents visually or with non-destructive equipment [24]. For example (1) cracks on the
structural components, e.g., structural beam, column, (2) cracks on the external
finishes, e.g., tiling, rendering, and cladding, (3) cracks on the fins, grilles, windows,
curtain walls.

When using computer-vision-based inspection techniques, differently, there is no
necessity for QCMs and RIs to conduct the aforementioned inspection tasks on-site.
Instead, their primary responsibilities may switch to (1) taking photos or videos of
building components, and (2) inputting the images and videos into pre-trained CNN
models. To highlight the differences between manual and computer-vision-based
crack inspection, an experiment was set up to calculate and compare inspection time
and cost.

The layout of the experiment is shown in Figure 11. Suppose this experiment case
is a 15 m � 15 m � 2 m residential building that is located in San Bernardino. The
inspection items include cracks on slab, internal walls, and external walls. According
to Dohm, John Carl [25], the total manual inspection time for 1600–2600ft2 home in
San Bernardino is around 13.65 h, including inspection items of building slab, shear
walls, etc. The manual inspection service cost is around $85.9 per hour.

Referring to the computer-vision-based inspection process described above, the
total inspection time includes the time of taking images or videos and CNN
processing. Assume that the input videos are obtained with handheld camera devices
while QCMs or RIs are by means of walking. Then, the time of taking videos can be
considered as the time of walking.

Figure 11.
Layout of the experiment case.
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Normally, the average walking speed between the age of 20–49 is around 1.42 m/s
[26]. Considering the time delays of taking videos, the walking speed can be consid-
ered as 0.1 m/s. Suppose the walking path follows an S-curve, shown in Figure 12.

According to [27], the universally accepted frame rate is 24 FPS per second.
Suppose the inspector begins to record video while taking the first step. Then the time
of captured video equals the time of walking. The number of the input images that
converted from the captured video can be calculated as 2390 s � 24FPS = 57,360.
According to the testing time of the textbook examples mentioned in Section 3.1, and
the study outcomes of [28], the time of CNN processing is around 100 images per
second. Then, the time of CNN processing can be calculated as 57,360/100 = 573.6 s.
Therefore, the cost of computer-vision based crack inspection can be calculated as
(2390 s + 573.6 s) � (85.9/3600) = $70.7.

Table 6 summarizes the calculation process of time and cost of manual and
computer-vision-based crack inspection. It can be seen that using CNN-based tech-
nique can effectively reduce inspection time and cost. The inspection time decreases
from 13.65 to 0.8 h in total, the inspection cost decreases from $1172.5 to $70.7.

4. Conclusion

To facilitate automatic building quality inspection and management, this study
introduced a computer-vision-based automated concrete crack inspection technique.
In order to demonstrate the computing and benchmarking process, the mathematical

Figure 12.
Walking path of the inspectors.

Manual inspection Computer-vision based inspection

Time 13.65 � 3600 = 49,140 s Time Taking video (1/0.1 � 15) � 15) +1/0.1 � 14 = 2390 s

CNN processing (2390 � 24)/100 = 573.6 s

Cost (85.9/3600) � 49,140 = $1172.5 Cost (573.6 + 2390) � (85.9/3600) = $70.7

Table 6.
Time and cost of manual and computer-vision based crack inspection.
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understanding of one of the most essential computer vision algorithms, convolution
neural network, was first detailed.

The theoretical foundation was then explained using a textbook example. In this
case, the input dataset “SDNET2018” was obtained from the Kaggle community. A
digital camera was used to acquire the 56,096 photos from the Utah State University
campus. To train the input images, the two most basic CNN architectures, AlexNet
and VGG16, were chosen. The Pytorch library was used to carry out the training
process in the Kaggle kernel. The model’s performance was evaluated using a confu-
sion matrix. The results revealed that the prediction accuracy of AlexNet and VGG16
is nearly identical. However, VGG16’s precision and recall are higher than AlexNet’s,
indicating that VGG16 has a stronger capacity to identify cracked surfaces. VGG16’s
F1 score is also greater than AlexNet’s, signifying that VGG16 is more robust. VGG16
is deemed to have a better significance since it has higher precision, recall, and F1-
score, which is crucial when distinguishing cracked and uncracked surfaces. When the
ratio of cracked and uncracked images is almost the same, however, AlexNet is a
feasible alternative because of its high accuracy score and low computation cost. It’s
worth noting that, when compared to shallow CNN architectures, deeper and broader
CNN architectures outperform shallow CNN architectures for larger datasets.

Next, an experimental case was designed to compare manual and computer-vision-
based crack inspection in terms of time and cost. The results showed that the effi-
ciency and cost-effectiveness can be effectively improved when adopting computer-
vision-based techniques. The inspection time and cost or the designed case can nearly
decrease from 13.65 to 0.8 h, and from $1172.5 to $70.7, respectively.

The findings help to demonstrate the computer-vision-based quality inspection
technique in both theory and practice. Although the recently developed computer-
vision-based technology improves the efficiency, cost-effectiveness, and safety of
human quality inspection, it still relies primarily on the collected image quality. Some
concrete surface images are difficult to capture in real-life situations, including among
others high-rise buildings, component corners, and buildings in extremely harsh
environments. To address this issue, robotics techniques are growing rapidly as a
means of upgrading computer-vision-based quality inspection [29]. Previous research
has begun to use mobile robots, such as UAVs in order to gather surface images [30–
32]. Some studies have focused on exploring robotic inspection systems to raise the
automatic level of quality inspection [33, 34]. Therefore, merging robotics and com-
puter vision approaches may be considered as a worthwhile future research direction
to improve the efficiency and accuracy of manual quality control and management.
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