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Chapter

The COVID-19 DNA-RNA Genetic
Code Analysis Using Information
Theory of Double Stochastic Matrix
Sung Kook Lee and Moon Ho Lee

Abstract

We present a COVID-19 DNA-RNA genetic code where A ¼ T ¼ U ¼ 31% and
C ¼ G ¼ 19%, which has been developed from a base matrix C U;A G½ � where C, U,
A, and G are RNA bases while C, U, A, and T are DNA bases that E. Chargaff found
them complementary like A ¼ T ¼ U ¼ 30%, and C ¼ G ¼ 20% from his experimen-
tal results, which implied the structure of DNA double helix and its complementary
combination. Unfortunately, they have not been solved mathematically yet. There-
fore, in this paper, we present a simple solution by the information theory of a doubly
stochastic matrix over the Shannon symmetric channel as well as prove it mathemat-
ically. Furthermore, we show that DNA-RNA genetic code is one kind of block
circulant Jacket matrix. Moreover, general patterns by block circulant, upper-lower,
and left-right scheme are presented, which are applied to the correct communication
as well as means the healthy condition because it perfectly consists of 4 bases.
Henceforth, we also provide abnormal patterns by block circulant, upper-lower, and
left-right scheme, which cover the distorted signal as well as COVID-19.

Keywords: COVID-19 DNA-RNA, E. Chargaff, DNA-RNA genetic code, double
stochastic matrix, symmetric channel, block circulant jacket matrix, general pattern,
abnormal pattern

1. Introduction

In 1950, Chargaff's two rules [1] were presented. One is that the percentage of
adenine is identical to that of thymine as well as the percentage of guanine is identical
to that of cytosine, which gives a hint of the composition of the base pair for the
double-strand DNA molecule. The other is that base complementarity is effective for
each DNA strand, which gives an explanation for the overall characteristics of funda-
mental bases. To make an example of COVID-19 DNA, its four bases are satisfied with
these two rules analogous to A ¼ T ¼ 31% and C ¼ G ¼ 19%. In 1953, it was discov-
ered that DNA has a double helix structure [2, 3], which results in an optimal and
economical genetic code [4].

A RNA base matrix C U;A G½ � was based on stochastic matrices [5], which results
in the genetic code [6, 7]. A symmetric capacity is calculated by applying the Markov
process to these doubly stochastic matrices, which suggested the symmetry between
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Shannon [8] and RNA stochastic transition matrix C U;A G½ �, which is defined as

below. A square matrix of P ¼ pij

� �

is stochastic, whose entries are positive as well as

its sum in rows and columns is equal to one or constant. In other words, if the sum of
all its elements in rows and columns is equal to one or invariable, it is double stochas-
tic, which is able to describe the time-invariant binary symmetric channel. For the
input xn and the output xnþ1, two states e0 and e1 are able to depict Markov processes
on an individual basis, which are indicated by two binary symbols “0” and “1”,
accordingly. The output signal is affected by the input signal whose information is fed
into given a certain error probability. Assume that these channel probabilities α and β

are less than a half, whose error probabilities have been kept steady over a time-
variant channel for a wide variety of transmitted symbols such as

P xnþ1 ¼ 1jxn ¼ 0f g ¼ p01 ¼ α,P xnþ1 ¼ 0jxn ¼ 1f g ¼ p10 ¼ β: (1)

In addition, its Markov chain is homogeneous. P represents a 2 � 2 homogeneous
probability transition matrix defined as

P ¼
p00 p01
p10 p11

� �

¼
1� α α

β 1� β

� �

¼
1� p p

p 1� p

� �

p¼0:5

¼ 1

2

1 1

1 1

� �

, (2)

whose two error probabilities are identical similarly to α ¼ β ¼ p over a binary
symmetric channel. This paper proceeds as below. First of all, we derive the RNA
stochastic entropy by applying it to the Shannon entropy in Section 2. Next, we make
an estimate of the variance of RNA in Section 3. Then, the binary symmetric channel
entropy is derived in Section 4. Henceforth, two user capacity is made an estimate of
over symmetric interference channel in Section 5. Afterward, the construction scheme
is proposed, which is enabled to create RNA genetic codes in Section 6. Later, a
symmetric genetic Jacket block matrix is examined in Section 7. Hereupon, general

Organism Taxon %A %G %C %T A / T G / C %GC %AT

Maize Zea 26.8 22.8 23.2 27.2 0.99 0.98 46.1 54.0

Octopus Octopus 33.2 17.6 17.6 31.6 1.05 1.00 35.2 64.8

Chicken Gallus 28.0 22.0 21.6 28.4 0.99 1.02 43.7 56.4

Rat Rattus 28.6 21.4 20.5 28.4 1.01 1.00 42.9 57.0

Human Homo 29.3 20.7 20.0 30.0 0.98 1.04 40.7 59.3

Grasshopper Orthoptera 29.3 20.5 20.7 29.3 1.00 0.99 41.2 58.6

Sea urchin Echinoidea 32.8 17.7 17.3 32.1 1.02 1.02 35.0 64.9

Wheat Triticum 27.3 22.7 22.8 27.1 1.01 1.00 45.5 54.4

Yeast Saccharomyces 31.3 18.7 17.1 32.9 0.95 1.09 35.8 64.4

E. coli Escherichia 24.7 26.0 25.7 23.6 1.05 1.01 51.7 48.3

φX174 PhiX174 24.0 23.3 21.5 31.2 0.77 1.08 44.8 55.2

Covid-19 SARS-CoV-2 29.9 19.6 18.4 32.1 0.93 1.07 38.0 62.0

Table 1.
Ratio of bases [1, 9–11].
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patterns of block circulant symmetric genetic Jacket matrices are looked into in
Section 8. In the end, this paper comes to a conclusion in Section 9.

Table 1 makes the description of the ratio of bases for several organisms [1, 9–11],
which shows that the ratios are constant among the species.

2. Analytical approach to RNA stochastic entropy

In [1, 5, 12, 13], stochastic complementary RNA bases are given for the genetic
code. On the assumption that C ¼ G ¼ 19%, A ¼ T ¼ U ¼ 31%, P denotes the
transition channel matrix expressed by

P ¼
C U

A G

� �

¼
0:19 0:31

0:31 0:19

� �

: (3)

On the condition that the RNA base matrix C U;A G½ � for the Markov process
described by two independent probabilities of its corresponding source varies from
0:19p to 0:31p, the transition channel matrix P is defined by

P ¼
0:19p 1� 0:19p

1� 0:19p 0:19p

� �

¼
0:5 1� 0:5

1� 0:5 0:5

� �

¼
0:5 0:5

0:5 0:5

� �

: (4)

By comparison with Eq. (12), we have.

0:19p ¼ 1� 0:19p (5)

where p is 2.631.
Applying in a similar fashion to the rest of (4),

P ¼
0:31p 1� 0:31p

1� 0:31p 0:31p

� �

¼
0:500 1� 0:500

1� 0:500 0:500

� �

¼
0:5 0:5

0:5 0:5

� �

, (6)

where 0.31p = 1-0.31p, where p is 1.613.
In order to make a double stochastic matrix by adding (6) to (4),

2P ¼
0:5 0:5

0:5 0:5

� �

þ
0:5 0:5

0:5 0:5

� �

¼
1 1

1 1

� �

: (7)

Applying in a similar way to (3),

2P ¼ 2
C U

A G

� �

¼ 2
0:19 0:31

0:31 0:19

� �

¼ 0:38 0:62

0:62 0:38

� �

: (8)

If P is a random variable for source probability p corresponding to the first symbol
event, we reach the entropy function [8] represented by

H2 Pð Þ ¼ p log 2

1

p

� �

þ 1� pð Þ log 2

1

1� p

� �

: (9)
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The last column of Table 2 shows the result of Eq. (9). Figure 1 portrays the curve
of Shannon and RNA Entropy. Make a mental note to make sure that a vertical tangent
can be drawn when p = 0 and p = 1 on account of the fact that

d

dp
p log 2

1

p

� �

þ 1� pð Þ log 2

1

1� p

� �� �

¼ log 2

1

p

� �

� 1� log 2

1

1� p

� �

þ 1

� �

log 2e

¼ log 2

1

p

� �

� log 2

1

1� p

� �

¼ 0,

(10)

which is maximized when p reaches a half because its derivative becomes 0.

P -log2p - plog2p H2(p)

0.3800 1.3959 0.5305 0.9580

0.3900 1.3585 0.5298 0.9648

0.4000 1.3219 0.5288 0.9710

0.4100 1.2863 0.5274 0.9765

0.4200 1.2515 0.5256 0.9815

0.4300 1.2176 0.5236 0.9858

0.4400 1.1844 0.5211 0.9896

0.4500 1.1520 0.5184 0.9928

0.4600 1.1203 0.5153 0.9954

0.4700 1.0893 0.5120 0.9974

0.4800 1.0589 0.5083 0.9988

0.4900 1.0291 0.5043 0.9997

0.5000 1.0000 0.5000 1.0000

0.5100 0.9714 0.4954 0.9997

0.5200 0.9434 0.4906 0.9988

0.5300 0.9159 0.4854 0.9974

0.5400 0.8890 0.4800 0.9954

0.5500 0.8625 0.4744 0.9928

0.5600 0.8365 0.4684 0.9896

0.5700 0.8110 0.4623 0.9858

0.5800 0.7859 0.4558 0.9815

0.5900 0.7612 0.4491 0.9765

0.6000 0.7370 0.4422 0.9710

0.6100 0.7131 0.4350 0.9648

0.6200 0.6897 0.4276 0.9580

Table 2.
Shannon entropy for probability p.
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Therefore,

log 2

1

p

� �

� log 2

1

1� p

� �

¼ 0 ) 1

p

� �

� 1

1� p

� �

¼ 0: (11)

Then, we reach

p ¼ 1� p ) p ¼ 1

2
: (12)

For the RNA base matrix C U;A G½ �, its symmetric entropy is calculated as

H2 Pð ÞRNA ¼ p log 2

1

p

� �

þ 1� pð Þ log 2

1

1� p

� �

¼ 0:9790, (13)

when p is either 0.38 or 0.62. By the way, the Shannon entropy is calculated as

H2 Pð ÞShannon ¼ p log 2

1

p

� �

þ 1� pð Þ log 2

1

1� p

� �

¼ 1, (14)

when p reaches a half.
Table 2 shows Shannon Entropy for probability p over a binary symmetric

channel.
Figure 1 gives a comparison between Shannon and RNA Entropy for probability p

under the RNA base matrix C U;A G½ �.

Figure 1.
Comparison between Shannon and RNA entropy for probability p.
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3. Derivation of variance for the RNA base matrix C U;A G½ �

The variance for RNA random variable X is denoted by V Xð Þ is the square of the
mean, which is expressed by

E Xf g ¼ a ¼ 0:5: (15)

Therefore, for a random variable X, the variance is obtained such as

V Xð Þ ¼ E X � að Þ2
n o

¼ E X2
� 	

� 2aE Xf g þ E a2
� 	

¼ E X2
� 	

� 2a2 þ a2 ¼ E X2
� 	

� a2 ¼ σ2:
(16)

Case I. Upper source probability 0.62

σ2upper ¼ 0:62ð Þ2 � 0:5ð Þ2 ¼ 0:13: (17)

Case II. Lower source probability 0.38

σ2lower ¼ 0:5ð Þ2 � 0:38ð Þ2 ¼ 0:10: (18)

If X1 and X2 are the independent random variables, on an individual basis, its
expectation and variance are

E X1f g ¼ a1, V X1f g ¼ σ21: (19)

E X2f g ¼ a2, V X2f g ¼ σ22: (20)

Therefore, we reach

E X1 � a1ð Þ X2 � a2ð Þf g ¼ E X1 � a1ð Þf gE X2 � a2ð Þf g ¼ 0: (21)

Assuming that X1 and X2 are independent random variables, the sum of its
variances is calculated as

V X1 þ X2f g ¼ E X1 þ X2 � a1 � a2ð Þ2
n o

¼ E X1 � a1ð Þ2
n o

þ 2E X1 � a1ð Þ X2 � a2ð Þf g þ E X2 � a2ð Þ2
n o

¼ V X1f g þ V X2f g ¼ σ21 þ σ22 ¼ 0:13þ 0:10 ¼ 0:23,

(22)

which is approximately 23% corresponding to the difference betweenA =U andC =G.
It means that RNA entropy cannot reach the Shannon entropy because the probabilities of
its bases are 23% away from a half that is exactly identical to the sum of its variances.

4. RNA complement base matrix C U;A G½ � for symmetric noise
immune-free channel

If over a noise immune-free binary symmetric channel the bases of RNA genetic
code C U;A G½ � are complementary such as C ¼ U and A ¼ G, the conditional
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probability P b jjai

 �

¼ Pi,j makes description of this channel, whose maximum amount
of information can be transmitted as depicted in Figure 2. On the assumption that C
and G are one’s complement of its corresponding error probability as well as A and U
are interference signals, the matrix [8] for this channel is made description of by

p Xð Þ½ �1�2 P½ �2�2 ¼ α 1� α½ �
C U

A G

� �

¼ p Yð Þ½ �1�2 ¼ p Y1ð Þ p Y2ð Þ½ �: (23)

Under the condition that p and 1-p are the selection probability α ¼ 0ð Þ and α ¼ 1ð Þ
over the uniform channel on an individual basis, the mutual information is defined by

I X;Yð Þ ¼ H Yð Þ �H YjXð Þ: (24)

From Eq. (23), we are confronted with

α 1� α½ �
�C log 2C �U log 2U

�A log 2A �G log 2G

� �

¼ α 1� α½ �
�U log 2U �C log 2C

G log 2G �A log 2A

� �

, (25)

where

H YjXð Þ ¼ �αC log 2C� αA log 2A� 1� αð ÞU log 2U � 1� αð ÞG log 2G

¼ �U log 2U � G log 2G ¼ �C log 2C� A log 2A ¼ 0:9790,
(26)

where A = U = 0.31 and C = G = 0.19.
Therefore, its capacity is derived as

CRNA ¼ max I X;Yð Þjp¼0:38 or 0:62 ¼ H Yð Þ �H YjXð Þ ¼ 1� 0:9790 ¼ 0:021, (27)

i.e. H Yð Þ ¼ �p log 2p� 1� pð Þ log 2 1� pð Þ ¼ �0:38 log 20:38� 0:62 log 20:62 ¼ 1.
while Shannon capacity is derived as

CShannon ¼ max I X;Yð Þjp¼0:5 ¼ H Yð Þ �H YjXð Þ ¼ 1� 1 ¼ 0: (28)

In Figure 3, we compare Shannon and RNA capacity for probability p. As fore-
mentioned in Section 3, if only if under the ideal circumstance, Shannon capacity can

Figure 2.
Complementary bases of RNA genetic code C U;A G½ � over noise immune-free binary symmetric channel.
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be reached. In other words, the difference between Shannon and RNA capacity exists,
which is identical to the sum of variances of RNA base random variables because they
are unable to become a half over a symmetric channel.

5. Two user capacity over symmetric interference channel

Figure 4 makes the description of the environment of the binary symmetric
channel with the RNA base matrix C U;A G½ � as well as that of the symmetric inter-
ference channel for two users where two independent messages W1 and W2 with the
common message set Wi are transmitted. Assume that C = G = 19% and A = U = 31%
where C = H 11 is the direct signal and its corresponding interference signal is U = H 12

for Y1. Analogously, the direct signal for the second user Y2 is G = H22 and its
corresponding interference signal is A = H21.

Figure 3.
Shannon and RNA capacity vary with probability p.

Figure 4.
Two-user symmetric Interference Channel. (a) Strong Interference Channel. (b) Weak Interference Channel.
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H11 ¼ H12 ¼ hd
ffiffiffiffiffiffiffiffiffiffi

PSNR

p

,

H12 ¼ H21 ¼ hc
ffiffiffiffiffiffiffiffiffiffi

PSNR

p

:

The relationship between the input and output for two user symmetric channel is
described as follows [14],

Y1 ¼ hd
ffiffiffiffiffiffiffiffiffiffi

PSNR

p

X1 þ hc
ffiffiffiffiffiffiffiffiffiffi

Pα
SNR

p

X2 þ Z1, (29)

Y2 ¼ hc
ffiffiffiffiffiffiffiffiffiffi

Pα
SNR

p

X1 þ hd
ffiffiffiffiffiffiffiffiffiffi

PSNR

p

X2 þ Z2, (30)

where the powers of input symbols X1, X2, and additive white Gaussian noise
(AWGN) terms Z1 and Z2 are normalized to unity. Analogous to the definition of the
degree of freedom (DoF), the total GDoF metric d(α) is defined as

d αð Þ ¼ lim
PSNR!∞

C PSNR, αð Þ
log PSNRð Þ , (31)

where C (PSNR, α) is the sum-capacity parameterized by PSNR and α. Here α is the
ratio (on the decibel scale) of cross channel strength compared to straight channel
strength and PSNR indicates the ratio (on the decibel scale) of signal to the noise.
Importantly, in order to find the achievable DoF, take the limit of Eq. (31) by letting
PSNR go to infinity. Make a mental note of theDoFmetric resembling to that at the point
α =1. Thus, the GDoF curve gives a significant hint for optimal interference manage-
ment strategies, which has been made use of most successfully to estimate the capacity
of two-user interference channel to contain a constant gap in [14]. To take an example,
for RNA genetic code, assuming that its bases C = G = 19% and A = T = U = 31%, this
symmetric interference channel for two users can be analyzed in strong and weak
interference region as below. The noise immune channel is described as below where X1

and X2 denote the input symbols while Y1 and Y2 denote the output symbols

Y1 ¼ CX1 þUX2, (32)

Y2 ¼ GX1 þ AX2: (33)

Case 1. Strong Interference region.
Figure 4 (a) makes the description of the channel in a strong interference regime,

where its receivers have to try to decode the interfering signal in order to recover its
desired signal. The general condition for a strong interference signal is represented by,

C<A,U >G: (34)

Regretfully, it is still challenging to propose the scheme achieving a symmetric rate
as well as being upper-bounded unlike in the weak interference region.

Case 2. Weak Interference region.
Figure 4 (b) makes the description of the channel in a very weak interference

regime, where its receivers do not need to try to decode any portion of the interfer-
ence signal by regarding it as noise. This scheme is enabled to achieve a symmetric
rate per user as below [7],

R ¼ min
1

2
log 1þ INRþ SNRð Þ þ 1

2
log 2þ SNR

INR

� �

� 1, log 1þ INRþ SNR

INR

� �

� 1

 �

:

(35)
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The upper bound on the symmetric capacity is,

CSym ≤ min
1

2
log 1þ SNRð Þ þ 1

2
log 1þ SNR

1þ INR

� �

, log 1þ INRþ SNR

1þ INR

� �� �

:

(36)

Letting A = T = U = 31%, C = G = 19%, i.e. INR = 31 and SNR = 19, we are
confronted with the symmetric achievable rate such as

R ¼ min
1

2
log 2 1þ 31þ 19ð Þ þ 1

2
log 2 2þ 19

31

� �

� 1, log 2 1þ 31þ 19

31

� �

� 1

 �

¼ min 2:83þ 0:69� 1, 5:02� 1f g ¼ min 2:53, 4:02f g ¼ 2:52:

(37)

Analogously, the symmetric capacity is made the description of by

Csym ≤ min
1

2
log 2 1þ 19ð Þ þ 1

2
log 2 1þ 19

31

� �

, log 2 1þ 31þ 19

31

� � �

≤ min 2:16þ 0:34, 5:02f g≤ min 2:50, 5:02f g ¼ 2:50:

(38)

Following the above steps, in a weak interference regime, by treating interference
as noise, the symmetric capacity is close to its achievable capacity such as

Csym ¼ R: (39)

Figure 5 makes the description of the weak and strong interference region where
the leftmost indicates a very weak interference region while the rightmost suggests a
very strong interference region.

Analysis:
In 1948, Shannon proposed the code generation method by exploiting the random

codebook in point-to-point communication with inverse Gaussian distribution
(Gaussian distribution variance towards infinity is called inverse Gaussian) to achieve
the channel capacity, which is described as follows [8],

C ¼ 1

2
log 2 1þ S

N

� �

, (40)

where the signal power is S and the noise power is N.
The point-to-point channel capacity is

CAWGN ¼ log 2 1þ S

N

� �

, (41)

where the signal power is S and the noise power is N.
From Eq. (31), the degree of freedom is [14].

DoF ¼ lim
x!∞

1þ S
N

1þ S
N

 !

¼ 1, (42)

10
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And the achievable rate is orthogonalized as

XK

i¼1

Ri ¼ log 2 1þ
PK

i¼1Pi

N

 !

, (43)

where K means the number of users.
For two users,

2R ¼ log 2 1þ 2
P

N

� �

¼ log 2 1þ 2SNRð Þ: (44)

Therefore, the achievable rate is,

R ¼ 1

2
log 2 1þ 2SNRð Þ: (45)

SNR = 19 and SNR = 31 case:

The capacity : C ¼ 1

2
log 2 1þ 19

31

� �

¼ 1

2
log 2 1þ 0:61ð Þ ¼ 0:34 (46)

Achievable rate :

2R ¼ log 2 1þ 2
19

31

� �� �

2R ¼ log 2 2:22ð Þ
2R ¼ 1:15

R ¼ 0:57

(47)

Figure 5.
Generalized degree of freedom for Gaussian Channel (W curve).
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And the degree of freedom,

DoF ¼ lim
SNR!∞

R

log 2 2SNRð Þ

� �

≈
1

2

log 2 1þ 2SNRð Þ
log 2 2SNRð Þ

� �

≈
1

2
: (48)

On the condition that the ratio α ¼ log 2INR
log 2SNR is fixed and the strength of the signal is

much larger than that of interference and noise, it is able to treat interference as noise.
Therefore, the achievable rate is represented by

R ¼ log 2 1þ SNR

1þ INR

� �

: (49)

From Eq. (49), the DoF is represented by [14].

DoF ¼ lim
SNR!∞

R

log 2

SNR

1þ INR

� �

0

B
B
@

1

C
C
A

¼
log 2

SNR

1þ INR

� �

log 2 SNRð Þ

0

B
B
@

1

C
C
A

≈

log 2

SNR

INR

� �

log 2 SNRð Þ

0

B
B
@

1

C
C
A

¼ log 2 SNRð Þ � log 2 INRð Þ
log 2 SNRð Þ

� �

¼ 1� log 2 INRð Þ
log 2 SNRð Þ

� �

¼ 1� αð Þ:

(50)

In the conventional binary symmetric channel, p is a random variable and a large
amount of resources are used up to make an estimate of p corresponding to the given
channel. By the way, p can be determined deterministically for the RNA base matrix
C U;A G½ �, which is either 0.38 or 0.62. Because the specific value of p is given, the
channel estimation should be investigated. The reason why the specific numerical
values are selected is that for the RNA model, its maximum channel capacity is
maintained even if p is determined deterministically, the variance of signal is not
large, and a generalized DoF’s point of view shows a reasonable performance in the W
curve. In the actual implementation, the receiver has to be satisfied with the 1-α = p
shown in Figure 2. Under this circumstance, signal strength and the interference
intensity are important to analyze the given channel where strong interference envi-
ronment and weak interference environment are classified according to α. To take an
example, if α = 1-p = 0.38, we need to analyze the strong interference channel. If α = 1-
p = 0.62, we need to analyze the weak interference channel. This p estimation is able
to minimize performance degradation in the binary symmetric channel while signifi-
cantly reducing computational complexity. The GDoF curve of two user interference
symmetric channel in Figure 5 is the highly recognizable “W” curve shown that it
greatly improves understanding of interference channel by identifying two regimes.
From the abovementioned example, over the symmetric channel, when α = 0.62, the
signal is relatively stronger than interference. By the way, when α = 0.38, signal is
relatively weaker than interference.

6. RNA genetic code constructed by block circulant jacket matrix

A block circulant Jacket matrix (BCJM) is defined by [7, 12, 13, 15].
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ð51Þ

where C0 and C 1 are the Hadamard matrix.
The circulant submatrices are 2 � 2 matrices, whose entries are moved by block

diagonal cyclic shifts. These submatrices are block circulant Jacket matrices. The
BCJM C4 is defined by

C4 ≜ I0 ⊗C0
0 þ I1 ⊗C1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
, (52)

where I0 ¼ 1 0

0 1

� �

, I1 ¼
0 1

1 0

� �

,C0
0 ¼ 1 1

1 �1

� �

, and C1 ¼
1 �1

�1 �1

� �

,

while ⊗ is the Kronecker product.

From Eq. (52), the genetic matrix C U;A G½ �3 generates RNA sequences such as
[12, 13].

P1 ¼
C U

A G

� �

, P2 ¼
C U

A G

� �

⊗
C U

A G

� �

, P3 ¼
C U

A G

� �2

⊗
C U

A G

� �

,

(53)

where ⊗ denotes the Kronecker product. RNA consists of the sequence of 4 bases
whereC,U,A, andG indicate cytosine, uracil, adenine, andguanine, on an individual basis.

According to the theory of noise-immunity coding, for 64 triplets, by comparing
them with strong roots and weak roots, it is able to construct a mosaic gene matrix

C U;A G½ �3. If any triplet belongs to one of the strong roots, it is substituted for 1. In
an analogous fashion, if any triplet is included with one of the weak roots, it is
replaced with �1. Here, the strong roots are CC,CU,CG,AC,UC,GC,GU,GGð Þ and
CA,AA,AU,AG,UA,UU,UG,GAð Þ are the weak roots, which results in the singular
Rademacher matrix R8 is in Table 3 [6, 16].

A novel encoding scheme is proposed as

ð54Þ
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The Eq. (54) gives a hint of the DNA double helix.
Make a mental note to ensure that

R8 ≜ I0 ⊗C0 ⊗P2 þ I1 ⊗C1 ⊗P2
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

, (55)

where I0 ¼ 1 0

0 1

� �

, I1 ¼
0 1

1 0

� �

,C0 ¼ 1 1

�1 1

� �

,C1 ¼
1 �1

�1 �1

� �

, and P2 is

the double stochastic permutation matrix represented by P2 ¼
1 1

1 1

� �

. Eq. (54) has a

series of redundant rows which just repeat and are able to be canceled. From the
Rademacher matrix R8, one version of its mosaic gene matrices can be reached as

R0
8 ¼

1 1 1 1 1 1 �1 �1

�1 �1 1 1 �1 �1 �1 �1

1 1 �1 �1 1 1 1 1

�1 �1 �1 �1 �1 �1 1 1

0

B
B
B
@

1

C
C
C
A
: (56)

Furthermore, by canceling the repeated column from Eq. (56) by means of
CRISPR, another version of the mosaic gene matrices can be reached as Eq. (57),
which is a singular RNA matrix.

ð57Þ

000

(0)

001

(1)

010

(2)

011

(3)

100

(4)

101

(5)

110

(6)

111

(7)

000

(0)

CCC

000

CCU

001

CUC

010

CUU

011

UCC

100

UCU

101

UUC

110

UUU

111

001

(1)

CCA

001

CCG

000

CUA

011

CUG

010

UCA

101

UCG

100

UUA

111

UUG

110

010

(2)

CAC

010

CAU

011

CGC

000

CGU

001

UAC

110

UAU

111

UGC

100

UGU

101

011

(3)

CAA

011

CAG

010

CGA

001

CGG

000

UAA

111

UAG

110

UGA

101

UGG

100

100

(4)

ACC

100

ACU

101

AUC

110

AUU

111

GCC

000

GCU

001

GUC

010

GUU

011

101

(5)

ACA

101

ACG

100

AUA

111

AUG

110

GCA

001

GCG

000

GUA

011

GUG

010

110

(6)

AAC

110

AAU

111

AGC

100

AGU

101

GAC

010

GAU

011

GGC

000

GGU

001

111

(7)

AAA

111

AAG

110

AGA

101

AGG

100

GAA

011

GAG

010

GGA

001

GGG

000

Table 3.
[C U;A G]3 code [6, 16].
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where C0 ¼ 1 1

�1 1

� �

and C1 ¼
1 �1

�1 �1

� �

. These matrices are able to be

expanded into the DNA double helix or the RNA single strand, which indicates the
process by that DNA replicates its genetic information for itself, which is transcribed
into RNA and used to synthesize protein for its translation. Therefore,

R00
4 ≜ I0 ⊗C0 þ I1 ⊗C1
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

, (58)

where C0 has eigenvalues such that λ 1ð Þ
1 ¼ 1þ i and λ

1ð Þ
2 ¼ 1� i, and their

eigenvectors ς1 ¼ 1 �ið ÞT and ς2 ¼ 1 ið ÞT, correspondingly. In addition, C1 has

eigenvalues such that λ
2ð Þ
1 ¼

ffiffiffi

2
p

and λ
2ð Þ
2 ¼ �

ffiffiffi

2
p

where their eigenvectors ς1 ¼
�1þ

ffiffiffi

2
p

1

 �T

and ς1 ¼ �1�
ffiffiffi

2
p

1

 �T

on an individual basis [3, 17]. Then,

R00
4 ⊗P2 ) R8 ¼ R4�2k , (59)

where k = 1.

7. Symmetric genetic jacket block matrix

It is demonstrated that the genomatrices are constructed based on the kernel

C A;U G½ � and the mosaic genomatrices C A;U G½ �3 are built by a series of Kronecker
products, which are expanded by permuting the 4 bases C, A, U, and G on their
locations in the matrix.

7.1 Permutation scheme from upper to lower

Following this scheme, we are confronted with 24 variants of genomatrices, which
distinguish them from each other by replacing their subsets by the kernel C A;U G½ �.
To take an analogous instance, by applying the upper-low scheme to [C A;U G], the

standard genetic code is expanded into U C A G½ �T ⊗ U C A G½ �⊗
U C A G½ �T, where T is the transpose. Analogous to Eq. (56), one version of
variants of genomatrices is constructed as

ð60Þ
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Eq. (60) is also another version of variants of genomatrices by a series of
Kronecker product on [1 1 1 1]T, which is expanded into Eq. (61) indicating the
process transcribing from R8 DNA to R4

″ RNA.

ð61Þ

Example 7.1. If A = U, C = G, we are confronted with six versions of variants of the
genomatrices constructed by a series of Kronecker product of the kernel C A;U G½ �.

A C

U G

" #

¼

�1 1 �1 1

�1 �1 1 1

�1 1 �1 1

�1 �1 1 1

2

6
6
6
6
6
4

3

7
7
7
7
7
5

¼ 1 0½ �⊗
1

1

" #

⊗
�1 1

�1 �1

" #

þ 0 1½ �⊗
1

1

" #

⊗
�1 1

1 1

" #

,

(62)

which is expanded into Eq. (63) and Eq. (64). These are other versions of variants
of genomatrices.

A G

U C

" #

¼

�1 �1 �1 1

�1 1 1 1

�1 �1 �1 1

�1 1 1 1

2

6
6
6
6
6
4

3

7
7
7
7
7
5

¼ 1 0½ �⊗
1

1

" #

⊗
�1 �1

�1 1

" #

þ 0 1½ �⊗
1

1

" #

⊗
�1 1

1 1

" #

, (63)

G U

C A

" #

¼

1 1 �1 �1

1 �1 1 �1

1 1 �1 �1

1 �1 1 �1

2

6
6
6
6
6
4

3

7
7
7
7
7
5

¼ 1 0½ �⊗
1

1

" #

⊗
1 1

1 �1

" #

þ 0 1½ �⊗
1

1

" #

⊗
�1 �1

1 �1

" #

, (64)

C U

G A

" #

¼

1 1 1 �1

1 �1 �1 �1

1 1 1 �1

1 �1 �1 �1

2

6
6
6
6
6
4

3

7
7
7
7
7
5

¼ 1 0½ �⊗
1

1

" #

⊗
1 1

1 �1

" #

þ 0 1½ �⊗
1

1

" #

⊗
1 �1

�1 �1

" #

, (65)
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C A

G U

" #

¼

1 �1 1 �1

1 1 �1 �1

1 �1 1 �1

1 1 �1 �1

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

¼ 1 0½ �⊗
1

1

" #

⊗
1 �1

1 1

" #

þ 0 1½ �⊗
1

1

" #

⊗
1 �1

�1 �1

" #

, (66)

G A

C U

" #

¼

1 �1 �1 �1

1 1 1 �1

1 �1 �1 �1

1 1 1 �1

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

¼ 1 0½ �⊗
1

1

" #

⊗
1 �1

1 1

" #

þ 0 1½ �⊗
1

1

" #

⊗
�1 �1

1 �1

" #

: (67)

Eq. (62–67) are six versions of variants of genomatrices, which indicate six half
pairs expanded from symmetric RNA genetic matrices by an upper-lower scheme. In
other words, they are constructed by rotating the block in the direction from upper to
low or vice versa.

7.2 Permutation scheme from left to right

Following this scheme, we are confronted with 6 variants of genomatrices, which
distinguish them from each other with the kernel C A;U G½ �. To take an analogous
instance, by applying the left-right scheme to C A;U G½ �, the standard genetic code is
expanded into R8

ð68Þ
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Eq. (68) is also another version of variants of genomatrices by a series of
Kronecker product on [1 1;1 1], which is expanded into Eq. (69) indicating the process
transcribing from R8 DNA to R4

″ RNA.

ð69Þ

Example 7.2. If A = U, C = G, we are confronted with six versions of variants of the
genomatrices constructed by a series of Kronecker product of the kernel C A;U G½ �.

C G

U A

0

@

1

A ¼

1 1 1 1

1 �1 1 �1

1 �1 1 �1

�1 �1 �1 �1

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

¼
1

0

0

@

1

A⊗ 1 1ð Þ⊗
1 1

1 �1

0

@

1

A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

þ
0

1

0

@

1

A⊗ 1 1ð Þ⊗
1 �1

�1 �1

0

@

1

A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2

6
6
4

3

7
7
5
,

(70)

which is expanded into Eq. (71) and Eq. (72). These are other versions of variants
of genomatrices.

G C

U A

" #

¼

1 1 1 1

1 �1 1 �1

�1 1 �1 1

�1 �1 �1 �1

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

¼
1

0

" #

⊗ 1 1½ �⊗
1 1

1 �1

" #

þ
0

1

" #

⊗ 1 1½ �⊗
1 �1

�1 �1

" #

, (71)

U A

C G

" #

¼

�1 �1 �1 �1

1 �1 1 �1

1 �1 1 �1

1 1 1 1

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

¼
1

0

" #

⊗ 1 1½ �⊗
�1 �1

1 �1

" #

þ
0

1

" #

⊗ 1 1½ �⊗
1 �1

1 1

" #

, (72)
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A U

G C

" #

¼

�1 �1 �1 �1

�1 1 �1 1

�1 1 �1 1

1 1 1 1

2

6
6
6
6
6
4

3

7
7
7
7
7
5

¼
1

0

" #

⊗ 1 1½ �⊗
�1 �1

�1 1

" #

þ
0

1

" #

⊗ 1 1½ �⊗
�1 1

1 1

" #

, (73)

G C

A U

" #

¼

1 1 1 1

�1 1 �1 1

�1 1 �1 1

�1 �1 �1 �1

2

6
6
6
6
6
4

3

7
7
7
7
7
5

¼
1

0

" #

⊗ 1 1½ �⊗
1 1

�1 1

" #

þ
0

1

" #

⊗ 1 1½ �⊗
�1 1

�1 �1

" #

, (74)

C G

A U

" #

¼

1 1 1 1

�1 1 �1 1

1 �1 1 �1

�1 �1 �1 �1

2

6
6
6
6
6
4

3

7
7
7
7
7
5

¼
1

0

" #

⊗ 1 1½ �⊗
1 1

�1 1

" #

þ
0

1

" #

⊗ 1 1½ �⊗
1 �1

�1 �1

" #

: (75)

Eqs. (70)-(75) are 6 versions of variants of genomatrices, which indicate six half
pairs expanded from symmetric RNA genetic matrices by the left-right scheme. In
other words, they are constructed by rotating the block in the direction from upper to
low or vice versa.

7.3 Block Circulant jacket matrix

Construct a block matrix C½ �N by Jacket matrices C0½ �p and C1½ �p such as

C½ �N ¼
C0 C1

C1 C0

� �

where its order N is 2p. This matrix is called block circulant if only

if C0C
RT
1 þ CRT

1 C0 ¼ 0½ �N, where RT is the reciprocal transpose. In other words, C½ �N is

a block circulant Jacket matrix (BCJM) [12, 13, 15, 18]. From the fact that C0C
RT
0 ¼

p I½ �p and C1C
RT
1 ¼ p I½ �p, C0 and C1 are Jacket matrices. Look back on the fact that C½ �N

is a Jacket matrix if only if C½ � C½ �RT ¼ NIN, where RT is the reciprocal transpose.
Therefore, C½ � is a Jacket matrix if only if

C½ � C½ �RT ¼
C0 C1

C1 C0

� �
C0 C1

C1 C0

� �RT

¼
2p I½ �p C0C

RT
1 þ CRT

1 C0

C0C
RT
1 þ CRT

1 C0 2p I½ �p

 !

¼ NIN,

(76)

where RT is the reciprocal transpose. Therefore, Eq. (76) results in plenty of BCJMs.
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Example 7.3. Two 2 � 2 matrices are given such as

C0 ¼
1 1

1 �1

� �

,C1 ¼
a �a

�1=a �1=a

� �

:

It is easy to know that C0C
RT
0 ¼ 2 I½ �2 and C1C

RT
1 ¼ 2 I½ �2 are satisfied. Therefore, C0

and C1 are Jacket matrices.
Moreover,

C0C
RT
1 þ CRT

1 C0 ¼
1 1

1 �1

� � �1=a �a

�1=a �a

� �

þ
a �a

�1=a �1=a

� �
1 1

1 �1

� �

¼ 0½ �2: (77)

8. General pattern of block circulant symmetric genetic jacket matrix

We present 24(=4 � 4C2) DNA classes of genomatrices with their own character-
istics. The main kernel of Eq. (78) is

E
|{z}

Position

⊗ I0 ⊗Að Þ þ I1 ⊗Bð Þf g
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Main Body Kernel

⊗ F
|{z}

Extending

: (78)

Eq. (58) is an RNA pattern by the main kernel. By applying an upper-lower or left-
right scheme to the genetic matrix, the position matrix E creates the patterns analogous
to Eq. (61, 69). Analogously, by applying the upper-lower and left-right scheme to the
genetic matrix, the extending matrix F creates the patterns analogous to Eq. (60, 68).

South Korea’s national flag stands for different symbols of trigrams and Yin-Yang
located in its middle, which is analogous to that of Figure 6. We present 24 versions of
variants of genomatrices, which distinguish from each other by replacing their subsets

with the kernel shown in Figure 6 like its left-hand side
1

0

� �

⊗ 1 1½ �, its right-hand

Figure 6.
General pattern by block circulant, upper-lower, and left–right scheme: Normal case.
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side
0

1

� �

⊗ 1 1½ �, its upper position 1 0ð Þ⊗ 1

1

� �

, its lower position

0 1ð Þ⊗
1

1

� �

, and its center part I0 ⊗C0 þ I1 ⊗C1, on an individual basis.

From the fact that 1 0ð Þ⊗ 1

1

� �

$ 0 1ð Þ⊗ 1

1

� �

and
1

0

� �

⊗ 1 1ð Þ $

0

1

� �

⊗ 1 1ð Þ, upper symmetric genetic matrices are complementary with lower

ones while left ones are complementary with right ones.
In addition, the pattern is created by block circulant, upper-lower, and left–right

scheme on the ½ symmetric block, which are analyzed in three cases.
Case 1. Block circulant scheme

C U

A G

" #

¼

1 1 1 �1

�1 1 �1 �1

1 �1 1 1

�1 �1 1 �1

2

6
6
6
4

3

7
7
7
5

¼
1 0

0 Adiag

" #

⊗
1 1

�1 1

" #

þ
0 1

1 0

" #

⊗
1 �1

�1 �1

" #

:

(79)

U C

G A

" #

¼

�1 1 1 1

�1 �1 1 �1

1 1 �1 1

�1 1 �1 �1

2

6
6
6
4

3

7
7
7
5

¼
1 0

0 1

" #

⊗
�1 1

�1 �1

" #

þ
0 1

AAnti�diag 0

" #

⊗
1 1

1 �1

" #

:

(80)

Case 2. Upper-lower scheme

U G

A C

" #

¼

�1 �1 1 1

�1 1 �1 1

�1 �1 1 �1

�1 1 1 1

2

6
6
6
4

3

7
7
7
5

¼ 1 0½ �⊗
1

1

" #

⊗
�1 �1

�1 1

" #

þ 0 AUpper
� �

⊗
1

1

" #

⊗
1 1

�1 1

" #

:

(81)

U C

A G

" #

¼

�1 1 1 1

�1 �1 1 �1

�1 1 1 1

�1 �1 �1 1

2

6
6
6
4

3

7
7
7
5

¼ 1 0½ �⊗
1

1

" #

⊗
�1 1

�1 �1

" #

þ 0 ALower
� �

⊗
1

1

" #

⊗
1 1

1 �1

" #

:

(82)
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Case 3. Left-right scheme

A U

C G

" #

¼

�1 �1 �1 �1

1 �1 1 �1

1 1 �1 1

1 �1 1 1

2

6
6
6
6
6
4

3

7
7
7
7
7
5

¼
1

0

" #

⊗ 1 1½ �⊗
�1 �1

1 �1

" #

þ
0

ALeft

" #

⊗ 1 1½ �⊗
1 1

1 �1

" #

:

(83)

U A

G C

" #

¼

�1 �1 �1 �1

�1 1 �1 1

1 �1 1 1

1 1 �1 1

2

6
6
6
6
6
4

3

7
7
7
7
7
5

¼
1

0

" #

⊗ 1 1½ �⊗
�1 �1

�1 1

" #

þ
0

ARight

" #

⊗ 1 1½ �⊗
1 �1

1 1

" #

:

(84)

Eq. (79) is a block circulant while Eq. (80) is not. Meanwhile, one part of
Eq. (81, 82) is upper-lower symmetric while the other is not. By the way, one part of
Eq. (83, 84) is left–right symmetric while the other part is not. Figure 7 shows a
certain pattern constructed by a series of the product of C A;U G½ � as well as a
distorted pattern in comparison with that in Figure 6. Therefore, these are called
sickness pattern, which can cover COVID-19.

Figure 7.
Abnormal pattern by block circulant, upper-lower, and left–right scheme.
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To take an analogous instance,

C U

A G

� �

)
A B

C D

� �

, (85)

Make a mental note to ensure.
Case 1. A 6¼ D, B ¼ C and A ¼ D, B 6¼ C:
Case 2. A ¼ C, B 6¼ D and A 6¼ C, B ¼ D:
Case 3: A ¼ B, C 6¼ D and A 6¼ B, C ¼ D:
From the aforementioned processes, we are confronted with six half symmetric

blocks such as
C U

A G

� �

,
U C

G A

� �

,
U G

A C

� �

,
U C

A G

� �

,
A U

C G

� �

, and
U A

G C

� �

:

9. Conclusion

We show the experimental results of C = G = 19% and A = U = T = 31% for the
COVID-19 with the RNA base matrix C U;A G½ �, which are expanded into our math-
ematical proof based on the information theory of doubly stochastic matrix. RNA
entropy cannot reach the Shannon entropy because the probabilities of its bases are
23% away from a half that is exactly identical to the sum of its variances. In other
words, there is a difference between Shannon capacity and RNA capacity, which is
identical to the sum of variances of RNA base random variables because they are
unable to become a half over a symmetric channel. We present a straightforward way
of laying out a mathematical basis for double helix DNA in the process of reverse
transcription from RNA to DNA, which is straightforward and explicit by
decomposing a DNA matrix into sparse matrices which have non-redundant columns
and rows. And we introduce a general pattern by block circulant, upper-lower, and
left–right scheme, which is applied to the correct communication as well as means the
healthy condition because it perfectly consists of 4 bases. Furthermore, we introduce
an abnormal pattern by block circulant, upper-lower, and left–right scheme, which
covers the distorted signal as well as COVID-19. The Equation 57, RNA matrix is the
same as the Reference 11 USA patent MIMO Comm. definition 3.1 matrix.
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