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Chapter

Retinal Organoids over the Decade
Jing Yuan and Zi-Bing Jin

Abstract

Retinal organoids (ROs) are 3D tissue structures derived from embryonic stem 
cells (ESCs) or induced pluripotent stem cells (iPSCs) in vitro, which characterize 
the structure and function of retina to a certain extent. Since 2011, mouse and human 
retinal organoids have been available, opening up new avenues for retinal develop-
ment, disease and regeneration research. Over the decade, great progress has been 
made in the development of retinal organoids, which is reflected in the improvement 
of differentiation efficiency and development degree. At the same time, retinal organ-
oids also show broad application prospects, which are widely used in the construction 
of disease models. On this basis, the mechanism of disease, drug screening and retinal 
regeneration therapy have been explored. Although retinal organoids have a bright 
future, the deficiency of their structure and function, the limitations of differentia-
tion and culture, and the difference compared with embryonic retina still remain to 
be solved.

Keywords: retinal organoids, retinal differentiation, disease models,  
retinal degenerative diseases, transplant

1. Introduction

Located in the back of eyeball, the retina is a soft and transparent membrane 
attached to the inner surface of the choroid and forms part of the central nervous 
system. The retina can sense light stimuli, convert the light signals it receives into 
electrical signals, and then transmit them to the cerebral cortex through the optic 
nerve to form vision [1]. The retina is mainly composed of pigment epithelial cells, 
photoreceptor cells, bipolar cells, horizontal cells, amacrine cells, ganglion cells, and 
Müller glial cells [2]. Different neuron types form different layers, and the orderly 
arranged nuclei and synaptic regions are alternately arranged, forming a complex and 
orderly layered structure of the retina [3].

Our early research on the retina, derived only from human fetal retinal tissue [4, 5], 
faced significant challenges due to access difficulties and ethical issues [6]. Beyond that, 
most of what we know about the retina comes from studying animal retinas, but human 
and animal retinas differ in composition and function. For example, most mammals 
have only two types of cone photoreceptors that express S-opsin or M-opsin [7, 8], while 
humans have a third type that expresses L-opsin [9]; mice, the main subjects of our 
study, have a higher proportion of rods than humans [10], whose vision is determined 
by the density of cones in the macula and fovea [11, 12]. Therefore, it is of great signifi-
cance to develop appropriate human retinal models to supplement animal models.
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The establishment of human embryonic stem cell (ESC) lines [13] and the 
emergence of induced pluripotent stem cell (iPSC) technology [14] have turned our 
attention to cell research. Early 2D differentiation protocols used exogenous signaling 
molecules, Wnt antagonist DKK1 and bone morphogenetic protein (BMP) antagonist 
Noggin, to guide pluripotent stem cells to an anterior neural fate [15–17] and to differ-
entiate into various types of retinal cells, including retinal pigment epithelial (RPE) 
cells, photoreceptors, and ganglion cells [18–25]. However, 2D differentiation is far 
from interpreting retinal development in vivo. Retinal development and maturation 
are regulated by a series of interacting signal networks, such as factors secreted by 
RPE that promote photoreceptor maturation. Early retinal differentiation produced a 
single cell type [19–22] and lacked the necessary interaction between cells. Therefore, 
we still need to find a more perfect model of human retina.

This breakthrough was achieved by constructing a 3D differentiation procedure. 
Through 3D differentiation, we can obtain retinal organoids that are highly reducible 
to the development process and complex structure of the retina, which we vividly call 
it “retina in a dish.” In this chapter, we review the development of retinal organoids 
and show their application in today’s life science research.

2. Overview of retinal organoids

In 2011, Sassi’s team used mouse embryonic stem cells (mESCs) to construct the 
first true retinal organoid through a 3D differentiation procedure [26]. In the follow-
ing year, human retinal organoids were created [27], which is of epoch-making sig-
nificance, meaning that human research on retinal development and retinal diseases 
has entered a new stage, and retinal organoids also provide a new and most potential 
tool for the treatment of retinal degeneration diseases.

During neurogenesis in vertebrates, the development of the retina can be roughly 
divided into two stages, the appearance of the optic cup structure and the orderly dif-
ferentiation of seven types of retinal cells. In the first stage, the forebrain splits to form 
two secondary brain vesicles: telencephalon and diencephalon. In the diencephalon, 
eye field region first bulges outward to form the optic vesicle, and the distal vesicle 
invaginates to form the double-layer optic cup, which further develops into the outer 
retinal pigment epithelium and the inner neural retina (NR) (Figure 1a) [28–32]. In 
the second stage, the inner pluripotent retinal progenitor cells (RPCs) sequentially 
differentiate into retinal ganglion cells (RGCs), cone photoreceptors, horizontal cells, 
amacrine cells, rod photoreceptors, bipolar cells and Müller glia cells (Figure 1b) [33]. 
The cone and rod are connected to the retinal pigment epithelium and together form 
the outer nuclear layer (ONL). After extending to the outer plexiform layer (OPL), 
they form synapses with bipolar cells and horizontal cells in the inner nuclear layer 
(INL). On the other side of the inner nuclear layer, bipolar cells, amacrine cells, and 
ganglion cells form the synaptic networks of the inner plexiform layer (IPL). Müller 
glial cells span the whole layer of the retina, from the retinal pigment epithelium to the 
ganglion cell layer (GCL) (Figure 1c) [34, 35].

Retinal development in vivo is regulated by a series of transcription factors, signal 
transduction factors and cell surface factors. In vitro, differentiation of retinal organoids 
is also a programmed process that mimics development in vivo by adding various signal-
ing molecules in stages. First, stem cells proliferate and aggregate (Figure 2A), inducing 
the formation of embryoid body (EB) (Figure 2B) and neuroepithelium (Figure 2C), 
which appear as translucent bright rings under a microscope (Figure 2D). And then, 
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they develop into optic vesicles (Figure 2E), followed by neuroretinas (Figure 2F), which 
in turn differentiate into seven types of retinal cells. The sequence of retinal cell types is 
consistent with in vivo development [36]. After differentiation, the cells undergo sponta-
neous nuclear migration, forming pinnacles and finally arranged into layered structures, 
in which the ganglion cells are located in the inner layer of the retinal organoid and the 
photoreceptors are located in the outer layer of the retinal organoid [26, 27]. Since RPE is 
usually a mass of cells not adjacent to the neuroretina and is not derived from the floating 
culture of optic vesicles, we do not consider it to be part of the retinoid organoid in this 
paper. With the continuous development of differentiation technology, photoreceptors 
in organoids become more and more mature, which is manifested by the appearance of 
outer segments and photosensitivity [37, 38].

Figure 1. 
Overview of retina. (a) the first stage of retinal development: The formation of double—Layer optic cup 
structure. (b) the second stage of retinal development: Retinal progenitor cells (RPCs) differentiate into seven 
types of retinal cells. (c) Structure of the retina.

Figure 2. 
The differentiation of retinal organoids. (A) Growing human embryonic stem cells (H9). (B) Embryoid bodies 
(EB) at day 9 of differentiation. (C) Neuroepithelium appear at day 12. (D) Neuroepithelium appear as 
translucent bright rings at day 12. (E) Optic vesicle/cup at day 21. (F) Neural retinal (NR) region at day 26. 
Scale bars: 1000 μm (A, D, and E); 400 μm (B and C); 200 μm (F). All photos are provided by Dr. Ze-Hua Xu.
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3. Differentiation of retinal organoids

The development of retinal organoid technology is the result of continuous 
attempts and innovations by a large number of researchers. Here, we try to review the 
progress of retinal organoids differentiation in the past ten years (Figure 3).

3.1 Diversity of differentiation methods

There are various differentiation methods for retinal organoids, but in terms of 
differentiation steps, there are mainly two differentiation schemes (Figure 4). The 
first is a classic 3D differentiation protocol from Sassi’s team [26, 27]. The stem cells 
were dissociated and reassembled in a serum-free and low-growth factor medium 
(SFEBq culture, or serum-free culture of embryoid body-like aggregates with quick 
aggregation), and forced to form an embryoid body (EB) in a 96-well V-shaped plate. 

Figure 4. 
Two main methods of retinal organoid differentiation.

Figure 3. 
Progress in retinal organoid differentiation over the decade.
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They were then stimulated by the addition of Matrigel to differentiate into neuro-
epithelial cells and subsequently into retinal progenitor cells and double-layer optic 
cup structures [27]. The cells were in suspension culture during the whole process of 
differentiation, and the formation of optic cups and the differentiation of neuroretina 
were self-organized [27]. 3D differentiation protocol is complicated in the early stage 
of differentiation, but it has a higher degree of reduction in the retinal development 
process, including the occurrence of optic cups invagination, the appearance of 
ciliary marginal stem cells at the NR-RPE boundary [39], and the establishment of 
dorsal-ventral (D-V) polarity [40].

The second differentiation method combines 2D culture and 3D culture (2D/3D) 
[37, 41–46], and the difference is mainly reflected in the early stage of neural induc-
tion. It has been reported that pluripotent stem cells can differentiate into the retina 
even when they are simply fused together [41, 42]. In this differentiation scheme, the 
stem cells were divided into small pieces by enzymatic hydrolysis [37] or mechani-
cal methods [41, 43, 45] to form aggregates. The aggregates were cultured on a 
plate coated with Matrigel or floated in medium in the form of lumps of Matrigel/
PSCs [43, 45]. After it differentiated into neuroepithelium and optic vesicles, the 
latter were separated for suspension culture and further differentiated into retinal 
organoids. This approach bypasses EB formation stage and induces optic vesicle 
formation by endogenous production of inducer molecules from aggregated cells, 
avoiding the aggregation step of SFEBq method and the need of Wnt/BMP antagonist 
[47]. These studies suggest that cell-cell and cell-extracellular matrix interactions 
are key to inducing retinal organoids differentiation in the early stage of stem cell 
differentiation.

With the improvement of differentiation methods, the structure of retinal organoids 
has been improved. Photoreceptors can reach advanced maturity, characterized by 
the formation of the inner and outer segments and connecting cilia of photorecep-
tors, the appearance of photosensitivity [37, 44], the expression of photoreceptor 
neurotransmitters, and the formation of synaptic bands [38, 44]. By adjusting the 
differentiation method, we can also change the proportion of cells in organoids, such as 
retinal organoids rich in cones or RGCs [45, 46], which is good for cell transplantation. 
Oxygen is also an important factor in regulating the differentiation of retinal organoids, 
and hypoxic conditions (5%) effectively produce vesicles and cups as well as more 
mature neuroretinas [48]. Another study showed that high oxygen (40%) promoted the 
formation of NR in EB, as well as the generation, migration and maturation of retinal 
ganglion cells during metaphase differentiation [49]. The co-culture of RPE with retinal 
organoids promoted the differentiation of photoreceptors [50], while the co-culture 
with brain organoids promoted the axon extension of RGCs [51]. More encouragingly, 
researchers have differentiated human brain organoids with bilaterally symmetric 
vesicles [52].

3.2 Modulation of signaling molecules

Retinal development requires the regulation of a series of signaling molecules. 
Similarly, by adding different signaling molecules, retinal organoids differentiation 
can be regulated in vitro. Dickkopf-related protein 1 (DKK-1), a Wnt signaling path-
way antagonist, salvages the self-organizing ability of stem cells to differentiate into 
retinal progenitor cells [53]. Insulin-like growth factor 1 (IGF-1) regulates the forma-
tion of retinal organoids and promotes the formation of the correct retinal lamellar 
structure by various retinal cells [54, 55]. In the absence of IGF-1, retinal lamination 
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was absent at the early stage of differentiation, while photoreceptors decreased and 
retinal ganglion cells increased at the late stage of differentiation [55]. Addition of 
docosahexaenoic acid and fibroblast growth factor 1 can specifically promote the 
maturation of photoreceptors including cones [56]. Replacement of widely used all-
trans retinoic acid with 9-cis-retinoic acid in culture medium promoted the expression 
of rod photoreceptors rhodopsin and the maturation of mitochondrial morphology 
[57, 58]. COCO protein can block BMP/TGFβ/Wnt signaling pathway, enhance photo-
receptor precursors, and promote s-cone differentiation and inner segment protuber-
ances formation [59, 60]. During retinal development, s-cone appear first, followed by 
L/M-cones. This time transition from the designation of the s-cone to the production 
of the L/M-cone is controlled by thyroid hormone (TH) signaling [61].

3.3 Combination of organoid technology and tissue engineering technology

There is also a lot of innovative research that combines retinal organoid technology 
with emerging materials technology. The use of bioreactors improved retinal stratifica-
tion and increased the production of photoreceptors with cilia and new outer segments 
[62]. In static culture, the development of retinal organoids may be limited by oxygen 
and nutrient diffusion, and rotating-wall vessel (RWV) bioreactors can accelerate 
and improve the growth and differentiation of retinal organoids [63]. The spherical 
structure of retinal organoids limits its interaction with host RPE and the remaining 
neuroretinas during transplantation. In order to create a planar retinal organoid, a 
biodegradable scaffold was developed that mimics the extracellular matrix of neuro-
retinas [64]. Retina-on-a-chip is a new microphysiological model of the human retina 
that integrates seven different basic retinal cell types and provides vascular-like perfu-
sion to retinal organoids [65]. Arrayed bottom-lined micropores composed of bionic 
hydrogels, facilitated rapid retinoid tissue formation from mESCs aggregates in an 
efficient and routine manner [66]. Automated microfluidic devices with significantly 
reduced shear stress can maintain the long-term survival of retinal organoids [67]. For 
details of some other differentiation improvements [68–71], please refer to Figure 3.

4. Applications of retinal organoids

As a three-dimensional multicellular structure formed by self-organization in 
vitro, retinal organoids can reproduce the development process of retina in vivo to 
some extent, and can be used to summarize some structural and functional charac-
teristics of human retina. Meanwhile, they are the most promising tools for retinal 
disease research (Figure 5).

4.1 Retinal organoids as disease models

The reprogramming technique enables iPSCs-derived retinal organoids to retain 
the patient’s genetic characteristics, allowing us to study a variety of retinal diseases 
in detail in a dish. To date, retinitis pigmentosa (RP), Laber congenital amaurosis 
(LCA), retinoblastoma (RB) and some other retinal diseases (Table 1) have been 
reproduced in dishes using retinal organoid technology [47, 98].

RP is a relatively common hereditary retinal disorder characterized by night 
blindness and progressive loss of visual field [99]. LCA, the main disease leading to 



7

Retinal Organoids over the Decade
DOI: http://dx.doi.org/10.5772/intechopen.104258

Figure 5. 
Applications of retinal organoids.

Disease models Genetic mutations Phenotypes of retinal organoids Reference

RP Rp11(PRPF31 gene 

mutation)

Gradually degenerating photoreceptors; 

disrupted cilia morphology

[72]

RP RPGR gene 

frameshift mutation

Photoreceptors have significant defects in 

morphology, localization, transcription 

profile and electrophysiological activity; 

shorted cilium was found in patient retinal 

organoids

[73]

RP RP17 structural 

variants

Increased GDPD1 expression may lead to 

dysregulation of lipid metabolism, thus 

affecting photoreceptor function

[74]

RP USH2A gene mutation Aberrant organoids polarization, defective 

neuroepithelium, and abnormal RPCs and 

photoceptors differentiation

[75]

RP Crb1 gene mutation Small but frequent disruptions of CRB 

complex members at the outer limiting 

membrane

[76]

RP PDE6B gene mutation Increased cGMP levels [77]

RP TRNT1 gene mutation Reduced levels of full-length TRNT1 

protein and expression of a truncated 

smaller protein; autophagy was defective, 

with abnormal accumulation of LC3-II and 

elevated oxidative stress levels

[78]
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Disease models Genetic mutations Phenotypes of retinal organoids Reference

RP USH2A gene mutation Post-developmental photoreceptor 

degeneration

[79]

RP REEP6 gene mutation The expression of a retina-specific isoform 

REEP6.1 changes destabilize the protein

[80]

XLRP RP2 gene mutation Rod cell death peaked at day 150 and the 

outer nuclear layer thinned at day 180

[81]

LCA CRX gene mutation Defective photoreceptor maturation with 

diminished expression of visual opsins

[82]

LCA RPE65 gene mutation Lower expression of RPE65, but similar 

phagocytic activity and VEGF secretion level

[83]

LCA AIPL1 gene mutation Patient-derived organoids maintained retinal 

cell cytoarchitecture despite significantly 

reduced levels of AIPL1

[84]

LCA CEP290 gene 

mutation

Cilia defects were evident in photoreceptors [85]

LCA CEP290 gene 

mutation

A high level of aberrant splicing and cilia 

defects

[86]

LCA CRX gene mutation Immature and dysfunctional photoreceptor 

cells

[87]

LCA CEP290 gene 

mutation

CEP290 aberrant splicing [88]

RB RB1 double allele 

deletion

Homozygous deletion of RB1 did not affect 

the maturation and proliferation statuses of 

human iPSCs (no ROs phenotype)

[89]

RB RB1 double allele 

mutation or deletion

Rb originated from ARR3-positive maturing 

cone precursors during development; 

tumorigenesis in retinal organoids

[90]

RB RB1 germline 

mutation

Retinoblastomas formed from retinal 

organoids have molecular, cellular and 

genomic features indistinguishable from 

human retinoblastomas

[91]

S-cone 

syndrome

NRL loss Two distinct populations of s-opsin expressing 

photoreceptors emerge; one population more 

representative of typical cones, and the other 

of rod/cone intermediates

[92]

Rod-cone 

dystrophy

CRB1 gene mutation A novel CRB1 transcript displaying skipping 

of exon 6

[93]

Macular 

telangiectasia 

type 2

Normal organoids 

were treated with 

deoxy

Dead photoreceptors [94]

Microphthalmia VSX2(R200Q ) gene 

mutation

Bipolar cells are absent; delayed 

photoreceptor maturation

[95]

Stargardt disease ABCA4 gene mutation ABCA4 splicing defect [96]

X-linked 

juvenile cleft 

retina (XLRS)

RS1 gene mutation Retinal splitting, defective retinoschisin 

production, outer-segment defects, 

abnormal paxillin turnover, and impaired 

ER-Golgi transportation

[97]

Table 1. 
Retinal organoids as disease models.
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congenital blindness in infants, accounts for more than 5% of hereditary retinopathy, 
with complete loss of binocular cone and rod function within 1 year after birth [100]. 
Both diseases have been reported to be associated with multiple pathogenic genes. 
By differentiating different genetically-mutated stem cell lines into retinal organoids 
[101], we can observe their disease phenotypes in dishes, including photoreceptor 
degeneration, ciliary morphology disorder, and various functional impairment at 
molecular levels. Retinoblastoma is the most common intraocular malignancy in 
children [102]. The main cause of retinoblastoma is the loss of RB1 gene expression 
[103]. RB1 gene is a tumor suppressor gene, but the mechanism of RB1 deletion lead-
ing to retinal cancer is not clear, one of the key questions is the origin of RB cancer. By 
constructing RB models based on retinal organoids [104], we successfully observed 
tumorigenesis in retinal organoids and demonstrated that RB originates from ARR3 
positive precursors of mature cones during development [90]. Other disease mod-
els, such as s-cone syndrome, rod-cone dystrophy, Macular telangiectasia type 2, 
microphthalmia, Stargardt disease, X-linked juvenile cleft retina, have also contrib-
uted to our understanding of retinal diseases.

4.2 Retinal organoids as tools for therapeutic research

4.2.1 Gene therapy

Identification of pathogenic genes promotes the generation of animal models 
and elucidates the physiological functions of gene products to a certain extent, thus 
promoting the development of gene therapy. So far, most research has focused on 
saving retinal organoid disease phenotypes through gene editing of patient-specific 
induced pluripotent stem cells [72, 73, 87, 97, 105, 106]. However, this strategy cannot 
be applied to patients. Adeno-associated virus (AAV) show great promise as a gene 
therapy vector for a wide range of retinal diseases. For example, AAV-mediated gene 
augmentation has successfully treated LCA caused by RPE65 mutations [107]. AAV-
mediated gene therapy based on retinal organoids has also shown promising results in 
the laboratory [81, 82, 108]. In addition, gene therapies such as antisense morpholino 
and antisense oligonucleotides (AONs) have also been reported (Table 2).

4.2.2 Cell replacement therapy

Hereditary retinal degenerative diseases such as RP, Stargardt’s disease and LCA 
are the leading cause of incurable blindness. The vision loss associated with these 
diseases is caused by the death of photoreceptors in the retina. Existing treatments, 
including neuroprotection and gene therapy, require the presence of endogenous 
photoreceptors. In addition, due to the complex mechanism of retinal degeneration 
diseases, especially RP, it has been found that there are multiple genes with multiple 
mutation modes, and treatment methods focusing on a single mutation are extremely 
difficult technically and economically. Thus, transplant-based photoreceptor cell 
replacement becomes an attractive therapeutic strategy for restoring visual function 
and, if successful, could be applied to a wide range of retinal degenerative diseases.

Research on retinal cell transplantation dates back to 2006 [109]. Mice were able 
to effectively integrate rod photoreceptor precursor cells isolated from juvenile mice 
retinas into the ONL. These cells can further differentiate in the host retina and 
exhibit morphological characteristics typical of mature photoreceptors, such as inner 
and outer segments, while expressing molecules necessary for light transduction, 
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forming synaptic connections with downstream cells, generating light responses 
and promoting visual function [109–115]. These results demonstrate the feasibility 
of photoreceptor transplantation as a therapeutic strategy for restoring visual acuity 
after retinal degeneration.

However, this cannot be applied to the treatment of retinal diseases in humans. There 
are ethical challenges to primary photoreceptors transplantation, but stem cell-based 
photoreceptors can avoid this problem. It has been shown that photoreceptor cells derived 
from stem cells can be integrated into mouse retinas, restoring the animal’s response to 
light [116, 117]. This is far from enough, until the appearance of retinal organoids, retinal 
cell transplantation and clinical transformation have made a breakthrough.

Transplantation of retinal organoids, mainly photoreceptors, is also a process 
of constant exploration [118]. The safety and effectiveness of transplantation, the 
enrichment and purification of transplanted cells, the effects of retinal organoids at 

ROs Gene therapy Result Reference

CEP290-LCA-

Optic Cups

Antisense morpholino Effectively blocked aberrant splicing and 

restored expression of full-length CEP290, 

restoring normal cilia-based protein 

trafficking

[86]

RP11 

(PRPF31)-RP-ROs

CRISPR/Cas9-mediated 

gene correction

Rescued protein expression and key cellular 

phenotypes in RPE and photoreceptors

[72]

RPGR-RP-ROs CRISPR/Cas9-mediated 

gene correction

Rescued photoreceptor structure and 

electrophysiological property, reversed the 

observed ciliopathy

[73]

CEP290-LCA10-

ROs

Antisense oligonucleotides Restored wild-type CEP290 mRNA and 

protein expression levels

[88]

CEP290-Rd16-

mROs

AAV-mediated CEP290 

fragment

Improved cilia phenotype [108]

RS1-XLRS-ROs CRISPR/Cas9-mediated 

base-editing

Normalized the splitting phenotype, 

outer-segment defects, paxillin dynamics, 

ciliary marker expression, and transcriptome 

profiles

[97]

RP2KO-XLRP-ROs AAV-mediated gene 

augmentation

Rescued the degeneration phenotype of the 

RP2 KO organoids, to prevent ONL thinning 

and restore rhodopsin expression

[81]

ABCA4-

Stargardt-ROs

Antisense 

oligonucleotides(AONs)

Saved the splicing defect [96]

G56R-ADRP-ROs CRISPR/Cas9 mediated gene 

knockout

ROs differentiation and NR2E3 expression 

were normal

[106]

CRX-LCA-ROs AAV-mediated CRX gene 

augmentation therapy

Partially restored photoreceptor phenotype 

and expression of phototransduction-related 

genes; Reduced the loss of opsin expression

[82]

CLN3-RP-ROs Gene correction Restored CLN3 mRNA and protein 

expression and prevented SCMAS and inner 

segment vacuolization

[105]

CRX-LCA7-ROs CRISPR/Cas9-based gene 

knockout

Rescued the photoreceptor phenotypes in 

organoids

[87]

Table 2. 
Gene therapy based on retinal organoids.
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different stages of development and host retinas with different degrees of degenera-
tion on the efficiency of transplantation, and the evaluation of cell integration and 
function after transplantation are all issues that need to be explored.

Table 3 gives a brief summary of some retinal organoid transplantation cases 
in recent years. There are two transplantation methods: one is to digest the retinal 

Graft/Host Transplantation method Transplantation result Reference

Rhodopsin-GFP-mESC-

ROs-rod precursors/

adult mice with retinal 

degeneration

Cell suspension Transplanted cells integrate within 

the degenerated retinas of mice and 

mature into outer segment-bearing 

photoreceptors

[119]

CRX-GFP-mESC-ROs-

photoreceptors/adult 

NOD/SCID recipient mice

Cell suspension After transplantation, the integrated 

cells showed typical mature rod 

structures with outer segments and 

banded synapses

[120]

mESC or miPSC-derived 

3D retinal tissue/advanced 

retinal degeneration 

model (rd1) that lacked 

ONL

Retinal tissue A structured outer nuclear layer 

(ONL) with complete inner and outer 

segments was developed; host-graft 

synaptic connections were observed

[121]

hESC-retina sheet/

Two focal selective 

photoreceptor 

degeneration monkey 

models

Retinal tissue Transplanted retinal tissue 

differentiated into a series of retinal 

cell types, including rod and cone 

photoreceptors that formed structured 

outer nuclear layers; formation of 

host-graft synaptic connections

[122]

Rhodopsin-GFP-mESC-

ROs-(CD73-MACS)-

photoreceptors/mouse 

models with mild or severe 

cone-rod degeneration

Cell suspension Some cells integrated into mouse 

retinas and acquired a mature 

morphology, expressing rod and 

synaptic markers in close proximity 

to secondary neurons

[123]

Mesc-ROs-cone/adult 

Aipl1−/− mice

Cell suspension Transplanted cells showed capacity to 

survive and mature in the subretinal 

space

[124]

hPSC-ROs-L/M-opsin+ 

cones/Nrl−/−mice 

or advanced retinal 

degeneration mice

Cell suspension Human cones can become 

incorporated within an adult 

mammalian retina

[44]

hiPSC-ROs(cGMP)-

photoreceptors/

immunodeficient mouse

Cell suspension Retinal cells successfully integrated 

into the photoreceptor layer 

and developed into mature 

photoreceptors

[125]

hESC-ROs-retinal sheets

/mice of end-stage 

retinal degeneration with 

immunodeficiency

Retinal tissue Long-term survival and well-

structured graft photoreceptor layer 

maturation without rejection or 

tumor formation; formation of host-

graft synaptic connections

[126]

hESC-ROs(30–65 days of 

differentiation)-retinal 

sheets/immunodeficient 

rho S334ter-3 rats

Retinal tissue The transplanted sheets differentiated, 

integrated, and produced functional 

photoreceptors and other retinal cells; 

maturation of the transplanted retinal 

cells created visual improvements; the 

donor cells were synaptically active

[127]
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Graft/Host Transplantation method Transplantation result Reference

CRX-hiPSC-ROs-

photoreceptors precursors 

(CD73-MACS)/P23H rats

Cell suspension CD73+ photoreceptor precursors 

can be isolated in large numbers and 

transplanted into rat eyes, showing 

capacity to survive and mature in 

close proximity to host inner retina 

(hiPSC-derived retinal cells did not 

appear to migrate to host ONL)

[128]

CRX-hiPSC-ROs-

photoreceptors 

precursors/Pde6brd1 mice

Cell suspension The CRX+ cells settled next to 

the inner nuclear layer and made 

connections with the inner neurons 

of the host retina, and approximately 

one-third of them expressed the pan 

cone marker, Arrestin 3, indicating 

further maturation upon integration 

into the host retina

[129]

hESC-ROs-retinal 

progenitor cells (RPCs)/

RD models of rats and 

mice

Cell suspension Transplanted cells significantly 

improve vision and preserve the 

retinal structure

[130]

hiPSC-ROs-Jaws-

expressing PRs/blind mice 

lacking the photoreceptor 

layer

Cell suspension Light-driven responses at the 

photoreceptor and ganglion cell levels 

were observed

[131]

hiPSCs-ROs-Müller glia/

rats depleted of retinal 

ganglion cells by NMDA

Cell suspension Transplanted cells can partially 

restore visual function

[132]

hESC-ROs-retinal tissue/

cat

Retinal tissue Large number of graft-derived 

fibers connecting the graft and the 

host; presence of human-specific 

synaptophysin puncta in the cat retina

[133]

hESC-Ros-retinal sheet/

immunodeficient RCS rats

Retinal tissue The transplanted organoids survived 

more than 7 months; developed 

photoreceptors with inner and outer 

segments, and other retinal cells; and 

were well-integrated within the host

[134]

hiPSC-ROs-cones/mice 

with retinal degeneration

Cell suspension Restoration of surprisingly complex 

light-evoked retinal ganglion cell 

responses and improved light-evoked 

behaviors in treated animals

[135]

hiPSC-ROs-retinal sheets 

with PLGA scaffolds/

rhesus monkey

Retinal tissue With sufficient graft-host contact 

provided by the scaffold, the 

transplanted tissues survived for 

up to 1 year without tumorigenesis; 

Histological examinations indicated 

survival, further maturation, and 

migration

[136]

mESC-ROs-retinal 

progenitor cells (RPC)/

mice with retinal 

degeneration

Cell suspension RPC grafts form active synaptic 

networks within sites of ADR that 

functionally integrate with the 

retinal neuron populations and that 

resemble physiological patterns of 

neural circuits to the normal retina

[137]
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organ into a single cell, from which the photoreceptor cells are purified and 
enriched, and the transplantation is carried out in the form of cell suspension. 
Another method is to strip the photoreceptor layer from the retinal organ and 
transplant it in thin slices. This method is more difficult to operate, because it is dif-
ficult to maintain the correct shape and polarity of the retina when it is transplanted 
into the eye of the host, and appropriate transplantation instruments need to be 
designed. The implant may contain some interneurons that block the connection 
between photoreceptor cells and the remaining inner layer of the retina in the host, 
and there are eye size requirements in the host animal. The implant is usually per-
formed in rats, cats and non-human primates. In general, we have gained a lot from 
the exploration of retinal organ transplantation. A number of studies have shown 
that transplanted cells or tissues can survive in the host eye for a long time, migrate 
and integrate into the correct location. Integrated cells can further differentiate 
and mature in vivo, presenting typical cell structures, such as internal and external 
segments, and expressing corresponding cell markers and synaptic markers. In 
some studies, the formation of synaptic connections between host and graft and 
improvement of host visual function were also observed. In the host, transplanted 
cells or tissues are electrically excitatory [136], indicating their potential for restor-
ing visual function. Through behavioral and electrophysiological experiments, 
we found that the host can not only slow down the progressive visual loss to some 
extent, but also show a relatively significant recovery of visual function [127, 130, 
131, 134, 135, 137, 138]. These are exciting results and suggest that cell replacement 
therapy based on retinal organoids is a promising treatment that will bring light to 
patients with retinal diseases.

4.3 Retinal organoids for drug screening

Drug development focuses on screening, a process that requires cell models. 
The closer the cell model was to the physiological state, the more accurate the 
screening was. Therefore, organoids are undoubtedly a better choice for drug 
screening. Some ocular supplements, vitamin E, lutein, astaxanthin, and antho-
cyanin, have been reported to protect retinal photoreceptor degeneration induced 
by 4-hydroxytamoxifen (4-OHT) and light [139]. Few studies have successfully 
screened effective drugs using retinal organoids. In addition, there are some stud-
ies using retinal organoids as screening tools to explore the membrane transport 
effects of some microbial opsin [140]. These results suggest that retinal organoids 
can be used to validate the effectiveness of some therapeutic products and drug 
molecules.

Graft/Host Transplantation method Transplantation result Reference

ROs and polarized 

RPE sheets were 

made into a co-graft 

using bio-adhesives/

immunodeficient  

RCS rats

Total retina patch Co-grafts grew, generated new 

photoreceptors and developed 

neuronal processes that were 

integrated into the host retina

[138]

Table 3. 
Research on transplantation of retinal organoids.
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5. Limitations and deficiencies

In recent years, although the technology of retinal organoids has made great 
progress, it is still beyond the reach of our existing tools and technologies to construct 
retinal organoids with the same structure and physiological functions as the mature 
retina in vivo. Our research on retinal organoids is still in its infancy and there are 
some limitations to overcome.

Long-term maintenance of retinal organoids depends on oxygen and nutrients, 
and in our existing culture system, oxygen diffusion limits the size of retinal organ-
oids and the development of their internal cells, especially ganglion cells. Currently, 
we are trying to introduce a combination of tissue engineering techniques to solve this 
problem, such as the use of bioreactors and retinal chips [62, 63, 65]. The absence of 
vascular system also limits the long-term maintenance of organoids. Microglia are the 
resident immune cells of the central nervous system and are particularly important 
for the development of the retina, which can regulate the survival of neurons and 
prune synapses [141]. Co-differentiation of retinal organoids and vascular tissues 
or microglia in a dish is challenging because they come from different germ layers. 
The retina develops from the ectoderm, while vascular tissue-associated cells and 
microglia originate from the mesoderm. Therefore, we usually choose to achieve the 
complexity of retinal organoids through co-culture. In recent years, the realization of 
vascular structure in human brain has made some progress. After transplantation of 
human cerebral organs into the cerebral cortex of mice, the growth of blood vessels 
in mice was induced to increase the survival and maturation of cells [142]. In vitro, 
a study found that ectopic expression of human ETS variant 2 (ETV2) in hESCs can 
form a complex vascular-like network in human cortical organs and promote the 
maturation of organoid function [143]. In the future, we also expect that 3D printing 
of vascular tissue [144] and co-culture with mesodermal progenitor cells [145] will 
make the differentiation system of retinal organoids more perfect. For the retina in a 
petri dish to function, the most important point is to establish synaptic connections 
and form functional circuits. While our differentiated retina can form synaptic con-
nections now, it’s not nearly as good as the complex network of synapses in the retina 
in vivo. Even retinal organoids derived from normal stem cell lines respond poorly to 
light. This may be due to the gradual degeneration of ganglion cells during late dif-
ferentiation and lack of connection to the brain, which hindrance our assessment of 
retinal functional circuits. It may also be associated with limited growth of the outer 
segment due to the lack of direct interaction with RPE. Retinal organoid technology 
has solved the problem of cell-cell interaction, but in organisms, tissue-to-tissue and 
organ-to-organ interactions remain important for development. For example, the 
relationship of the retina to the lens, ciliary body and cornea, and the relationship of 
the retina to the brain.

6. Conclusions

It’s an exciting time, and technological advances have made a lot of things possible. 
Retinal organoids are our research tools for overcoming retinal diseases. It allows 
us to further understand the development and maturation of the retina, reproduce 
disease pathology and phenotypes in vitro, and explore the feasibility of gene therapy. 
In addition, it provides us with cells for cell transplantation and drug screening. We 
have enjoyed the great benefits brought by retinal organoids. However, their defects 
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and deficiencies are also prominent, which is the direction we need to work towards. 
There is still a long way to go in the development of retinal organoids, and we expect 
that technological breakthroughs will enable us to advance to the next level in this 
field in the future.
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