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Chapter

Weighted Least Squares
Perturbation Theory
Aleksandr N. Khimich, Elena A. Nikolaevskaya

and Igor A. Baranov

Abstract

The interest in the problem of weighted pseudoinverse matrices and the problem
of weighted least squares (WLS) is largely due to their numerous applications. In
particular, the problem of WLS is used in the design and optimization of building
structures, in tomography, in statistics, etc. The first part of the chapter is devoted to
the sensitivity of the solution to the WLS problem with approximate initial data. The
second part investigates the properties of a SLAE with approximate initial data and
presents an algorithm for finding a weighted normal pseudo solution of a WLS prob-
lem with approximate initial data, an algorithm for solving a WLS problem with
symmetric positive semidefinite matrices and an approximate right side and also a
parallel algorithm for solving a WLS problem. The third part is devoted to the analysis
of the reliability of computer solutions of the WLS problem with approximate initial
data. Here, estimates of the total error of the WLS problem are presented, and also
software-algorithmic approaches to improving the accuracy of computer solutions.

Keywords: weighted least squares problem, error estimates, weighted matrix
pseudoinverse, weighted condition number, weighted singular value decomposition

1. Introduction

The interest in the problem ofweighted pseudoinversematrices and theWLS problem
is largely due to their numerous applications. In particular, the problem of weighted least
squares is used in the design and optimization of building structures, in tomography, in
statistics, etc. A number of properties of weighted pseudoinverse matrices underlie the
finding of weighted normal pseudosolutions. The field of application of weighted
pseudoinverse matrices and weighted normal pseudosolutions is constantly expanding.

The definition of a weighted pseudoinverse matrix with positive definite weights
was first introduced by Chipman in article [1]. In 1968, Milne introduced the definition
of a skew pseudoinverse matrix in paper [2]. The study of the properties of weighted
pseudoinverse matrices and weighted normal pseudosolutions, as well as the construc-
tion of methods for solving these and other problems, are devoted to the works of Mitra,
Rao, Van Loan, Wang, Galba, Deineka, Sergienko, Ben-Israel, Elden, Wei, Wei, Ward
etc. Weighted pseudoinverse matrices and weighted normal pseudosolutions with
degenerate weights were studied in [3–5]. The existence and uniqueness of weighted
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pseudoinverse matrices with indefinite and mixed weights, as well as some of their
properties, were described in [6–8]. Application of the weighted pseudoinverse matrix
in statistics presented, for example, in [9, 10]. Many results on weighted generalized
pseudo-inversions can be found in monographs [11, 12]. Much less work is devoted to
the study of weighted pseudoinversion under conditions of approximate initial data.
These issues are discussed in [13–17]. Analysis of the properties of weighted
pseudoinverses and weighted normal pseudosolutions, as well as the creation of solution
methods for these and other problems, are described in [18–20].

When solving applied problems, their mathematical models will have, as a rule,
approximate initial data as a result of measurements, observations, assumptions,
hypotheses, etc. Later, during discretization (‘arithmetization’) of the mathematical
model, these errors are transformed into the errors of the matrix elements and the right
parts of the resolving systems of equations. The input data of systems of linear algebraic
equations and WLS problems can be determined directly from physical observations,
and therefore they can have errors inherent in all measurements. In this case, the
original data we have is an approximation of some exact data. And, finally, the initial
data of mathematical models formulated in the form of linear algebra problems can be
specified exactly in the form of numbers or mathematical formulas, but, given the finite
length of a machine word, it is impossible to work with such an exact model on a
computer. The machine model of such a problem in the general case will be approxi-
mate either due to errors in converting numbers from the decimal system to binary or
due to rounding errors in the implementation of calculations on a computer.

The task is to study the properties of the machine model and to form a model of the
problem and an algorithm for obtaining an approximate solution in a machine envi-
ronment that will approximate the solution of a mathematical problem. The key
question of numerical simulation is the reliability of the obtained machine solutions.

The most complete systematic exposition of questions related to the approximate
nature of the initial data in problems of linear algebra is given in the monographs [21–
24]. Various approaches to the study and solution of ill-posed problems were consid-
ered, for example, in [25–28]. Problems of the reliability of a machine solution for
problems with approximate initial data, i.e. estimates of the proximity of the machine
solution to the mathematical solution, estimates of the hereditary error in the mathe-
matical solution and refinement of the solution were considered in the publications
[12, 26, 29–33]. Much less work has been devoted to the study of similar questions for
the WLS problem. The sensitivity analysis of a weighted normal pseudosolution under
perturbation of the matrix and the right-hand side is the subject of papers [16, 34–36].

The chapter is devoted to the solution of the listed topical problems, namely the
development of the perturbation theory for the WLS problem with positive definite
weights and the development of numerical methods for the study and solution of
mathematical models with approximate initial data.

2. Weighted least squares problem

2.1 Preliminaries

Let the set of allm� nmatrices is denoted by Rm�n. Given a matrix A∈Rm�n let AT

is the transpose of A, rank Að Þ is the rank of A,  Að Þ is the field of values of A and
 Að Þ is the null space of A. Additionally, let kk denote the vector 2-norm and the
consistent matrix 2-norm, and let I be an identity matrix.

Matrix Theory - Classics and Advances
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Given an arbitrary matrix A∈Rm�n and symmetric positive definite matricesM and
N of orders m and n, respectively, a unique matrix X ∈Rm�n, satisfying the conditions:

AXA ¼ A, XAX ¼ X, MAXð ÞT ¼ MAX, NXAð ÞT ¼ NXA, (1)

is called the weighted Moore–Penrose pseudoinverse of A and is denoted by
X ¼ Aþ

MN. Specifically, ifM ¼ I∈Rm�m and N ¼ I∈Rn�n, then X satisfying conditions

(1) is called the Moore–Penrose pseudoinverse and is designated as X ¼ Aþ.
Let A# denote the weighted transpose of A, P and Q be idempotent matrices, and

�А ¼ Aþ ΔA be a perturbed matrix, i.e.,

A# ¼ N�1ATM: (2)

P ¼ Aþ
MNA,Q ¼ AAþ

MN,
�P ¼ �A

þ
MN

�A, �Q ¼ �A�A
þ
MN : (3)

Let x∈Rm, y∈Rn. The weighted scalar products in Rm and Rn are defined as

x, yð ÞM ¼ yTMx, x, y∈Rm and x, yð ÞN ¼ yTNx, x, y∈Rn, respectively. The weighted
vector norms are defined as:

xk kM ¼ x, xð Þ
1
2
M ¼ xTMx

� �1
2 ¼ M

1
2x

�

�

�

�

�

�, x∈Rm,

yk kN ¼ y, yð Þ
1
2
N ¼ yTNy

� �1
2 ¼ N

1
2y

�

�

�

�

�

�, y∈Rn:
(4)

Let x, y∈Rm and x, yð ÞM ¼ 0. Then the vectors x and y are called M-orthogonal, i.е.

M
1
2x- and M

1
2y-orthogonal. It is easy to show that.

xþ yk k2M ¼ xk k2M þ yk k2M, x, y∈Rm: (5)

The weighted matrix norms are defined as:

Ak kMN ¼ max
xk kN¼1

Axk kM ¼ M
1
2AN�1

2

�

�

�

�

�

�,A∈Rm�n,

Bk kNM ¼ max
yk kM¼1

Byk kN ¼ N
1
2AM�1

2

�

�

�

�

�

�,B∈Rn�m:

(6)

Lemma 1 (see in [37]). Let A∈Rm�n, rank Að Þ ¼ k, M and N are positive definite
matrices of orders m and n, respectively. Then, there are matrices U ∈Rm�m and

V ∈Rn�n, satisfying UTMU ¼ I and VTN�1V ¼ I such that.

A ¼ U
D 0

0 0

� �

VT, Aþ
MN ¼ N�1V

D�1 0

0 0

 !

UTM, (7)

where D ¼ diag μ1, μ2, … , μkð Þ, μ1 ≥ μ2 ≥ … ≥ μk >0 and μ2i are the nonzero eigen-
values of the matrix A#A. The nonnegative values μi are called the weighted singular

values of A, moreover, Ak kMN ¼ μ1, Aþ
MN

�

�

�

�

NM
¼ 1

μk
.

The weighted singular value decomposition of A yields an M-orthonormal basis of

the vectors of U and an N�1-orthonormal basis of the vectors of V.

Weighted Least Squares Perturbation Theory
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2.2 Statement of the problem

In the study of the reliability of the obtained machine results, three linear systems
are considered. A system of linear algebraic equations with exact input data

Ax ¼ b: (8)

We will consider the corresponding weighted least squares problem with positive
definite weights M and N:

min
x∈C

xk kN,C ¼ xj Ax� bk kM ¼ min
� �

, (9)

where A∈Rm�n is a rank-deficient matrix and b∈Rm.
Along with (9), we consider the mathematical model with approximately specified

initial data.

min
x∈C

�xk kN,C ¼ �xj Aþ ΔAð Þ�x� bþ Δbð Þk kM ¼ min
� �

, (10)

where.

�А ¼ Aþ ΔA, �b ¼ bþ Δb, �x ¼ xþ Δx: (11)

Assume that the errors in the matrix elements and the right-hand side satisfy the
relations:

ΔAk kMN ≤ εA Ak kMN, Δbk kM ≤ εb bk kM: (12)

The problem for the approximate solution ��x of a system of linear algebraic equa-
tions with approximately given initial data

�A��x ¼ �bþ �r, (13)

where �r ¼ �A��x� �b is the residual vector.
The analysis of the reliability of the obtained solution includes an assessment of the

hereditary error x� �xk kN, computational error �x� ��xk kN and total error x� ��xk kN, as
well as the refinement of the obtained machine solution to a given accuracy.

2.3 The existence and uniqueness of a weighted normal pseudoinverse

Let linear manifold L be a nonempty subset of space R, closed with respect to the
operations of addition and multiplication by a scalar (if x and y are elements of L ∀α, β,
the αxþ βy is an element of L). Vector x is N-orthogonal to the linear manifold L
(x⊥NL) if x is N-orthogonal to each vector from L.

Lemma 2 (see in [38]). There exists a unique decomposition of vector x, namely
x ¼ x̂þ ~x, where x̂∈L, ~x⊥NL.

Let A is an arbitrary matrix. The kernel of matrix A, denoted by  (A), is the set of
vectors mapped into zero by А:  Að Þ ¼ x : Ax ¼ 0f g.

The set  Að Þ of images of matrix A is the set of vectors that are images of vectors
of the space R from the definition domain of A, i.e.  Að Þ ¼ b : b ¼ Ax, ∀xf g .

Matrix Theory - Classics and Advances
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Let L be a linear manifold in space R, N-orthogonal (M-orthogonal) complement

to L, denoted by L⊥N (L⊥M), defined as the set of vectors in R, each of which is
N-orthogonal (M-orthogonal) to L.

Remark 1. If x is a vector from R and xTNy ¼ 0 for any y from R, then x ¼ 0.

Theorem 1. Let A∈Rm�n, then  Að Þ ¼ 
⊥ A#ð Þ.

Proof. Vector x∈ Að Þ, if and only if Ax ¼ 0. Hence, by virtue of Remark1, we

get x∈ Að Þ, if and only if yTMAx ¼ 0 for any y. Since yTMAx ¼ A#yð ÞTNx, we
get Ax ¼ 0 if and only if x is N-orthogonal to all the vectors of the form A#y.
Vectors A#y form  A#ð Þ. The required statement follows from here and from the

definition 
⊥M Að Þ.

Theorem 2 (see in [38]). If A is anm� nmatrix and b is an m-dimensional vector,

then the unique decomposition b ¼ b̂þ ~b holds, where b̂∈ Að Þ and ~b∈ A#ð Þ.

Vector b̂ is a projection of b on to  Að Þ, and ~b is a projection of b on to  A#ð Þ.

Vectors b̂ and ~b are M-orthogonal. Hence, A#b ¼ A#b̂.

By Theorem 1, the following relations hold for the symmetric matrix A:  Að Þ ¼


⊥ Að Þ, Að Þ ¼ 

⊥ Að Þ:
Theorem 3. Let A∈Rm�n, then  Að Þ ¼  AA#ð Þ,  A#ð Þ ¼  A#Að Þ,  Að Þ ¼

 A#Að Þ and  A#ð Þ ¼  AA#ð Þ .
Proof. It will be to establish that  A#ð Þ ¼  AA#ð Þ and  Að Þ ¼  A#Að Þ.
For this purpose, we will use Theorem 1. To prove the coincidence of  A#ð Þ and

 AA#ð Þ, note that AA#x ¼ 0 if A#x ¼ 0. On the other hand, if AA#x ¼ 0, then
xTAA#x ¼ 0, i.е. A#xk kM ¼ 0, which entails equality A#x ¼ 0. So, A#x ¼ 0 if and

only if xTAA#x ¼ 0. We can similarly establish that  Að Þ ¼  A#Að Þ.
Then let us prove the theorem about the existence and uniqueness of the solution

vector that minimizes the norm of the residual Ax� bk kM by the technique proposed
in [39] for the least-squares problem.

Theorem 4. Let A∈Rm�n, b∈Rm, b ∉  Að Þ. Then there exists a vector x̂, that
minimizes the norm of the residual Ax� bk kM and vector x̂ is a unique vector from

 A#ð Þ, that satisfies the equation Ax ¼ b̂, where b̂ ¼ AAþ
MNb is the projection of b

onto  Að Þ.

Proof. By virtue of Theorem 2, we get b ¼ b̂þ ~b, where ~b ¼ I � AAþ
MN

� �

b is

the projection of b on to  A#ð Þ. Since for every x,Ax∈ Að Þ and ~b∈
⊥M Að Þ, then

b̂� Ax∈ Að Þ and ~b⊥b̂� Ax. Therefore

b� Axk k2M ¼ b̂� Axþ ~b
�

�

�

�

�

�

2

M
¼ b̂� Ax
�

�

�

�

�

�

2

M
þ ~b
�

�

�

�

�

�

2

M
≥ ~b
�

�

�

�

�

�

2

M
: (14)

This lower bound is attained since b̂ belongs to the set of images А, i.е. b̂ is an image

of some x0: b̂ ¼ Ax0.
Thereby, for this x0 the greatest lower bound is attainable:

b� Ax0k k2M ¼ b� b̂
�

�

�

�

�

�

2

M
¼ ~b
�

�

�

�

�

�

2

M
: (15)

It was shown earlier that

b� Axk k2M ¼ b̂� Ax
�

�

�

�

�

�

2

M
þ ~b
�

�

�

�

�

�

2

M
(16)

Weighted Least Squares Perturbation Theory
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and hence, the lower bound can only be attained for x ∗ , for which Ax ∗ ¼ b̂.
According to Theorem 2, each vector x ∗ , can be presented as a sum of two orthogonal
vectors: x ∗ ¼ x̂ ∗ þ ~x ∗ , where x̂ ∗

∈ A#ð Þ, ~x ∗
∈ Að Þ.

Therefore, Ax ∗ ¼ Ax̂ ∗ and hence, b� Ax ∗k k2M ¼ b� Ax̂ ∗k k2M. Note that

x ∗k k2N ¼ x̂ ∗k k
2
N þ ~x ∗k k2N ≥ x̂ ∗k k

2
N, (17)

where strict inequality is possible when x ∗ 6¼ x̂ ∗ (i.е. if x ∗ does not coincide with
its projection on to  A#ð Þ).

It was shown above, that x0 minimizes Ax� bk kM, if and only if Ax0 ¼ b̂, and
among the vectors that minimize Ax� bk kM, each vector with the minimum norm
should belong to the set of images A#. To establish the uniqueness of a minimum-

norm vector, assume that x̂ and x ∗ belong to  A#ð Þ and that Ax̂ ¼ Ax ∗ ¼ b̂.

Then x ∗ � x̂∈ A#ð Þ, however A x ∗ � x̂ð Þ ¼ 0, so x ∗ � x̂∈ Að Þ ¼ 
⊥N A#ð Þ.

As vector x ∗ � x̂ is N-orthogonal to itself x ∗ � x̂k kN ¼ 0, i.е. x ∗ ¼ x̂.
Remark 2. There is another assertion that is equivalent to Theorem 4. There exists

an n-dimensional vector y such that

b� AA#yk kM ¼ inf
x

b� Axk kM: (18)

If

b� Ax0k kM ¼ inf
x

b� Axk kM, (19)

then x0k kN ≥ A#yk kN with strict inequality for x0 6¼ A#yk kN .

Vector y satisfies the equation AA#y ¼ b̂, here b̂ is the projection of b onto  Að Þ.
Theorem 5. Among all the vectors x that minimize the residual Ax� bk kM, vector

x̂, which has the minimum norm x̂ ¼ min xk kN, is a unique vector of the form

x̂ ¼ N�1ATMy ¼ A#y, (20)

satisfying the equation

A#Ax ¼ A#b, (21)

i.е. x̂ can be obtained by means of any vector y0, that satisfies the equation
A#AA#y ¼ A#b by the formula x̂ ¼ A#y0.

Proof. According to the condition of Theorem 3  A#ð Þ ¼  A#Að Þ. Since vector
A#b belongs to the set of images A#, it should belong to the set of images A#A and thus
should be an image of some vector xwith respect to the transformation A#A. In other
words, Eq. (21) (with respect to x) has at least one solution. If x is a solution of
Eq. (21), then x̂ is the projection of x on to  A#ð Þ, since Ax ¼ Ax̂ according to
Theorem 2. Since x̂∈ A#ð Þ, vector x̂ is an image of some vector y with respect to the
transformation A#: x̂ ¼ A#y.

Thus, we have established that there exists at least one solution of Eq. (21) in the
form of (20). To establish the uniqueness of this solution, we assume that x̂1 ¼ A#y1
and x̂2 ¼ A#y2 satisfy Eq. (21). Then A#A A#y1 � A#y2

� �

¼ 0, therefore,

A# y1 � y2
� �

∈ A#Að Þ ¼  Að Þ, where from the equality AA# y1 � y2
� �

¼ 0 follows.

Matrix Theory - Classics and Advances
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Therefore y1 � y2 ∈ AA#ð Þ ¼  A#ð Þ; hence, x̂1 ¼ A#y1 ¼ A#y2 ¼ x̂2.
Thus, there exists exactly one solution of Eq. (21) in the form (20). The proof of

Theorem 5 will be completed if we can show that by virtue of Theorem 1 the solution

found in the form (14) is also a solution of the equation Ax ¼ b̂, where b̂ is a weighted

projection of b on to  Að Þ, i.е. A#b ¼ A#b̂.
Theorem 4 establishes that there is a unique, from  A#ð Þ solution of the equation

Ax ¼ b̂: (22)

Hence, this unique solution satisfies the equation A#Ax ¼ A#b̂.

According to the equality A#b ¼ A#b̂ the unique solution of Eq. (22) belonging to
 A#ð Þ, should coincide with x̂ which is a unique solution of Eq. (21), which also
belongs to  A#ð Þ. Finally, vector x̂, mentioned in the proof of Theorem 5 exactly
coincides with the vector x̂ from Theorem 4. Using the representation of the Moore–
Penrose weighted pseudoinverse from [38].

Aþ
MN ¼ A# A#AA#ð ÞþA#, (23)

we can formulate the following theorem for problem (9) in a shorter form.
Theorem 6. Let A∈Rm�n, then x ¼ Aþ

MNb—is М-weighted least squares solution
with the minimum N-norm of the system Ax ¼ b.

Note that in [18] a slightly different mathematical apparatus was used to prove the
existence and uniqueness of theM-weighted least squares solution with the minimum
N-norm of the system Ax ¼ b.

3. Error estimates for the weighted minimum-norm least squares solution

3.1 Estimates of the hereditary error of a weighted normal pseudosolution

Consider some properties of the weighted Moore–Penrose pseudoinverse.
Lemma 3 (see in [16]). Let A,ΔA∈Rm�n, μi Að Þ and μi

�A
� �

denote the weighted

singular values of A and �A respectively. Then,

μi Að Þ � ΔAk kMN ≤ μi
�A
� �

≤ μi Að Þ þ ΔAk kMN : (24)

Lemma 4 (see [40]). Let A,ΔA∈Rm�n, rank �A
� �

¼ rank Að Þ and

ΔAk kMN Aþ
MN

�

�

�

�

NM
< 1. Then

�A
þ
MN

�

�

�

�

�

�

NM
≤

Aþ
MN

�

�

�

�

NM

1� ΔAk kMN Aþ
MN

�

�

�

�

NM

: (25)

Lemma 5. Let G ¼ �A
þ
MN � Aþ

MN, �А ¼ Аþ ΔA and rank �A
� �

¼ rank Að Þ. Then G can
be represented as the sum of three matrices G ¼ G1 þ G2 þG3, where

G1 ¼ ��A
þ
MNΔAA

þ
MN, (26)

G2 ¼ � I � �Pð ÞN�1ΔATAþT
MNNAþ

MN ¼ � I � �Pð ÞΔA# Aþ
MN

� �#
Aþ

MN, (27)

Weighted Least Squares Perturbation Theory
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G3 ¼ �A
þ
MN I �Qð Þ: (28)

Proof. Following [26], G can be represented as the sum of the following matrices.

G ¼ �Pþ I � �Pð Þ½ � �A
þ
MN � Aþ

MN

	 


Q þ I �Qð Þ½ � ¼

¼ �P�A
þ
MNQ þ �P�A

þ
MN I � Qð Þ � �PAþ

MNQ � �PAþ
MN I �Qð Þ þ I � �Pð Þ�A

þ
MNQ þ

þ I � �Pð Þ�A
þ
MN I �Qð Þ � I � �Pð ÞAþ

MNQ þ I � �Pð ÞAþ
MN I �Qð Þ:

(29)

Since.

�P�A
þ
MN ¼ �A

þ
MN, I � �Pð Þ�A

þ
MN ¼ 0,Aþ

MNQ ¼ Aþ
MN,A

þ
MN I � Qð Þ ¼ 0, (30)

we obtain

G ¼ �A
þ
MNQ þ �A

þ
MN I � Qð Þ � �PAþ

MN þ I � �Pð Þ�A
þ
MN ¼

¼ �A
þ
MNQ � �PAþ

MN

	 


� I � �Pð ÞAþ
MN þ �A

þ
MN I � Qð Þ:

(31)

Consider each term in this equality separately

G1 ¼ �A
þ
MNQ � �PAþ

MN ¼ �A
þ
MNAA

þ
MN � �A

þ
MN

�AAþ
MN ¼ �A

þ
MN A� �A
� �

Aþ
MN ¼ �A

þ
MNΔAA

þ
MN :

(32)

To estimate the second term, we use properties (1)

Aþ
MN ¼ Aþ

MNA
� �

Aþ
MN ¼ N�1 NAþ

MNA
� �T

Aþ
MN ¼

¼ N�1ATAþT
MNNAþ

MN ¼ N�1 �A
T
AþT

MNNAþ
MN �N�1ΔATAþT

MNNAþ
MN:

(33)

Substituting (33) into the second term of (31) gives

G2 ¼ I � �Pð ÞAþ
MN ¼ I � �Pð Þ N�1 �A

T
AþT

MNNAþ
MN �N�1ΔATAþT

MNNAþ
MN

	 


: (34)

Since,

I � �Pð ÞN�1 �A
T
AþT

MNNAþ
MN ¼ N�1 �A

T
AþT

MNNAþ
MN � �A

þ
MN

�AN�1 �A
T
AþT

MNNAþ
MN ¼

¼ N�1 �A
T
AþT

MNNAþ
MN �N�1 �A

T
AþT

MNNAþ
MN ¼ 0

(35)

we obtain

G2 ¼ I � �Pð ÞAþ
MN ¼ � I � �Pð ÞN�1ΔATAþT

MNNAþ
MN ¼ � I � �Pð ÞΔA# Aþ

MN

� �#
Aþ

MN :

(36)

Finally,

G ¼ �A
þ
MN � Aþ

MN ¼ ��A
þ
MNΔAA

þ
MN � I � �Pð ÞΔA# Aþ

MN

� �#
Aþ

MN þ �A
þ
MN I � Qð Þ: (37)

Lemma 6 (see in [41]). If rank �A
� �

¼ rank Að Þ ¼ k, then

�Q I �Qð Þ
�

�

�

�

MM
¼ Q I � �Q

� ��

�

�

�

MM
, (38)

Matrix Theory - Classics and Advances
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where Q and �Q are defined in (3).

Lemma 7. Let A,ΔA∈Rm�n, rank �A
� �

¼ rank Að Þ and ΔAk kMN Aþ
MN

�

�

�

�

NM
< 1.

Then the relative estimate of the hereditary error of the weighted pseudoinverse
matrix has the form

�A
þ
MN � Aþ

MN

�

�

�

�

�

�

NM

Aþ
MN

�

�

�

�

NM

≤C
εAh

1� εAh
, (39)

where h ¼ h Að Þ ¼ Ak kMN Aþ
MN

�

�

�

�

NM
and the estimate of the absolute error

�A
þ
MN � Aþ

MN

�

�

�

�

�

�

NM
≤C

εAhð Þ2

1� εAh
, (40)

moreover.
if A is not a full rank matrix, then C ¼ 3,
if m> n ¼ k or n>m ¼ k, then C ¼ 2,
if m ¼ n ¼ k, then C ¼ 1:
Proof. To obtain estimates, we use the results of Lemma 5:

�A
þ
MN � Aþ

MN ¼ ��A
þ
MNΔAA

þ
MN � I � �Pð ÞΔA# Aþ

MN

� �#
Aþ

MN þ �A
þ
MN I � Qð Þ: (41)

Passing to the weighted norms, we obtain.

�A
þ
MN � Aþ

MN

�

�

�

�

�

�

NM
≤ �A

þ
MNΔAA

þ
MN

�

�

�

�

�

�

NM
þ ΔA# Aþ

MN

� �#
Aþ

MN

�

�

�

�

NM
þ �A

þ
MN

�Q I � Qð Þ
�

�

�

�

�

�

NM
:

(42)

Using the results of Lemma 6, we can estimate the last summand

�A
þ
MN

�Q I � Qð Þ
�

�

�

�

�

�

N
¼ �A

þ
MN

�A�A
þ
MN I � Qð Þ

�

�

�

�

�

�

N
≤ �A

þ
MN

�

�

�

�

�

�

NM

�Q I � Qð Þ
�

�

�

�

MM

¼ �A
þ
MN

�

�

�

�

�

�

NM
Q I � �Q
� ��

�

�

�

MM
:

(43)

According to (38) and (43), we can rewrite (42) in the form

�A
þ
MN � Aþ

MN

�

�

�

�

�

�

NM
≤ �A

þ
MNΔAA

þ
MN

�

�

�

�

�

�

NM
þ ΔA Aþ

MN

� �

Aþ
MN

�

�

�

�

NM
þ Aþ

MNQ I � �Q
� ��

�

�

�

NM
≤

≤ �A
þ
MN

�

�

�

�

�

�

NM
ΔAk kMN Aþ

MN

�

�

�

�

NM
þ ΔAk kMN Aþ

MN

�

�

�

�

2

NM
þ �A

þ
MN

�

�

�

�

�

�

NM
Aþ

MN

�

�

�

�

NM
ΔAk kMN:

(44)

Using the results of Lemma 4, we obtain an estimate for the absolute error of the
weighted pseudoinverse matrix A.

�A
þ
MN � Aþ

MN

�

�

�

�

�

�

NM
≤

Aþ
MN

�

�

�

�

NM

1� ΔAk kMN Aþ
MN

�

�

�

�

NM

ΔAk kMN Aþ
MN

�

�

�

�

NM
þ ΔAk kMN Aþ

MN

�

�

�

�

NM

�

þ

þ Aþ
MN

�

�

�

�

NM
ΔAk kMN

�

¼
hεA

1� hεA
hεA þ hεA þ hεAð Þ ¼ C

hεAð Þ2

1� hεA
,C ¼ 1, 2, 3:

(45)
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To estimate the relative error, we have

�A
þ
MN � Aþ

MN

�

�

�

�

�

�

NM

Aþ
MN

�

�

�

�

NM

≤ 3 ΔAk kMN Aþ
MN

�

�

�

�

NM

1

1� ΔAk kMN Aþ
MN

�

�

�

�

NM

¼ C
hεA

1� hεA
,C ¼ 1, 2, 3:

(46)

Let us estimate the error of the weighted minimum-norm least squares solution.
Let us introduce the following notation:

α ¼
Δbk kM

Ak kMN xk kN
, β ¼

rk kM
xk kN Ak kMN

, γ ¼
�rk kM

Ak kMN xk kN
αl ¼

Δbk kM
Ak kMN xlk kN

,

βl ¼
rk kM

xlk kN Ak kMN

, γl ¼
�rlk kM

Ak kMN xlk kN
, γk ¼

�rkk kM
Ak kMN xk kN

:

(47)

Consider the following three cases.
Case 1. The rank of the original matrix A remains the same under its perturbation, i.e.,

rank Að Þ ¼ rank �A
� �

.

Theorem 7. Assume that ΔAk kMN Aþ
MN

�

�

�

�

NM
< 1, rank �A

� �

¼ rank Að Þ. Then

x� �xk kN
xk kN

≤
h

1� hεA
2εA þ αþ hεAβð Þ, (48)

where h Að Þ ¼ Ak kMN Aþ
MN

�

�

�

�

NM
is the weighted condition number of A, the

symbols kkMN and kk NM denote the weighted matrix norms defined by Eq. (4)–(6),

and Aþ
MN is the weighted Moore–Penrose pseudoinverse.

Proof. The error estimate follows from the relation:

x� �x ¼ А
þ
MN � �А

þ
MN

	 


bþ �А
þ
MN b� �b
� �

: (49)

For the error of the matrix pseudoinverse, we use the representation

�A
þ
MN � Aþ

MN ¼ ��A
þ
MNΔAA

þ
MN � I � �Pð ÞN�1ΔATAþT

MNNAþ
MN þ �A

þ
MN I � Qð Þ: (50)

Then,

x� �x ¼ �A
þ
MNΔAA

þ
MN þ I � �Pð ÞN�1ΔATAþT

MNNAþ
MN � �A

þ
MN I � Qð Þ

h i

bþ �A
þ
MN b� �b
� �

¼

¼ �A
þ
MNΔAA

þ
MNbþ I � �Pð ÞN�1ΔATAþT

MNNAþ
MNb�

�A
þ
MN I �Qð Þbþ �A

þ
MN b� �b
� �

¼ �A
þ
MNΔAxþ I � �Pð ÞN�1ΔATAþT

MNNx� �A
þ
MN I �Qð Þb þ �A

þ
MN b� �b
� �

(51)

Thus,

�x� x ¼ �A
þ
MNΔAxþ I � �Pð ÞN�1ΔATAþT

MNNx� �A
þ
MN I � Qð Þbþ �A

þ
MN b� �b
� �

: (52)
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Passing to the weighted norms yields

�x� xk kN ¼ �AMNΔAxþ I � �Pð ÞN�1ΔATAþT
MNNx� �A

þ
MN I � Qð Þbþ �A

þ
MN b� �b
� �

�

�

�

�

�

�

N
≤

≤ �AMNΔAx
�

�

�

�

N
þ I � �Pð ÞN�1ΔATAþT

MNNx
�

�

�

�

N
þ k�A

þ
MN I � Qð Þbþ �A

þ
MN b� �b
� �

k
N
:

(53)

By taking into account the relations

I � Qð Þb ¼ I � Qð Þr ¼ r, r ¼ b� Ax, x ¼ Aþ
MNb (54)

and applying Lemma 6, the weighted norm of each term in (27) can be rearranged
as follows

a.

�A
þ
MNΔAx

�

�

�

�

�

�

N
¼ N1=2 �A

þ
MNM

�1=2M1=2ΔAN�1=2N1=2x
�

�

�

�

�

�≤

≤ N1=2 �A
þ
MNM

�1=2

�

�

�

�

�

� M1=2ΔAN�1=2
�

�

�

� N1=2x
�

�

�

� ¼ �A
þ
MN

�

�

�

�

�

�

NM
ΔAk kMN xk kN: ð55Þ

b.

I � �Pð ÞN�1ΔATAþT
MNNx

�

�

�

�

N
¼ N1=2 I � �Pð ÞN�1=2N�1=2ΔATM1=2M�1=2AþT

MNN
1=2N1=2x

�

�

�

�

≤ N1=2 I � �Pð ÞN�1=2
�

�

�

� M1=2ΔAN�1=2
�

�

�

� N1=2Aþ
MNM

�1=2
�

�

�

� N1=2x
�

�

�

�

¼ I � �Pð Þ
�

�

�

�

NN
ΔAk kMN Aþ

MN

�

�

�

�

NM
xk kN ð56Þ

c. Using Lemma 6, and (28) we can write

�A
þ
MN

�Q I � Qð Þb
�

�

�

�

�

�

N
¼ �A

þ
MN

�A�A
þ
MN I �Qð Þr

�

�

�

�

�

�

N
≤ �A

þ
MN

�

�

�

�

�

�

NM

�Q I � Qð Þ
�

�

�

�

MM
rk kM

¼ �A
þ
MN

�

�

�

�

�

�

NM
Q I � �Q
� ��

�

�

�

MM
rk kM

(57)

where

Q I � �Q
� ��

�

�

�

MM
¼ AAþ

MN I � �Q
� ��

�

�

�

MM
¼ M1=2AAþ

MN I � �Q
� �

M�1=2
�

�

�

� ¼

¼ M�1=2 MAAþ
MN

� �T
I � �Q
� �

M�1=2

�

�

�

�

�

� ¼

¼ M�1=2 Aþ
MN

� �T
AT � �A

T
	 


M1=2M1=2 I � �Q
� �

M�1=2

�

�

�

�

�

� ¼

¼ M�1=2 Aþ
MN

� �T
ΔATM I � �Q

� �

M�1=2

�

�

�

�

�

�≤ M�1=2 Aþ
MN

� �T
ΔATM1=2

�

�

�

�

�

� ¼

¼ M1=2ΔAN�1=2N1=2Aþ
MNM

�1=2

�

�

�

�

�

�≤ M1=2ΔAN�1=2
�

�

�

� N1=2Aþ
MNM

�1=2
�

�

�

�≤

≤ ΔAk kMN Aþ
MN

�

�

�

�

NM
:

(58)

Substituting this result into (31) gives the inequality

�A
þ
MN

�Q I �Qð Þb
�

�

�

�

�

�

N
≤ �A

þ
MN

�

�

�

�

�

�

NM
ΔAk kMN Aþ

MN

�

�

�

�

NM
rk kM: (59)
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d. �A
þ
MN b� �b
� �

�

�

�

�

�

�

N
¼ N1=2 �A

þ
MNM

�1=2M1=2 b� �b
� �

�

�

�

�

�

�≤

N1=2 �A
þ
MNM

�1=2

�

�

�

�

�

� M1=2 b� �b
� ��

�

�

� ¼ �A
þ
MN

�

�

�

�

�

�

NM
b� �b
� ��

�

�

�

M
ð60Þ

Taking into account I � �P
�

�

�

�< 1, and applying Lemma 4, we obtain the following

weighted-norm estimate for the relative error

x� �xk kN
xk kN

≤

�A
þ
MN

�

�

�

�

�

�

NM
ΔAk kMN xk kN

xk kN
þ

ΔAk kMN Aþ
MN

�

�

�

�

NM
xk kN

xk kN
þ

þ

�A
þ
MN

�

�

�

�

�

�

NM
Aþ

MN

�

�

�

�

NM
ΔAk kMN rk kM

xk kN
þ

�A
þ
MN

�

�

�

�

�

�

NM
Δbk kM

xk kN
≤

≤ �A
þ
MN

�

�

�

�

�

�

NM
ΔAk kMN þ ΔAk kMN Aþ

MN

�

�

�

�

NM
þ

þ

�A
þ
MN

�

�

�

�

�

�

NM
Aþ

MN

�

�

�

�

NM
ΔAk kMN rk kM

xk kN
þ

�A
þ
MN

�

�

�

�

�

�

NM
Δbk kM

xk kN
≤

≤
Aþ

MN

�

�

�

�

NM
Ak kMN

1� ΔAk kMN Aþ
MN

�

�

�

�

NM

2
ΔAk kMN

Ak kMN

þ
Δbk kM

Ak kMN xk kN

�

þ

þ Aþ
MN

�

�

�

�

NM
Ak kMN

ΔAk kMN

Ak kMN

rk kM
Ak kMN xk kN

�

≤

≤
h Að Þ

1� h Að ÞεA
2εA þ

Δbk kM
Ak kMN xk kN

þ h Að ÞεA
rk kM

xk kN Ak kMN

� �

:

(61)

as required.
Specifically, ifM ¼ I∈Rm�m and N ¼ I∈Rn�n, then the estimates of the hereditary

error of normal pseudosolutions of systems of linear algebraic equations follow from
next theorem.

Theorem 8 (see in [32]). Let║ΔА║║Аþ║< 1, rank �A
� �

¼ rank Að Þ ¼ k. Then

x� �xk k

xk k
≤

h

1� hεА
2εА þ εbk þ hεА

b� bkk k

bkk k

� �

, (62)

where bk is the projection of the right-hand side of problem (8) onto the principal
left singular subspace of the matrix A [42], i.е., bk ∈ Im A, h ¼ h Að Þ ¼ Ak k Aþk k is
condition number of A, the symbol kk , unless otherwise stated, denotes the Euclidean
vector norm and the corresponding spectral matrix norm, Аþ is the Moore–Penrose
pseudoinverse.

Case 2. The rank of the perturbed matrix is larger than that of the original matrix A,

i.e.rank �A
� �

> rank Að Þ ¼ k.

Define the idempotent matrices:

P ¼ Aþ
MNA,Q ¼ AAþ

MN,
�Pk ¼ �Ak

þ
MN

�A, �Qk ¼ �A�Ak
þ
MN, (63)

where k is the rank of A.
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Theorem 9. Assume that ΔAk kMN Aþ
MN

�

�

�

�

NM
<

1
2, rank

�A
� �

> rank Að Þ ¼ k. Then

x� �xkk kN
xk kN

≤
h

1� 2hεА
2εА þ αþ hεАβð Þ: (64)

where h Að Þ ¼ Ak kMN Aþ
MN

�

�

�

�

NM
is the weighted condition number of A, the sym-

bols kkMN and kk NM denote the weighted matrix norms defined Eq. (4)–(6), and Aþ
MN

is the weighted Moore–Penrose pseudoinverse.
Proof. The desired estimate is derived using the method of [32], which is based on

the singular value decomposition of matrices. Specifically, �А is represented as a
weighted singular value decomposition:

�А ¼ �U �D�V
T
: (65)

Along with (38), we consider the decomposition

�Аk ¼ �U �Dk
�V
T
, (66)

where �Dk is a rectangular matrix whose first k diagonal elements are nonzero and
equal to the corresponding elements of �D, while all the other elements are zero.

The weighted minimum-norm least squares solution to problem (10) is approxi-
mated by the weighted minimum-norm least squares solution �xk to the problem

min
x∈C

�xk kN,C ¼ xj �Ak�x� �b
�

�

�

�

M
¼ min

n o

: (67)

The matrix �Ak is defined by (48) and has the same rank k as the matrix of the
unperturbed problem.

Thus, the error estimation of the least-squares solution for matrices with a
modified rank is reduced to the case of the same rank. This fact is used to estimate
x� �xkk kN= xk kN . The error of the weighted pseudoinverse matrix then becomes:

Gk ¼ �Pk þ I � �Pkð Þ½ � �Ak
þ
MN � Aþ

MN

	 


Q þ I � Qð Þ½ � ¼ �Pk
�Ak

þ
MNQ þ �Pk

�Ak
þ
MN I � Qð Þ�

��PkA
þ
MNQ � �PkA

þ
MN I � Qð Þ � I � �Pkð Þ�Ak

þ
MNQ þ I � �Pkð Þ�Ak

þ
MN I � Qð Þ�

� I � �Pkð ÞAþ
MNQ þ I � �Pkð ÞAþ

MN I � Qð Þ ¼ �Ak
þ
MNQ � �PkA

þ
MN

	 


� I � �Pkð ÞAþ
MNþ

þ�Ak
þ
MN I � Qð Þ ¼ �Ak

þ
MNAA

þ
MN � �Ak

þ
MN

�AAþ
MN � I � �Pkð ÞAþ

MN þ �Ak
þ
MN I � Qð Þ ¼

¼ �Ak
þ
MN A� �A
� �

Aþ
MN � I � �Pkð ÞAþ

MN þ �Ak
þ
MN I � Qð Þ,

(68)

Applying Lemma 5 yields

Gk ¼ �Ak
þ
MN � Aþ

MN ¼ ��Ak
þ
MNΔAA

þ
MN � I � �Pkð ÞN�1ΔATAþT

MNNAþ
MN þ �Ak

þ
MN I �Qkð Þ:

(69)

For the error of the WLS solution, we obtain

�xk � x ¼ �Ak
þ
MNΔAxþ I � �Pkð ÞN�1ΔATAþT

MNNx� �Ak
þ
MN I � Qkð Þbþ �Ak

þ
MN b� �b
� �

:

(70)
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Passing to the weighted norms and applying Lemma 4 gives

x� �xkk kN
xk kN

≤

�Ak
þ
MN

�

�

�

�

�

�

NM
ΔAk kMN xk kN

xk kN
þ

ΔAk kMN Aþ
MN

�

�

�

�

NM
xk kN

xk kN
þ

þ

�Ak
þ
MN

�

�

�

�

�

�

NM
Aþ

MN

�

�

�

�

NM
ΔAk kMN rk kM

xk kN
þ

�Ak
þ
MN

�

�

�

�

�

�

NM
Δbk kM

xk kN
≤

≤ �Ak
þ
MN

�

�

�

�

�

�

NM
ΔAk kMN þ ΔAk kMN Aþ

MN

�

�

�

�

NM
þ

þ

�Ak
þ
MN

�

�

�

�

�

�

NM
Aþ

MN

�

�

�

�

NM
ΔAk kMN rk kM

xk kN
þ

�Ak
þ
MN

�

�

�

�

�

�

NM
Δbk kM

xk kN
≤

≤
Aþ

MN

�

�

�

�

NM
Ak kMN

1� ΔAkk kMN Aþ
MN

�

�

�

�

NM

2
ΔAk kMN

Ak kMN

þ
Δbk kM

Ak kMN xk kN

�

þ

þ Aþ
MN

�

�

�

�

NM
Ak kMN

ΔAk kMN

Ak kMN

rk kM
Ak kMN xk kN

�

: (71)

Let estimate ΔAk ¼ A� �Ak:

ΔAkk kMN ¼ �Ak � A
�

�

�

�

MN
¼ �Ak � �Aþ ΔA
�

�

�

�

MN
≤ �Ak � �A
�

�

�

�

MN
þ ΔAk kMN ¼

¼ �U

0 0

0 Dkþ1

0

@

1

A�V
T

�

�

�

�

�

�

�

�

�

�

�

�

MN

þ ΔAk kMN ≤ 2 ΔAk kMN:

(72)

Moreover, the theorem condition ΔAk kMN Aþ
MN

�

�

�

�

NM
<

1
2 leads to

ΔAkk kMN Aþ
MN

�

�

�

�

NM
< 1, which is necessary for expression (51) to be well defined. In

view of this, (51) yields estimate (33) for the error of the minimum-norm weighted
least squares solution.

Specifically, ifM ¼ I∈Rm�m and N ¼ I∈Rn�n, then the estimates of the hereditary
error of normal pseudosolutions of systems of linear algebraic equations for case

rank �A
� �

> rank Að Þ ¼ k follows from next theorem.

Theorem 10 (see in [32]). Let ΔAk k Aþk k< 1
2, rank

�A
� �

> rank Að Þ ¼ k. Then

x� �xkk k

xk k
≤

h

1� 2hεА
2εА þ εbk þ hεА

b� bkk k

bkk k

� �

: (73)

Case 3. The rank of the original matrix is larger than that of the perturbed matrix, i.e.,

rank Að Þ> rank �A
� �

¼ l.

By analogy with (33), we define the idempotent matrices:

Pl ¼ Al
þ
MNA,Q l ¼ AAl

þ
MN,

�P ¼ �A
þ
MN

�A, �Q ¼ �A�A
þ
MN, (74)
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Theorem 11. Assume that rank Að Þ> rank �A
� �

¼ l, ΔAk kMN

μl
<

1
2. Then,

xl � �xk kN
xlk kN

≤
μ1=μl

1� 2 ΔAk kMN=μl
2εA þ αl þ

μ1

μl
εАβl

� �

, (75)

where μi are the weighted singular values of A.
Proof. Along with (9), we consider the problem

min
x∈C

xlk kN,C ¼ xj Alx� bk kM ¼ min
� �

(76)

with the matrix Al ¼ UDlV
T of rank l.

Similarly, writing (27) for problems (10) and (54), whose matrix ranks coincide,
we obtain

Gl ¼ �A
þ
MN � Al

þ
MN ¼ ��A

þ
MNΔAAl

þ
MN � I � �Pð ÞN�1ΔATAl

þT
MNNAl

þ
MN þ �A

þ
MN I � Q lð Þ, (77)

�x� xl ¼ �A
þ
MNΔAxþ I � �Pð ÞN�1ΔATAl

þT
MNNx� �A

þ
MN I � Q lð Þbþ �A

þ
MN b� �b
� �

: (78)

Applying Lemma 4 and passing to the weighted norms yields the estimate

xl � �xk kN
xk kN

≤ �A
þ
MN

�

�

�

�

�

�

NM
ΔAk kMN þ ΔAk kMN Al

þ
MN

�

�

�

�

NM
þ

þ

�A
þ
MN

�

�

�

�

�

�

NM
Al

þ
MN

�

�

�

�

NM
ΔAk kMN rk kM

xk kN
þ

�A
þ
MN

�

�

�

�

�

�

NM
Δbk kM

xk kN
≤

≤
Al

þ
MN

�

�

�

�

NM
Ak kMN

1� ΔAlk kMN Al
þ
MN

�

�

�

�

NM

2
ΔAk kMN

Ak kMN

þ
Δbk kM

Ak kMN xk kN

�

þ

þ Al
þ
MN

�

�

�

�

NM
Ak kMN

ΔAk kMN

Ak kMN

rk kM
Ak kMN xk kN

�

,

(79)

which implies (52). This completes the proof of Theorem 11.
For approximately given initial data, the rank of the original matrix should be

specified as the numerical rank of the matrix (see in [28]).
Specifically, ifM ¼ I∈Rm�m and N ¼ I∈Rn�n, then the estimates of the hereditary

error of normal pseudosolutions of systems of linear algebraic equations for case

rank Að Þ> rank �A
� �

¼ l follows from next theorem.

Theorem 12 (see in [32]). Let rank Að Þ> rank �A
� �

¼ l, ΔAk k
μl

<
1
2. Then

xl � xk k

xlk k
≤

μ1=μl
1� 2 ∆Ak k=μl

2εA þ εbl þ εА
μ1

μl

b� blk k

blk k

� �

, (80)

where xl is the projection of the normal pseudosolution of problem (8) onto the
right principal singular subspace of the matrix A of dimension l, bl is projection of the
right-hand side b onto the principal left singular subspace of dimension l of the matrix
A, μi is singular values of the matrix А.
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3.2 Estimates of the hereditary error of a weighted normal pseudosolution for full
rank matrices

For matrices of full rank, it is essential that their rank does not change due to the

perturbation of the elements if the condition ΔAk kMN Aþ
MN

�

�

�

�

NM
< 1 is met.

In addition, in what follows we will use the following property of matrices of full
rank [28]

Aþ
MN ¼ ATMA

� ��1
ATM for m≥ n and Aþ

MN ¼ N�1AT AN�1AT
� ��1

for n≥m: (81)

If m≥ n, then problem (9) is reduced to a problem of the form

min
x∈Rn

Ax� bk kM: (82)

For such a problem, the following theorem is true.

Theorem 13. Let ΔAk kMI Aþ
MN

�

�

�

�

IM
< 1, m> n ¼ k. Then

x� �xk k

xk k
≤

h

1� hεA
εA þ

Δbk kM
Ak kMI xk k

þ hεA
rk kM

xk k Ak kMI

� �

, (83)

where h ¼ Ak kMI Aþ
MN

�

�

�

�

IM
.

Proof. To prove Theorem 13, as before, we will use relation (49). By (81)
�P ¼ �A

þ
MN

�A ¼ I, so that from (50) we have the equality

�A
þ
MN � Aþ

MN ¼ ��A
þ
MNΔAA

þ
MN þ �A

þ
MN I � Qð Þ, (84)

using which we obtain (83).
If n≥m, then problem (9) is reduced to a problem of the form

min
x∈C

xk kN,C ¼ xjAx ¼ bf g (85)

and the following theorem holds for it.

Theorem 14. Let ΔAk kIN Aþ
MN

�

�

�

�

NI
< 1, n>m ¼ k. Then

x� �xk kN
xk kN

≤
h

1� hεA
2εA þ

Δbk k

Ak kIN xk kN

� �

, (86)

where h ¼ Ak kIN Aþ
MN

�

�

�

�

NI
.

Proof. Since in this case Q ¼ AAþ
MN ¼ I, then the expression for �A

þ
MN � Aþ

MN by
(81) takes the form

�A
þ
MN � Aþ

MN ¼ ��A
þ
MNΔAA

þ
MN � I � �Pð ÞN�1ΔATAþT

MNNAþ
MN : (87)

Further calculations are similar to the previous ones. As a result, we come to
estimate (86).

Remark 3. The relationship between the condition number of the problem with
exact initial data h(A) and the condition number of the matrix of the system with
approximately given initial data h �A

� �

is established by the estimates
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σk � ΔAk kMN ≤ �σk ≤ σk þ ΔAk kMN, σ1 � ΔAk kMN ≤ �σ1 ≤ σ1 þ ΔAk kMN,

σ1 � ΔAk kMN

σk þ ΔAk kMN

≤
�σ1

�σk
≤

σ1 þ ΔAk kMN

σk � ΔAk kMN

,
1� εA

1þ εAh
≤

h Аð Þ

h �Аð Þ
≤

1þ εA

1� εAh
,

(88)

which are easy to obtain for the weighted matrix norm based on the perturbation
theory for symmetric matrices.

Lemma 7. Let A,ΔA∈Rm�n, rank �A
� �

¼ rank Að Þ and ΔAk kMN Aþ
MN

�

�

�

�

NM
< 1. Then

the estimate of the relative error of the condition number of the matrix A has the form

�h� h

h

�

�

�

�

�

�

�

�

≤ εA
1þ h

1� εAh
(89)

where h ¼ h Að Þ ¼ Ak kMN Aþ
MN

�

�

�

�

NM
is weighted condition number of matrix A,

�h ¼ �h Að Þ ¼ �A
�

�

�

�

MN
�A
þ
MN

�

�

�

�

�

�

NM
is weighted condition number of the perturbed matrix

�A ¼ Aþ ΔA.
Proof of Lemma 7 is easy to obtain using the inequality (25).

Theorem 15. Let ΔAk kMN
�A
þ
MN

�

�

�

�

�

�

NM
< 1, ΔAk kMN ≤ ε�A

�A
�

�

�

�

MN
, rank �A

� �

¼ rank Að Þ.

Then,

�x� xk kN
�xk kN

≤
h �A
� �

1� h �A
� �

ε�A
2ε�A þ

Δbk kM
�A
�

�

�

�

MN
�xk kN

þ h �A
� �

ε�A
�rk kM

�xk kN
�A
�

�

�

�

MN

 !

, (90)

where h �A
� �

¼ �A
�

�

�

�

MN
�A
þ
MN

�

�

�

�

�

�

NM
is weighted matrix condition number �A, the

symbols kkMN and kkNM denote the weighted matrix norms defined by Eq. (4)–(6)

and Aþ
MN is the weighted Moore–Penrose pseudoinverse.

Thus, estimates of the hereditary error, the right-hand side of which is determined
by approximate data, can be obtained without inequalities (88). Estimates similar to
(90) can be obtained for all the previously considered cases.

Remark 4. Under the conditions of Theorem 15, using the inequality

x� �xk kN
xk kN

≤
x� �xk kN
�xk kN

1þ
x� �xk kN
xk kN

� �

(91)

and inequality (90) we arrive at the estimate in the following theorem.

Theorem 16. Let ΔAk kMN
�A
þ
MN

�

�

�

�

�

�

NM
< 1, ΔAk kMN ≤ ε�A

�A
�

�

�

�

MN
, rank �A

� �

¼ rank Að Þ.

Then

�x� xk kN
xk kN

≤
β

1� β
, β ¼

h �A
� �

1� h �A
� �

ε�A
2ε�A þ

Δbk kM
�A
�

�

�

�

MN
�xk kN

þ h �A
� �

ε�A
�rk kM

�xk kN
�A
�

�

�

�

MN

 !

:

(92)

Estimates similar to (92) can be obtained for all the previously considered cases.
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4. Research and solution of the WLS problem with approximate initial
data

4.1 Investigation of the properties of WLS problem with approximate initial data

In the study of the mathematical properties of the weighted least squares problem
with approximate initial data associated with computer realization as an approximate
model in (10), (11) we will understand exactly the computer model of the problem.
We will assume that the error of the initial data ΔA, Δb, in this case, contains in
addition to everything, the error that occurs when the matrix coefficients are written
to the computer memory or its computing.

Matrix of full rank within the error of initial data, we assume a matrix that
cannot change the rank of ΔA change in its elements.

Matrix of full rank within the machine precision, we assume a matrix that
cannot change the rank when you change the elements within the machine precision.

Lemma 8. If rank Að Þ ¼ min m, nð Þ, and

ΔAk kMN Aþ
MN

�

�

�

�

NM
< 1, (93)

Then rank �A
� �

¼ rank Að Þ.

Proof. For proof, let, for example, rank Að Þ ¼ m . Taking equal ΔAk kMN ¼ ε, in
equality (93) can be rewritten as ε

μm
< 1, which is equivalent

μm � ε>0: (94)

Let �μm—m-weighted singular value of perturbed matrix �A ¼ Aþ ΔA. According to
Lemma 3, we can write �μm ≥ μm � ε. Then, taking into account (94), we obtain
�μm ≥ μm � ε>0.

Therefore rank �A
� �

≥m, whence we come to the conclusion that rank �A
� �

¼ m, i.е.

rank �A
� �

¼ rank Að Þ.
Taking into account the results of Lemma 8, the computer algorithm for studying

rank completeness is reduced to checking the two relations

ε�Ah �A
� �

< 1, (95)

1:0þ
1

h �A
� � 6¼ 1:0 (96)

where h �A
� �

¼ �A
�

�

�

�

MN
�A
þ
MN

�

�

�

�

�

�

NM
is weighted condition number of matrix �A.

The fulfillment of the first condition (95) guarantees that the matrix has a full rank
and is within the accuracy of the initial data, and the second (96), which is performed
in floating-point arithmetic, means that the matrix has a full rank within the machine
precision.

Under these conditions, the solution of the machine problem exists, it is unique
and stable. Such a machine problem should be considered as correctly posed within
the accuracy of initial data.

Otherwise, the matrix of the perturbed system may be a matrix, not full rank and,
therefore, the machine model of the problem (10), (11) should be considered as ill-
posed. A key factor in studying the properties of a machine model is the criterion of
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the correctness of the problem. Thereby, a useful fact is that the condition for study-
ing the machine model of problem (96) includes the value inverse to h �A

� �

. As a result,
for large condition numbers of conditionality does not occur an overflow in order.

And the disappearance of the order for 1:0=h �A
� �

for large condition numbers is not
fatal: the machine result is assumed to be equal to zero, which allows us to make the
correct conclusion about the loss of the rank of the matrix of the machine problem.

To analyze the properties of a machine model of problems with matrices of
incomplete rank under conditions of approximate initial data, a fundamental role is
played definition of the rank of a matrix.

The rank of the matrix in the condition of approximate the initial data (effective
rank or δ -rank) is

rank A, δð Þ ¼ min
A�Bk kMN ≤ δ

rank Bð Þ: (97)

This means that the δ-rank of the matrix is equal to the minimum rank among all
matrices in the neighborhood A� Bk kMN ≤ δ.

From [28] that if r δð Þ is the δ-rank of the matrix, then

μ1 ≥ … ≥ μr δð Þ > δ≥ μr δð Þþ1 ≥ … ≥ μp, p ¼ min m, nð Þ: (98)

The practical algorithm for finding δ—rank can be defined as follows: find the
value of r is equal to the largest value of i, for which the inequality is fulfilled

δ

μi
< 1, μi 6¼ 0, i ¼ 1, 2:: (99)

Using the effective rank of a matrix, can always find the number of a stable
projection that approximates the solution or projection

To analyze the rank of a matrix of values within the machine precision value δ can
be attributed to machine precision, for example, setting it equal macheps Bk k.

4.2 Algorithm for finding a weighted normal pseudosolution of the weighted
least squares problem with approximate initial data

The algorithm is based on weighted singular value decomposition of matrices
(Lemma 1).

Let A∈Rm�n and rank Að Þ ¼ k,M- and N-positive-defined matrices of order m and
n, respectively.

To solve the ill-posed problems in the formulation (10), (11), the algorithm for
obtaining an approximate normal pseudosolution of system (9), depending on the
ratio of the ranks of the matrices A and �A is reduced to the following three cases.

1. If the rank of the matrix has not changed rank �A
� �

¼ rank Að Þ ¼ k, an

approximate weighted normal pseudosolution is constructed by the formula

�x ¼ �A
þ
MN

�b, (100)

where �A
þ
MN is represented as a weighted singular value decomposition (7).
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In this case, the weighted normal pseudosolution of system (9) is approximated by

the weighted normal pseudosolution of system (10) and, if ΔAk kMN Aþ
MN

�

�

�

�

NM
< 1,

then the error of the solution is estimated by formula (48).

If the rank of the matrix is complete and conditions (95), (96) are satisfied, the
rank of the matrix does not change, and to estimate the error, one can use
formulas (100), (48).

2.Matrix rank increased rank �A
� �

> rank Að Þ ¼ k . An approximate weighted normal
pseudosolution is constructed by the formula

�xk ¼ �Ak
þ
MN

�b: (101)

Weighted pseudoinverse matrix �Ak
þ
MN is defined as follows

�Ak
þ
MN ¼ N�1 �V �D

þ
k
�U
T
M, (102)

where �Dk is a rectangular matrix, the first k diagonal elements of which are
nonzero and coincide with the corresponding elements of the matrix �D from (7),
and all other elements are equal to zero.

In this case, the weighted normal pseudosolution of system (9) is approximated
by the projection of the weighted normal pseudosolution of system (10) onto the
right principal weighted singular subspace of dimension k of the matrix �A and, if

ΔAk kMN Aþ
MN

�

�

�

�

NM
<

1
2, then the error of the solution is estimated by formula

(64).

3. If the rank of the matrix has decreased rank Að Þ> rank �A
� �

¼ l, an approximation
to the projection of a weighted normal pseudosolution of problem (9) is
constructed using formula (100). In this case, the projection of the weighted
normal pseudosolution of system (9) onto the principal right weighted singular
subspace of dimension l of the matrix A is approximated by the weighted normal

pseudosolution of system (10) and, if ΔAk kMN

μl
<

1
2, the projection error is estimated

by formula (75).

Remark 5. If the rank of the original matrix is unknown, then the δ-rank should be
taken as the projection number in (101). In this case, it is guaranteed that a stable
approximation is found either to a weighted normal pseudosolution or to a projection,
respectively, with error estimates.

If the rank of the original matrix is known, then it is guaranteed to find an
approximation to the weighted normal pseudosolution with appropriate estimates.

Remark 6. Because of the zero columns in the matrix Dþ, only the largest first n
columns of the matrix U can actually contribute to the product (100). Moreover, if
some of the weighted singular numbers are equal to zero, then less than n columns of
U are needed. If kp is the number of nonzero weighted singular numbers, then U can
be reduced to the sizes m� kp, Dþ

—to the sizes kp� kp, VT—up to size kp� n.

Formally, such matrices U and V are not M-orthogonal and N�1-orthogonal, respec-
tively, since they are not square. However, their columns are weighted orthonormal
systems of vectors.
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5. Analysis of the reliability of computer solutions to the WLS problem
with approximate initial data

5.1 Estimates of the total error of a weighted normal pseudosolution for matrices
of arbitrary rank

Estimates of the total error take into account both the hereditary error due to the
error in the initial data and the computational error due to an approximate method for
determining the solution to the problem. In this case, the method of obtaining a
solution is not taken into account. The computational error can be a consequence of
both an approximate method of obtaining a solution and an error due to inaccuracy in

performing arithmetic operations on a computer. The residual vector �r ¼ �A��x� �b takes
into account the overall effect of these errors.

Let us obtain estimates for the total error of the weighted normal pseudosolution
using the previously introduced notation (47). Let us consider three cases.

Case 1. The rank of the original matrix A remains the same under its perturbation, i.e.,

rank Að Þ ¼ rank �A
� �

.

Theorem 17. Assume that ΔAk kMN Aþ
MN

�

�

�

�

NM
< 1, rank �A

� �

¼ rank Að Þ ¼ k and let

�x∈ �A
#� �

. Then

�x� ��xk kN
xk kN

≤
h

1� hεА
2εА þ αþ hεАβ þ γð Þ: (103)

Proof. For the hereditary error, in this case, estimate (48) holds.
To estimate the computational error �x� ��x, we use the relation

�A �x� ��xð Þ ¼ �r ¼ �bk � �A��x, (104)

where�bk is projection of the vector �b on the main left weighted singular subspace

of the matrix �A, i.е. �bk ∈ �A
� �

.

Considering that �x� ��x∈ �A
#� �

and the fact that �A
þ
MN

�A is a projector in  �A
#� �

, we
have

�A
þ
MN

�A �x� ��xð Þ ¼ �x� ��x ¼ �A
þ
MN�r: (105)

From this, we obtain an estimate of the computational error

�x� ��xk kN
�xk kN

≤ �A
�

�

�

�

MN
�A
þ
MN

�

�

�

�

�

�

NM

�rk kM
�bk
�

�

�

�

M

: (106)

An estimate of the total error of the normal pseudosolution follows from the
relations

x� ��xk kN
xk kN

≤
x� �xk kN
xk kN

þ
�x� ��xk kN
xk kN

, (107)

�x� ��xk kN
xk kN

≤ Ak kMN
�A
þ
MN

�

�

�

�

�

�

NM

�rk kM
bkk kM

(108)
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and estimates (48), (25). The theorem is proved.
Case 2. The rank of the perturbed matrix is larger than that of the original matrix A,

i.e., rank �A
� �

> rank Að Þ ¼ k.

If ΔAk kMN Aþ
MN

�

�

�

�

NM
< 1, then from [26], it follows that the rank of the perturbed

matrix cannot decrease.

Theorem 18. Assume that ΔAk kMN Aþ
MN

�

�

�

�

NM
<

1
2, rank

�A
� �

> rank Að Þ ¼ k and

let�x∈ �A
#
k

� �

. Then

x� ��xk kN
xk kN

≤
h

1� hεA
2εA þ αþ hεAβ þ γkð Þ: (109)

Proof. To estimate the computational error �xk � ��xk kN, we use the fact that
�Ak�xk ¼ �bk. Then for arbitrary vector �x∈ �A

#
k

� �

�Аk �xk � ��xð Þ ¼ �rk ¼ �bk � �Ak��x, �Ak
þ
�Аk �xk � ��xð Þ ¼ �Ak

þ
�rk: (110)

Considering the fact that xk � ��x∈ �Αk
#� �

, and operator �Ak
þ
MN

�Ak is the projection

operator in  �Αk
#� �

, we obtain

�Ak
þ
MN

�Ak �xk � ��xð Þ ¼ �xk � ��x ¼ �Ak
þ
MN�rk, �xk � ��x ¼ �Ak

þ
MN�rk: (111)

Hence follows an estimate of the computational error for the projection of the
normal pseudosolution

�xk � ��xk kN
�xkk kN

≤ �Ak

�

�

�

�

MN
�Ak

þ
MN

�

�

�

�

�

�

NM

�rkk kM
�bk
�

�

�

�

M

: (112)

The estimate of the total error follows from the inequalities

x� ��xk kN
xk kN

≤
x� �xkk kN

xk kN
þ

�xk � ��xk kN
xk kN

,
�xk � ��xk kN

xk kN
≤

Ak kMN
�Ak

þ
MN

�

�

�

�

�

�

NM
�rkk kM

bkk kM
(113)

and estimates (25), (64).
Case 3. The rank of the original matrix is larger than that of the perturbed matrix, i.e.,

rank Að Þ> rank �A
� �

¼ l.

Consider the case when the condition ΔAk kMN Aþ
MN

�

�

�

�

NM
< 1 not satisfied and the

rank of the perturbed matrix can decrease.

Theorem 19. Assume that rank Að Þ> rank �A
� �

¼ l, ΔAk kMN

μl
<

1
2 and let �x∈ Im �A

#� �

.

Then

xl � ��xk kN
xlk kN

≤
μ1=μl

1� 2 ΔAk kMN=μl
2εA þ αl þ

μ1

μl
εAβl þ γl

� �

(114)

Proof. For the proof, along with problem (9), consider the problem

min
x∈C

xlk kN,C ¼ xj Alx� bk kM ¼ min
� �

(115)
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With matrix Al ¼ UΣlV
T with rang l.

The estimate of the computational error in this case will be

�x� ��xk kN
�xk kN

≤ �A
�

�

�

�

MN
�A
þ
MN

�

�

�

�

�

�

NM

�rk kM
�bl
�

�

�

�

M

: (116)

The estimate of the total error follows from the inequalities

xl � ��xk kN
xlk kN

≤
xl � �xk kN
xlk kN

þ
�x� ��xk kN
xlk kN

,
�x� ��xk kN
xk kN

≤

Ak kMN
�Al

þ
MN

�

�

�

�

�

�

NM
�rlk kM

blk kM
, (117)

obvious relationships Ak kMN ¼ Alk kMN, Al
þ
MN

�

�

�

�

NM
¼ 1=μl, estimates of the

hereditary error (75) and the inequality ΔAlk kMN ≤ 2 ΔAk kMN .

5.2 Estimates of the total error of the weighted normal pseudosolution for
matrices of full rank

In the following Theorems 20 and 21, the weighted pseudoinverse Aþ
MN is

represented in accordance with the properties of the full rank matrix (81).

Theorem 20. Let ΔAk kMI Aþ
MN

�

�

�

�

IM
< 1, m> n ¼ k and ��x∈R �A

#� �

: Then

x� ��xk k

xk k
≤

h

1� hεА
εА þ

Δbk kM
Ak kMI xk k

þ hεА
rk kM

Ak kMI xk k
þ

�rkk kM
Ak kMI xk k

� �

: (118)

Proof. The estimate of the computational error is determined by formula (106),
namely

�x� ��xk k

�xk k
≤ �A
�

�

�

�

MN
�A
þ
MN

�

�

�

�

�

�

NM

�rk kM
�bk
�

�

�

�

M

: (119)

The estimate for the total error (118) follows from the inequalities

x� ��xk k

xk k
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,
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þ
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�

�

�

�

�

�
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�rk kM
bkk kM

(120)

and estimates for the pseudoinverse matrix (25) and the hereditary error (83).

Theorem 21. Let ΔAk kIN Aþ
MN

�

�

�

�

NI
< 1, n>m ¼ k and ��x∈R �A

#� �

. Then

x� ��xk kN
xk kN

≤
h

1� hεА
2εA þ

Δbk k

Ak kIN xk kN
þ

�rk k

bkk k

� �

, (121)

The proof of Theorem 21 is similar to the proof of the previous theorem, taking
into account the estimate for the hereditary error (86).

Remark 7. Here, we did not indicate a method for obtaining an approximate
weighted normal pseudosolution ��x, satisfying the conditions of the theorems. Algo-
rithms for obtaining such approximations are considered, for example, in Section 4.2.

Remark 8. Along with estimates (103), (109), (114), (118), (121), error estimates
can be obtained, the right-hand sides of which depend on the input data of systems of
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linear algebraic equations with approximately given initial data. For example, the
following theorem holds.

Theorem 22. Let ΔAk kMN
�A
þ
MN

�

�

�

�

�

�

NM
< 1, and ��x∈R �A

#� �

. Then, for the total error

of the normal pseudosolution, the following estimate is fulfilled
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 !
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(122)

Estimate (122) can be obtained from the inequality

x� ��xk kN
�xk kN

≤
x� �xk kN
�xk kN

þ
�x� ��xk kN
�xk kN

(123)

and estimates (90), (106).
If the weighted pseudoinverse matrix is known or its weighted singular value

decomposition is obtained during the process of solving the problem, then a practical
estimate of the computational error can be obtained using (104). When calculating

the residual �r ¼ �bk � �А��x, the explicit form of the projection operator onto R �А
#� �

is
used.

In conclusion, we note that the determining factor for obtaining estimates is the
use of a weighted singular value decomposition [37] and the technique of reducing the
problem of estimating the error of a pseudosolution to an estimate of the error [32] for
problems with matrices of the same rank. Based on the results obtained, an algorithm
for finding the effective rank of matrices can be developed, as well as an algorithm for
calculating stable projections of a weighted normal pseudosolution.

5.3 Software-algorithmic methods for increasing the accuracy of computer
solutions

The numerical methods we have considered for solving systems of linear algebraic
equations and WLS problems have one common property. Namely, the actually cal-
culated solution (pseudosolution) is exact in accordance with the inverse analysis of
errors [43] for some perturbed problem. These perturbations are very small and are
often commensurate with the rounding errors of the input data. If the input data is
given with an error (measurements, calculations, etc.), then usually they already
contain significantly larger errors than rounding errors. In this case, any attempt to
improve the machine solution (pseudosolution) without involving additional infor-
mation about the exact problem or errors of the input data errors will be untenable.

The situation changes significantly if a mathematical problem with accurate input
data is considered. Now the criterion of bad or good conditionality of the computer
model of the problem depends on the mathematical properties of the computer model
of the problem and the mathematical properties of the processor (length of the
computer word), and it becomes possible in principle to achieve any given accuracy of
the computer solution. In this case, as follows from estimates (48), (64), (75), (83),
(86), it is obviously possible to refine the computer solution by solving a system with
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increased bit depth, in particular, using the GMP library [44] for implementation of
computations with arbitrary bit depth.

To predict the length of the mantissa (machine word) that provides a given
accuracy for a solution (joint systems), you can use the following rule of thumb: the
number of correct decimal significant digits in a computer solution is μ� α, where μ is
the decimal order of the mantissa of a floating-point number ε, α is the decimal order
of the condition number. Thus, knowing the conditionality of the matrix of the system
and the accuracy of calculations on a computer, it is possible to determine the required
bit depth to obtain a reliable solution.

The GMP library is used to work on integers, rational numbers and floating-point
numbers. The main feature of the library is the bitness of numbers (precision) is
practically unlimited. Therefore, the main field of application is computer algebraic
calculations, cryptography, etc. The functions of the GMP library allow not only
setting the bit depth at the beginning of the program and performing calculations with
this bit depth, but also changing the bit width as needed in the computation process,
i.e. execute different fragments of the algorithm with different bit depths.

The library’s capabilities were tested in the study of solutions to degenerate and ill-
conditioned systems in [45].

6. Conclusions

In the framework of these studies, estimates of the hereditary error of the
weighted normal pseudosolution for matrices of arbitrary form and rank are obtained,
including when the rank of the perturbed matrix may change. Three cases are consid-
ered: the rank of the matrix does not change when the data is disturbed, the rank
increases and the rank decreases. In the first case, the weighted normal
pseudosolution of the approximate problem is taken as an approximation to the
weighted normal pseudosolution, in the other two, the problem is reduced to the case
when the ranks of the matrices are the same. Also, the estimates of the error for the
weighted pseudoinverse matrix and the weighted condition number of the matrix are
obtained, the existence and uniqueness of the weighted normal pseudosolution are
investigated and proved. Estimates of the total error of solving the weighted least
squares problem with matrices of arbitrary form and rank are established.

The results obtained in the perturbation theory of weighted least squares problem
can be a theoretical basis for further research into various aspects of the WLS problem
and the development of methods for calculating weighted pseudoinverse matrices and
weighted normal pseudosolutions with approximate initial data, in particular, in the
design and optimization of building structures, in tomography, in the calibration of
viscometers, in statistics. The results of the research can be used in the educational
process when reading special courses on this section of the theory of matrices.
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