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Abstract

Carotenes are fat-soluble pigments found in a variety of foods, the majority of which 
are fruits and vegetables. They may have antioxidant biological properties due to their 
chemical makeup and relationship to cellular membranes. And over 700 carotenoids 
have been found, with—carotene, lutein, lycopene, and zeaxanthin is the most sig-
nificant antioxidant food pigments. Their capacity to absorb lipid peroxides, reactive 
oxygen species (ROS) and nitrous oxide is likely linked to their anti-oxidative properties 
(NO). The daily requirements for carotenoids are also discussed in this chapter. Heart 
disease is still a prominent source of sickness and mortality in modern societies. Natural 
antioxidants contained in fruits and vegetables, such as lycopene, a-carotene, and 
B-carotene, may help prevent CVD by reducing oxidative stress, which is a major factor 
in the disease’s progression. Numerous epidemiological studies have backed up the idea 
that antioxidants might be utilized to prevent and perhaps treat cardiovascular illnesses 
at a low cost. Supplements containing carotenoids are also available, and their effec-
tiveness has been proven. This article provides an overview of carotenoids’ chemistry, 
including uptake, transport, availability, metabolism, and antioxidant activity, includ-
ing its involvement with disease prevention, notably cardiovascular disease.

Keywords: carotenoids, antioxidants, cardiovascular disease, free radicals,  
CVD prevention

1. Introduction

There are presently around 700 carotenoids known, although only about 50 of them 
are being digested by humans [1, 2]. Carotenoids are present in large concentrations 
in adipose tissue (80–80% of total), liver (8–12%), and muscles (2–3%) in healthy 
adults, but in fewer amounts in all other areas [3]. overall amount and levels of various 
carotenoids inside a person’s bloodstream are mostly determined by their daily aver-
age diet. Carotenoids and polyenes are abundant in green leafy vegetables and various 
multicolored fruits [4]. The bulk of dietary carotenoids is digested by the stomach and 
enters the bloodstream in humans. People’s blood contains B-carotene, a-carotene, 
cryptoxanthin, lycopene, and lutein [5]. Carotenoids circulate in the circulation along-
side lipoproteins, notably LDL (low-density lipoprotein fraction) [6]. However, a large 
amount of ingested B-carotene and other provitamins. A carotenoid is transformed 
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to the retina, primarily in the gut wall, but also some proportion in the stomach and 
intestines [7]. In the human diet, fresh vegetables are currently the primary source 
of carotenoids [8–10]. Lutein might perform an important role in hypertension and 
symptoms of acute permeability in those with heart problems, high cholesterol, and/or 
hyperglycemia, according to a literature review and meta-analysis [11].

Carotenoids may be found in a variety of fruits and are also available as a nutritional 
supplement [12, 13]. Cardiovascular abnormalities have subsequently been a major source 
of worry across the world since they affect a large portion of the global population, and an 
elevated death rate has been reported in individuals aged 30 and above [14, 15]. Numerous 
researches have looked at carotenoids’ possible cardioprotective and antioxidant capabili-
ties [16, 17]. Individuals with cardiovascular disease may benefit from the anti-inflamma-
tory properties of lutein, which may help to alleviate their symptoms [18]. ROS-induced 
reactive damage can arise in lipid peroxidation products, this may hasten the onset of 
atherosclerosis, the condition that causes heart attacks and ischemic strokes [19].

2. Chemistry of carotenoids and their dietary sources

Carotenoids can be found in a variety of foods, although the majority of carot-
enoids in the diet are derived from strongly colored vegetables, fruits, and juices. 

Figure 1. 
United States donators of carotenoids rich foods and per capita.
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Carotenes supplied as food colorings to foods during the process, milk and dairy fat-
containing meals, eggs, seafood, and carotenoids provided as food colorings to foods 
during handling can also supply trace amounts. The principal sources of carotenoids 
in the United States are shown in Figure 1. The data is derived from Median values 
using current HPLC procedures [20].

B-cryptoxanthin is present in orange fruits, lutein in green leafy vegetables, 
and lycopene in tomatoes and tomato derivatives, while B-carotene and a-carotene 
are both found in yellow-orange veggies and fruits. Multicomponent or mixed 
meals (e.g., soup, stew) generally contain a considerable proportion of carotenoid-
rich foods, which is a practical element to address in dietary evaluation [21, 22]. 
Seasonality may be a key factor of the kind and amount of dietary carotenoids 
consumed in populations or cultural groups that consume fruits and vegetables 
in seasonal patterns [23, 24]. Most carotenoids have a polyisoprenoid structure, 
which means they have a lengthy connected network with the double bonds and are 
essentially bilaterally symmetrical around the central doubled bond [25]. Multiple 
carotenoids are generated by cyclizing the end groups and adding oxygen function-
alities to the basic structure, which gives them their distinctive hues and antioxidant 
characteristics. The structure of several carotenoids is shown in Figure 2.

3. Carotenoids and cardiovascular health

3.1 Lycopene

The most frequent pigment present in human blood is lycopene. That’s just a 
non-cyclic-carotene analog with 11 linked doubled bonds and two distinct doubling 

Figure 2. 
Chemical structure of common carotenoids.
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bonds arranged in a linear arrangement [25]. This natural pigment is produced by 
bacteria and plants. Tomatoes are one of the most potent antioxidants, having a 
respiration activity that is greater than the total beta-carotene and 10 twice that of 
-tocopherol [26]. This is owing to the high quantity of linked diamines in the prod-
uct. The adrenals, testicles, liver, and sex organs all contain lycopene [27]. Unlike 
some other carotenoids, lycopene content in the blood and organs does not corre-
spond well with the total fruit and veggies diet [28].

According to the oxidative hypothesis, preventing LDL from being damaged is 
the first stage in the production of fibrils and atherosclerosis plaques, which leads 
to its absorption by monocytes inside the artery wall and the formation of plaque 
[29]. Oxidative alterations include triglyceride destruction, phospholipid oxida-
tion, and subsequent oxidation of Apolipoprotein B, in addition to unsaturated 
fatty acids [30].

3.2 Lycopene absorption

Lycopene can mainly be found in its all-trans stereoisomer”s natural form [31]. 
Lycopene is perhaps the most abundant pigment in blood serum, with a duration of 
2–3 days [32].

Fragmentation of the lycopene-rich feed solution, cooking temperature, and the 
incorporation of lipids as well as other fat compounds, such as other carotenoids, all 
impact lycopene absorption from food components. Carotenoids, like other lipid-sol-
uble medicines, are digested via a chylomicron-mediated process in the gastrointes-
tinal system [33]. Humans absorb 10–30% of the lycopene they eat in their diet [34, 
35]. Sauce, tomato puree, and tomato aqueous extracts capsules all absorb lycopene 
as well [34, 36]. Lycopene levels are greatest in the testicles, adrenals, prostate, chest, 
and liver in humans [37, 38]. Lycopene is metabolized and broken down in the tissues. 
Many oxidizing lycopene forms, as well as polarized intermediates, have recently 
been isolated and identified [39]. Table 1 shows the lycopene content of several foods 
[37, 40]. According to studies, 10–30% of lycopene taken in the diet is absorbed in the 
body [41].

Table 1. 
Fruits and vegetables with high lycopene content [37, 40].
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3.3 Lycopene and CVD

A lower incidence of cardiovascular disease has been attributed to the 
Mediterranean diet. Tomatoes, tomato derivatives, lycopene, and other pigments are 
abundant [42, 43]. In 499 patients with CVD (Mayo cordial infection, strokes, CVD 
mortality, or revascularization therapies), increased plasma lycopene levels were 
linked to a decreased risk of cardiovascular disease in the Physicians’ Health Study 
[44]. Lower blood lycopene levels were connected to an increased risk of death in a 
demographic study comparing Lithuanian and Swedish populations with different 
heart disease mortality rates [45]. Inflammation is considered to have a part in the 
development of atherosclerotic disease, which accounts for around 80% of all heart 
disease cases. In studies, high levels of cytokine production in blood plasma were 
associated with the onset of cardiac problems [46].

In a research of 139 sick people, oxygenated carotenoids (zeaxanthin, lutein, 
carotenoids, B-cryptoxanthin, a-carotene, and b-carotene) were found to be reduced 
in both patient groups (39 with acute illness, 50 with cardiovascular events, and 50 
control participants) [47]. In a Japan inhabitants research of 3061 people, there was a 
link between high blood carotenoids (a-carotene, a-carotene, lycopene, total carotene 
levels) and a decreased hazard ratio for mortality risk [48]. Upon 60 days of tomato 
diet intake, a study of CHD (chronic heart disease) patients found a significant 
improvement in plasma key anti-oxidative enzymes (lipid oxidation rate, dismutase, 
glutathione peroxidase) compared with control, implying that or more elements of 
veggies could have medicinal beneficial health effects. In a 3-month study, six healthy 
guys were given 60 mg of lycopene each day. At the completion of the medication 
term, their plasma LDL cholesterol level had dropped by 14% [49]. For 1 week, 19 
smoke-free healthy people (10 men, 9 women) received lycopene via normal toma-
toes and nutraceuticals (20–150 mg/d) in a designed cross nutritional controlled 
trial [50]. The goal of Thiess and coworkers’ randomized clinical experiment was to 
see how lycopene consumption affected the levels of cardiovascular risk indicators 
in healthy people. According to the data, taking 10 mg of lycopene every day for 
12 weeks did not influence raised blood concentrations. The levels of Apolipoprotein 
A-I and Apoprotein B-100 were constant. Although the findings were not significant, 
both the diastolic (DBP) and systolic (SBP) blood pressures were reduced by 3.2 and 
0.3 mmHg, respectively [51].

3.4 B-carotene

This group includes the xanthophyll compounds lutein and zeaxanthin. Macula 
lutea pigments are made from the macula lutea plant’s natural dyes. Certain pigments 
seem to be essential for the physiological function of the eye. They protect against 
cataracts and macular degeneration caused by aging. These qualities are owed to 
their antioxidant properties first and foremost [52]. Figure 1 shows that zeaxanthin 
has the same composition as lutein and is its derivative. From one of the final b-ion 
rings, the placement of a double bond changes between the two compounds: zeaxan-
thin is between C50 and C60, whereas lutein’s is between C40 and C5. Leafy foods, 
along with colorful veggies, are high in lutein. Two of the most prevalent sources are 
spinach and greens. Lutein can also be present in egg yolks, thanks to the practice 
of feeding chickens plant-based foods. Corn and red peppers, for example, contain 
zeaxanthin [53, 54]. Xu and colleagues looked into the efficacy of lutein supplements 
here on activation of proinflammatory mediators and blood lipids in atherosclerotic 
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subjects. The levels of monocyte chemotaxis protein type 1 in the blood of several 
individuals who received lutein at a dosage of 20 mg/d for 3 months were decreased 
(MCP-1). LDL blood cholesterol values were also found to be lower in these individu-
als [55]. The China Coronary Finding provides evidence that lutein has a protective 
effect on atherosclerosis. Patients with early stages of atherosclerosis had lower blood 
lutein concentrations than healthy individuals, according to the study. Plasma lutein 
content is seen to be negatively linked to the thickness of carotid endothelial tissue 
(CIMT). The high amount of zeaxanthin in the blood was also shown to be inversely 
related to right main aorta stiffness and pulse velocity (PWV), both of which are 
markers of cardiovascular risk [56]. In the 39,876 women who were investigated, there 
was no link between serum lutein and zeaxanthin contents but also cardiovascular 
events [57].

3.5 Beta carotene absorption

β-Carotene is a strong fat-soluble nutraceutical that may be found in many fruits 
and vegetables. β-carotene converts to two molecules of vitamin A, resulting in a 
higher vitamin A supply [58, 59]. Cardiovascular, cancer, neurological, immunologi-
cal, rheumatoid arthritis, cataracts, and aging have all been proven to be prevented by 
β-carotene [60–62]. The effectiveness of tagged β-carotene absorption varies greatly 
between clinical investigations, ranging from 3 to 80%, but quite often around 10 
and 30% [63, 64]. It might be related to β-carotene’s varied bioavailability, or it could 
be owing to the enterocyte’s delayed absorption or transit. It’s worth noting that the 
absorption of β-carotene was commonly evaluated after a little meal. In humans, 
though, our stomach may retain β-carotene from the initial meal for eventual release 
during the subsequent period [65].

On the other hand, carotenoid binding vehicles may impact carotenoid absorption 
routes. Blended micelles were most likely separated from the majority of the bolus in 
the unstirred water of such a glycocalyx region before touching the boundary layer, 
whereupon carotenoid could be ingested passively or via a transporter-dependent 
method [66]. Phytofluene, β-carotene, and lutein accumulation are comparable to as 
well as much bigger than phytoene ingestion in differentiated Caco-2 cell monolay-
ers, albeit lycopene ingestion was the lowest [67, 68]. Uptake efficiency appears to be 
linked to carotenoid polarity and flexibility in the same manner as bioavailability is. 
This might be because hydrophilic, pliable pigments have such a stronger attraction 
for lipids carriers and plasma membrane, resulting in more absorption. According to 
an IOM report from 2001 [69], the Supplemental and dietary β-carotene absorbing 
rate ranges from 5 to 26% (spinach) (raw carrots). β-carotene and lycopene are the 
most abundant carotenoids in human adipocytes, accounting for 20.2 and 18.5% of 
total carotenoids, respectively, with substantial inter-individual variability [70].

3.6 Beta-carotene and CVD

In a recent meta-analysis of all-cause mortality in 25,468 men and women, the 
relative risk (RR) for those with the highest vs. lowest blood beta-carotene levels 
was 0.69 (95% confidence interval: 0.59–0.80). (6137 deaths) [71]. According to the 
NHANES III study of 16,008 people, some in the top tertile of serum beta-carotene 
seemed to have a 25% lower risk of mortality (95% CI: 10–37%) than those in the 
lowest quintile (4225 deaths) [72]. Many investigations, along with a recent meta-
analysis, suggest that circulating beta-carotene and overall mortality are negatively 
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correlated [73–75]. In contrast, a meta-analysis of observational studies found that 
supplementation with b-carotene raises the odds of cardiovascular mortality from a 
tiny proportion [76]. Increased nutritional consumption of a-carotene and b-carotene 
was linked to a reduced risk of CVD mortality in the Zutphen Elderly research [77]. 
High serum concentrations of a-carotene and b-carotene, lycopene, or carotenoids, 
according to Japanese population-based follow-up studies, can lower the risk of 
mortality rates [78, 79].

The development of cardiovascular disorders is undoubtedly aided by peroxidation 
and chronically low irritation in the cardiovascular system. This pathogenesis of CVD 
and coronary disease has been related to oxidatively damaged low-density lipoproteins. 
An injection of such a free radical source that promotes LDL oxidation into foam cells 
appears to cause thermogenesis. An injection of such a free radical source into foam 
cells that stimulates LDL oxidation appears to trigger thermogenesis. Antioxidants 
may prevent cholesterol levels from degradation, lowering the risk of cardiovascular 
diseases in humans. Because β-carotene and lycopene are mostly found in LDL, they 
have a significant role in preventing oxidation [80]. The addition of b-carotene to LDL 
in situ was already found to lower the oxidation sensitivity of LDL [81].

Carotenoids have antioxidant properties and promote lymphocyte proliferation, 
which would boost immunological activity. The modification of vascular NO bioavail-
ability owing to carotenoids’ lowering action is another intriguing technique for explain-
ing how carotenoids assist prevent CVD. In a model of vascular inflammation, high 
beta-carotene concentrations are connected to a large rise in NO level or absorption, as 
seen by an increase in cGMP level. In endothelial cells, increased NO release resulted 
in the enzyme inhibition of NF-kB-dependent binding proteins [82]. Endothelial NO 
bioavailability is therefore thought to be important to endothelial function and overall 
vascular health. In a rat model of atherosclerosis, further study reveals that a 9-cis-beta-
carotene-rich diet can protect heart disease by lowering non-HDL plasma cholesterol 
levels, inhibiting liver fibrosis growth and inflammation [83].

3.7 Astaxanthin absorption

Astaxanthin, or 3,3′-dihydroxy-, ′ β-carotene-4,4′-dione, is a red-orange marine 
carotenoid present inside a wide range of microorganisms and marine animals [61, 62]. 
Soft gels, capsules, lotions, energy beverages, oils, and extracts containing astaxan-
thin have already entered the market as nutritional supplements [84]. As for other 
liposome carotenoids, astaxanthin is considered to go through a complicated digest-
ing and absorption process that includes liberation from food material, transport to a 
stomach organic phase, creation into micelles under solvation via pancreas hydrolases 
but also bile acids, transit through the villi, uptake by enterocytes, and inclusion 
into chylomicrons allowing transportation to the lymphatic vessels and bloodstream 
[58, 85]. The gastrointestinal system, particularly the duodenum, absorbs almost no 
carotenoids into enterocytes, and bioavailability refers to the fraction of the ingested 
dosage retained into micelles. [86].

However, because of its weak water solubility and corrosiveness, oral astaxan-
thin’s bioavailability is restricted. The pharmacokinetics of astaxanthin in rats were 
dose-independent between 100 and 200 mg/kg. Oral astaxanthin intake in the 
gastrointestinal tract followed a flip-flop pattern, according to Choi et al. [87]. The 
structure of astaxanthin has a role in its bioavailability. In vitro and rat, experiments 
demonstrated that a single ingestion of 100 mg mixed isomers resulted in a greater 
plasma level of cis-astaxanthin, particularly the 13-cis isomer, than diet [88–90]. 
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Osterlie et al. looked at the dispersion of astaxanthin in different lipid fragments and 
found that 36–64% plasma astaxanthin accumulated in chylomicron-containing very-
low-density lipoproteins, with the rest distributed almost evenly between low-density 
lipoprotein 29% and high-density lipoprotein 24% [90].

3.8 Astaxanthin and CVD

Microalgae, plankton, krill, fish, and other seafood are all members of the 
xanthophyll family. Microalgae, plankton, krill, fish, and other seafood contain 
astaxanthin, a red soluble pigment. In the marine environment, it can be found 
in microalgae, plankton, krill, fish, and some other seafood. It’s the pigment that 
gives salmon and crustaceans their characteristic colors [91]. Even though chronic 
damage is still a biomarker conducted in a range of diseases, astaxanthin has shown 
promise in the prevention and treatment of malignancies, inflammatory diseases, 
metabolic disease, kidney disease, nephropathy, spleen, and digestive diseases, 
neurodegenerative diseases, and even cardiovascular disease. According to Pashow 
et al., astaxanthin might help with myocardial injury, oxidation LDL, re-thrombosis 
following angioplasty, or other cardiac issues including fibrillation. Astaxanthin is 
a strong anti-oxidant and FR’s remover, and a reactive oxygen species (ROS) and 
nitrogen-oxygen species (NOS) quencher (NOS) [92]. During an eight-week study, 
Park looked at the effects of astaxanthin supplementation (0, 2, and 8 mg per day) 
on oxidative stress. People taking 2 mg a day for 8 weeks had a decreased hs-CRP, 
a primary predictor of heart disease. After 4 weeks of therapy, DNA damage as 
determined by serum 8-hydroxy-2?-deoxyguanosine was also reduced [93].

3.9 Lutein and zeaxanthin carotene absorption

The xanthophyll pigment astaxanthin (AST) is present in a variety of marine 
animals and microalgae [28]. Anti-inflammatory and antioxidant capabilities, as well 
as the ability to improve cardiovascular and immune system health, as well as prevent 
diabetes and neurological illnesses, are all found in AST [94–98]. In green foods, the 
lutein-to-zeaxanthin ratio ranges from 12 to 63, with kale having the highest concen-
tration, whereas the ratio in yellow-orange fruits and vegetables is between 0.1 and 1.4 
[99]. Dark green algae, that are consumed by fish, are rich in astaxanthin and fuco-
xanthin. Capsanthin is most commonly found within the pepper. β-Cryptoxanthin 
is a provitamin A that may be found inside a variety of vegetables, but it’s especially 
abundant in corn, oranges, peaches, papaya, watermelon, and egg yolk. [100, 101].

Carotenoids should be digested then delivered into the blood to assert and provide 
their physical effects. Carotenoids seem to be either lipid-soluble or hydrophilic, 
indicating they are accessible in fats and immiscible, just like the human digestive 
tract. When compared to the hydrocarbon carotenoids (α-, β-carotene, and lyco-
pene), lutein and zeaxanthin have hydroxyl groups and are thus polar molecules. To 
calculate the advantages, a thorough understanding of carotenoid release, absorp-
tion, transit, and storage in the eye is required. The quantity and type of dietary 
fat, that assists in the solvation of releasing carotenoids, and also phospholipids, 
soluble fiber, and indeed the nature of carotenoids, are all key determinants in lutein 
and zeaxanthin absorption from food [102–104]. Many phases are engaged in the 
intake of carotenoids released from food: (i) dispersion inside the stomach colloid 
so it can be integrated into fat droplets, (ii) followed by translocation to micelles 
holding bile salts, biliary phospholipids, dietary lipids, as well as other substances. 
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The intestinal cell collects the dissolved carotenoids and distributes them into the blood. 
In vitro transfer of lutein, zeaxanthin, and β-cryptoxanthin from fruits (orange, kiwi, 
grapefruit, and sweet potato) was nearly 0%, compared to 19 and 38%, respectively, 
from spinach and broccoli [105]. The primary carotenoids detected in maize milling 
fractions are lutein and zeaxanthin, which account for nearly 70% of total carotenoids 
[106]. Table 2 lists foods that are high in lutein and zeaxanthin [107–110].

3.10 Zeaxanthin and CVD

With a 40-carbon hydroxylated structure, zeaxanthin is just an oxygenation 
non-provitamin A carotenoid [111]. The macular lutea, a yellow-colored region of 
the retina that supports the central vision and includes lutein and zeaxanthin, is a 
yellow-colored section of the retina that contains lutein and zeaxanthin. Zeaxanthin 
may protect proteins, lipids, or DNA from oxidative stress via influencing various 
cellular antioxidant mechanisms, in addition to immediately reducing superoxide 
radicals. Glutathione is a potent antioxidant found within tissues that defends them 
from oxidation [112]. Taking supplements with zeaxanthin or a-tocopherol lowers 
metabolized glutathione (GSSG) levels while raising internalized reduced glutathione 
(GSH) levels and the GSH/GSSG ratio, particularly during redox balance. By regulat-
ing glutathione production and hence glutathione levels, zeaxanthin functions as an 
antioxidant, either directly or indirectly. As a result, the internal redox state improves 
in oxidative stress, and susceptibility to H2O2-induced cell death decreases [113].

Beta-carotene and zeaxanthin, which are inversely related to right main artery 
stiffness, pulse speed, and deformability, are implicated in both ocular and cardio-
vascular health. Both the Beijing and Los Angeles atherosclerosis studies discovered 
an opposite relation between serum lutein and initial CVD, although subsequent 
follow-up trials revealed that greater serum zeaxanthin concentrations may defend 
from early arteriosclerosis [114]. Zeaxanthin may help vascular health, according to 
these studies.

3.11 Lutein and CVD

With chemically similar formulas, it’s an isomer of the carotenoid zeaxanthin. It, 
like zeaxanthin, is exclusively found in foods like yellow maize, egg yolk, orange juice, 
honeydew melon, and other fruits, and must be gotten by supplements or diet [113]. 
The ubiquitous nuclear transcription factor NF-kB, which is implicated in a range of 

Food item Lutein μg/g Zeaxanthin μg/g

Parsley 64.0–106.5 64.0–106.5

Red pepper 2.5–85.1 5.9–13.5

Corn chips 61.1 92.5

Corn 21.9 10.3

High lutein bread 36.7 3.3

High lutein muffin 26.1 3.7

Durum wheat 5.4 0.5

Table 2. 
Lutein and zeaxanthin sources [107–110].
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pathogenic reactions, is blocked by lutein [115], as well as the kB inhibitor’s degrada-
tion (I-kB) [48]. It also has a significant potential to scavenge ROS [116, 117]. NF-kB 
can begin to migrate into the nucleus when I-kB is released from the NF-kB complex 
by lutein, reducing inducible transcription of genes and the activation of cytokines 
markers such cytokines, chemokines, and iNOS [118]. Lutein inhibits the production 
of TNF-alpha, interleukin 6 (IL-6), prostaglandin 2 (PGE-2), monocyte chemotactic 
protein 1 (MCP-1), and macrophage inflammatory protein 2 (MIP-2) [119].

According to this study, plasmatic lutein shows a negative correlation with oxidative 
stress, implying that it has significant oxidative and anti-inflammatory effects on aortic 
tissue, potentially preventing atherosclerotic [120]. Several studies have found that 
lutein levels in individuals with atherosclerosis were considerably lower than in normal 
and that they were indirectly correlated to arterial tightness [121]. The cardiac and 
blood vessel preventive actions of lutein have also been connected to the management 
of hypertension. A rise in systolic blood pressure and unintentional hypertension was 
often negatively proportional to a larger amount of this carotenoid. Some with greater 
lutein values had lower serum blood pressure but a decreased risk of future hyperten-
sion, independent of whether or not they smoke [122]. By lowering peroxidation and 
myocyte apoptosis, lutein prevents the myocardium from ischemia damage [123]. By 
avoiding contractile dysfunction, limiting myocardial damage may lower CAD morbid-
ity and mortality [124].

3.12 Oxidative stress and antioxidants activity

The onset and evolution of a range of disorders, including cardiovascular issues, 
have been related to oxidative stress. ROS are important biological variables that 
can influence a wide range of physiological and disease-related conditions [125]. 
Cancer, reactive arthritis, osteoarthritis, aging, neurological, and cardiac illnesses 
are all connected to oxidative stress. Given the evidence linking oxidative stress to a 
wide range of human illnesses, measuring oxidative stress biomarkers is critical for 
assessing health and detecting the onset of oxidative stress-related disorders [126]. 
Hypercholesterolemia is also a disease that is closely connected to peroxidation. FH 
individuals reported greater levels of reactive oxygen species than normolipidemic 
patients, as per an inter observational study involving 132 individuals with high 
cholesterol (FH). MDA concentration seems to be much higher in FH, suggesting 
a higher oxidative stress state, according to the International Federation of Clinical 
Chemists (IFCC) standard range (>1.24 g/L) [127]. Various demographic studies have 
examined the association between higher nutritional carotene intake and thus the 
environment’s effects on cardiovascular disease prevention [128–131].

Circulating carotenoid concentrations, for example, have been associated with 
inflammatory markers, increased lipid peroxidation, and vascular dysfunction, that 
has all been connected to CVD [132–134]. Secondly, pigments and minerals have a 
phytonutrient-like impact on endothelial dysfunction and irritation, decreasing the 
risk of atherosclerosis. [135]. The finding of a link between carotene, peroxidation, 
and inflammation has been aided by several in vitro studies, notably those that used 
subsystem [136]. Carotenoids exhibit anti-oxidant and anti-inflammatory properties 
in vascular cells, as shown in Figure 3.

Nitrogen oxide may combine with O2− to generate peroxynitrite (ONOO-) under 
oxidative conditions, resulting in decreased NO bioavailability, vascular dysfunc-
tion, increased lipid oxidation, and chronic inflammatory responses. Nitrogen oxide 
may combine with oxygen to generate peroxynitrite (ONOO-) during oxidative 
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conditions, resulting in decreased NO bioavailability, vascular dysfunction, increased 
lipid oxidation, and chronic inflammatory responses. All of these actions create a 
negative cycle, and the antioxidant and anti-inflammatory capabilities of carotenoids 
may be harmed as a result. TNF-, tumor necrotic lesions factor-alpha; NF-B, nuclear 
factor kappa-light-chain-enhancer of activated B cells; ICAM-1, intercellular adhe-
sion molecule 1; VCAM-1, vascular cell adhesion molecule 1; TNF-, tumor necrosis 
factor-alpha; NF-B, nuclear factor kappa-light-chain-enhancer of activated B cells; 
ICAM-1, intercellular adhesion molecule 1; TNF-, tumor necrosis factor-alpha; NF-B, 
nuclear factor kappa-light-chain-enhancer of activated B cells; ICAM-1, intercellular 
adhesion molecule 1; eNOS, endothelial nitric oxide synthase; NO, nitric oxide; O2-, 
superoxide anion; ONOO-, peroxynitrite; eNOS, endothelial nitric oxide synth cGM.

Antioxidants are chemicals that prevent or restrict oxidative damage by inhibiting 
the action of reactive oxygen species. Intrinsic antioxidant components present in 
body cells include chronic damage, catalase, and glutathione peroxidase. Antioxidants 
found in foods include vitamin C, vitamin C, polyphenols, and carotenoids [138]. To 
help avoid chronic diseases like cancer and cardiovascular disease, current dietary 

Figure 3. 
Carotenoids have a beneficial effect on endothelial dysfunction and overall vascular health [137].
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guidelines recommend consuming more antioxidant-rich plant foods like fruits and 
vegetables [139].

3.13 ROS and RNS production by nitric oxide synthases

The conversion of L-arginine to L-citrulline and nitric oxide is catalyzed by nitric 
oxide synthases (NOS)., but they can create superoxide under uncoupling conditions:

NOS + L-arginine + O2 + NADPH − → NO + citrulline + NADP+ NOS(Fe(II)
heme) + O2 − → NOS(Fe(III)heme) + O2 •− [140].

Two NOS isoforms, neuronal NOS (NOS1) and endothelial NOS (eNOS, NOS3), 
are generated in cardiomyocytes constantly, whereas inducible NOS (NOS2) is lack-
ing in the healthy heart but can be triggered by pro-oxidants [141]. It was discovered 
that hypertrophied myocytes had a higher amount of iNOS [142]. Because NOSs 
may produce both RNS and ROS, their effects on the cardiovascular system can be 
complex—they can enhance or reduce heart damage. Because nitric oxide is an EDRF 
(endothelium-derived relaxing factor), its effects must primarily benefit the heart. The 
diffusion-controlled interaction of nitric oxide with superoxide, on the other hand, 
produces the very reactive peroxynitrite. To avoid heart damage, the equilibrium of 
superoxide/nitric oxide must be maintained. During pathological changes in the heart, 
the interplay of major enzymatic ROS generators contributes to this balance. In dogs 
with pacing-induced heart failure, NO synthases and xanthine oxidase was shown to be 
important in the modulation of myocardial mechanical efficiency, and overexpression 
of XO relative to NOS contributed to mechanoenergetic uncoupling [143].

4. Conclusion

Fruits and vegetables are rich in carotenoids. Carotenoids have long been regarded 
to be beneficial to one’s health. Nearly 700 carotenoids have been discovered. The most 
regularly referenced carotenoids in this chapter were a-carotene, b-carotene, lutein, 
lycopene, and zeaxanthin. Their absorption, transportation, needs, and chemistry were 
all discussed. Cardiovascular diseases are a significant public health issue. Carotenoids-
rich meals may help to reduce the progression of coronary heart disease, according to 
the study reviewed in this chapter. Oxidative stress is responsible for a wide range of 
degenerative diseases, including cardiovascular issues. The pathogenesis of CVD is 
heavily influenced by oxidative stress. We looked at the significance of carotenoids in 
endothelial function and vascular health in general in this chapter. We also discussed 
how carotenoids may be obtained from a variety of fruits and vegetables. The etiology 
of atherosclerosis is aggravated by oxidative stress. Throughout this chapter, we looked 
at the significance of carotenoids in endothelial function and vascular health in general.
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