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Chapter

Principal Component Analysis and
Artificial Intelligence Approaches
for Solar Photovoltaic Power
Forecasting

Souhaila Chahboun and Mohamed Maaroufi

Abstract

In recent years, renewable energy sources have experienced remarkable growth.
However, their spatial and temporal diversity makes their large-scale integration into
the current power grids difficult, as the balance between the electricity output and the
consumption must be maintained at all times. Therefore, it is important to focus on
the resources forecast to enhance the integration of renewable energy sources, such as
solar in this study. In this article, a comparative analysis of two main machine learning
methods was conducted for the prediction of the hourly photovoltaic output power.
Furthermore, since various factors, such as climate variables, can impact the solar
photovoltaic power and complicate the prediction process, the principal component
analysis was employed to investigate the interactions between the multiple predictors
and minimize the dimensionality of the datasets. The prevalent factors were then used
in the predictive models as inputs. This field research is very crucial because the
higher the prediction accuracy, the greater the profit for energy dealers and the lower
the costs for customers.

Keywords: photovoltaic power, machine learning, principal component analysis,
prediction

1. Introduction

The primary driver of the economic progress of a country is energy [1]. Recently,
renewable energy sources have become increasingly popular. Solar energy is gaining
popularity due to its low pollution, great energy efficiency, and adaptability [2].

However, the output power of solar energy is strongly impacted by weather and
other environmental factors, restricting its deployment on a broad scale. In the solar
power generating system, research on photovoltaic (PV) power generation prediction
is consistently one of the most prominent topics of study [3].

The most widely employed a physical model of forecasting is numerical weather
prediction. The numerical weather forecast model is computationally complex due to
the fluctuation and unpredictable character of the atmosphere. Therefore, as the area
of computer science expands and its ability to deal with non-linearity improves,
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machine learning offers a prospective advantage for renewable energy forecasting.
The precision of the input data and the machine learning techniques employed deter-
mine the efficiency of the predictive models [4]. Moreover, even if the input-output
data connection is complex, machine learning methods use historical data sets to
construct a relationship between them. As a result, it is essential to use appropriate
data to address the problem efficiently [5].

In recent years, a growing number of algorithms have been employed in the field
of PV prediction, resulting in ever-improving forecast accuracy. The present state of
PV forecasting techniques can be mainly summed up in Neural Network, Multivariate
Adaptive Regression Splines, Boosting, Bagging, K-nearest-neighbor etc. However,
the large number of variables and irrelevant or redundant information can make
forecasting difficult, necessitating a large amount of computer power and resulting in
inefficient and erroneous results. Feature reduction approaches are presented as a
solution to overcome this challenge [6].

This approach was adopted by a number of researchers. For instance, Souhaila
et al. [7] carried out a principal component analysis (PCA) to decrease the number of
interconnected variables. These dominant factors were then employed in the predic-
tive models as inputs. Qijun et al. [2] employed both PCA and Support Vector
Machine for PV power prediction. Malvoni et al. [8, 9] created a PV forecast model
based on a hybrid PCA- Least-squares support vector machine (LSSVM).

Given the challenges, mentioned above, related to the field of PV power prediction,
the aim of this study is to determine the most effective data and machine learning
algorithms for accurate PV power output forecast. Moreover, this study investigates the
impact of data pre-processing approaches, mainly Yeo-Johnson transformation (YJT),
correlation analysis, and PCA technique, on machine learning prediction accuracy. The
two main machine learning algorithms used in this study are Multiple Linear Regression
and Cubist Regression Finally, the most common error metrics and residual analysis
were used to assess the accuracy of the predictive models.

2. Data preparation

Data preparation is necessary to get the best results from machine learning algo-
rithms. Some machine learning algorithms require data to be in a specific format. As a
result, it is vital to arrange the data so that various machine learning algorithms have
the best chance of solving the studied problem. In our case, two techniques were
employed for data preparation namely Yeo-Johnson transformation (YJT) and corre-
lation analysis.

2.1 Data source

In this study, we used the PV power data from a PV power platform in Morocco,
having a total capacity of 6 KW. For the input data, we made advantage of a free data
source that gives solar energy and meteorological information. The inputs used in our
forecasting models are presented in Tables 1-3:

2.2 Yeo-Johnson transformation

In general, many data include variables with a non-normal distribution (gaussian).
However, they are frequently skewed in their distributions. Preprocessing the
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Parameter Unit Symbol

Top of Atmosphere radiation Why,2 TOA

Global Horizontal irradiation Why, > GHI

Beam Horizontal irradiation Why, 2 BHI

Diffuse Horizontal irradiation Why,2 DHI

Beam Normal irradiation Why,2 BNI
Table 1.

Solar ivradiation data.

Parameter Unit Symbol

Relative Humidity % RH

Wind Speed my, WS

Ambient Temperature °C Tamb

Pressure hPa p
Table 2.

Meteorological data.

Parameter Unit Symbol

Module Temperature °C Tm

Efficiency % Eff

Month — Month

Day — Day

Hour — Hour
Table 3.

Supplemental data.

variables to make them more normal is common when dealing with such data. The
Box-Cox and Yeo-Johnson transformations (YJT) are two well-known methods for
this. Yeo and Johnson (2000) improved the Box-Cox transformation to create a one-
parameter family that can transform both positive and negative variables [10]. YJT is

defined by Eq. (1):

( A )
% A% 0andy>0
In(y +1) A=0andy>0
(1) —
y = (1)
(o)
o A#2andy<0
( In(—y +1) A=2andy<0 )
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This transformation is ideal for correcting left and right skew when A>1and 1<1
respectively, whereas when A = 1, the linear connection is established.

3. Materials and methods
3.1 Correlation analysis

The correlation between the parameters of the model has a significant impact on
the accuracy of the forecasted models. To simplify computations, the correlation of
different inputs with PV power generation was evaluated. The correlation matrix is
calculated with the help of the covariance Eq. (2) and correlation metrics Eq. (3).
Below are the equations:

cov(a,b) = %Z(xl —x) % (y; —¥) 2
corr(ab) — CO0EY)
(a,b) s(x) x s(y) 3)

where X,  represent the means of the x and y values, respectively, and s represents
the standard deviation. It’s used to figure out how dispersed the data is around the
mean value.

3.2 Principal component analysis

The dataset must be pre-processed and dimensionally reduced before the training
of the machine learning models. Principal component analysis (PCA) is a dimension-
ality reduction and feature extraction technique based on linear transformations.
Using an orthogonal transformation, this approach converts correlated variables into
mutually uncorrelated variables. The major components calculated from the Eigen
vector of the covariance matrix can be lower or equal to the original variables. The
first principal components, which reflect a high correlation between input variables,
account for the majority of the variance [11].

3.3 Forecasting models

In this study, we decided to assess the efficiency of two popular machine learning
methods using the R software [12].

3.3.1 Multiple linear regression

Multiple Linear Regression (MLR) is a technique for predicting the power gener-
ated by solar PV panels using a range of predictor variables. The following is the
regression equation (see Eq. (4)):

Y = Bo + piX1 4 BoXo . .. + B X (4)

where X1.X5, ..., X, are predictor variables and 3, 5, ... #, are their coefficients.
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3.3.2 Cubist vegression

Cubist (CB) is a rule-based approach that uses building rules to generate regression
solutions. A rule is generated for each leaf in a regression tree, and it is linked to the
data it contains. The linear combination of rules that occurs when all rules are
constructed is used to make final predictions [13]. The CB model incorporates
boosting with training committees, which is comparable to the approach of boosting
by generating a sequence of trees with changed weights successively. The number of
neighbors of the CB model is used to modify the rule-based prediction. The models
created by two linear models in the CB model are written as follows in Eq. (5), [14]:

ypar:(l_a) X)A)p—Fan)c (5)

where j_ is the forecast of the current model and J,, is the prediction of the parent
model.

3.4 Error metrics

We randomly divided the data into a training set and a testing one to evaluate the
investigated models and measure their prediction power. Egs. (6)—(8) establish the
error metrics used to assess the accuracy of the predictive models.

— 2
Sy (Pout,- — Pout,-)

S, (Pout; — Pout)”

RMSE — \/ % zn; <Pouti _ PZ@T&)Z 7)

1
MAE:;Z

=1

R =

(6)

Pout; — Pout;

(8)

4. Results
4.1 Correlation analysis results

A correlation study was performed, as previously indicated, to check the connection
between the input variables and the output power, thereby selecting the closely related
factor parameters that should be kept as inputs to the prediction models (see Figure 1).

4.2 Principal component analysis results

As previously explained, PCA was used to determine the most essential data vari-
ables to be used in the training of the machine learning models. The variance distri-
bution of the principal components (PCs) (PC1-PC9) is depicted in the Scree plot in
Figure 2. According to the eigenvalues, the cumulative variance of PC1 through PC3 is
90.4%. As a result, the first three major components were recognized as the primary
model inputs and were sufficient for the development of our predictive models.
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Figure 1.
Correlation matrix.
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Figure 2.
Scree plot.

The main variables of each of the PCs were selected from the top three variables in
Table 4 with a value greater than 0.60 [15]. GHI, BHI, and BNI were selected for PC1.
For PC2, Hour, Tm, and Eff were identified. Finally, only Tamb was chosen for PC3.
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Factor PC1 PC2 PC3
Hour 0.01 0.98 0.16
Tm 0.47 0.68 0.33
Eff 0.28 0.60 0.10
Tamb 0.19 0.24 0.94
TOA 0.57 0.07 0.15
GHI 0.76 0.10 0.17
BHI 0.88 0.11 0.18
DHI 0.34 0.08 0.10
BNI 0.94 0.14 0.13
Table 4.

PCA results.

Algorithm Raw data Reduced data (PCA)
R? RMSE (KW) MA (KW) R? RMSE (KW) MAE (KW)
MLR 0.9016 0.6642 0.5036 0.9147 0.7894 0.6127
CB 0.9944 0.1575 0.1032 0.9914 0.2499 0.1597
Table 5.

Performance metrics results—Training phase 80%.

Algorithm Raw data Reduced data (PCA)
R? RMSE (KW) MAE (KW) R? RMSE (KW) MAE (KW)
MLR 0.8963 0.6780 0.5155 0.9218 0.7578 0.5922
CB 0.9807 0.2921 0.1830 0.9821 0.3622 0.2191
Table 6.

Performance metrics results—Testing phase 20%.

4.3 Performance metrics

Tables 5 and 6 show the forecast performance results in the case of raw data and
reduced data resulting from PCA method.

Scatter plots (see Figure 3) reveal more information about the model’s effective-
ness. All points in a good model should be close to the diagonal line and have no
practical dependencies.

4.4 Residual analysis

The difference between the actual and expected values is known as residual. The
Residual vs. fitted values plot is the first plot in our residual analysis (see Figure 4). It
is one of the most used model validation graphs. This figure detects outliers and error
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Figure 3.
Predicted versus observed values plots.
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Figure 4.

Residuals versus observed values plot.

dependencies. The precision of the forecast for that particular value is shown by the
distance from the x-axis (0 line).

Moreover, the Residual density plot, as shown in Figure 5, can be very informa-
tive. If the majority of the residuals are not grouped at zero, the model outputs will
likely be biased.

Finally, the last plot (Figure 6) is the residual boxplot. It depicts the distribution of
absolute residual values.

5. Discussion

Based on the results of the correlation analysis (see Figure 1), month, day, WS,
and P variables have the lowest correlation with the PV output power, whereas solar
irradiations and Tm have the strongest correlation with the PV power. Furthermore,
all of the variables have a negative correlation with RH parameter. As RH rises, the PV
power decreases. Moreover, the relationship between Tamb, Hour, Eff, and PV output
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Figure 5.
Residual density.
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Figure 6.
Residual boxplot.

power appears to be neither strong nor weak. As a result, we simplified the PV power
forecast method by removing the variables Month, Day, RH, P, and WS from the
input data and keeping other variables as the main inputs to our regression models.

The PCA method showed three major factor components that influence PV power
and reach up to 90.4% of the total variable variance. As a result, the PCA technique
was used to identify the most significant variables, which are then used in the pro-
posed models.

The results of performance metrics, on the other hand, in Tables 5 and 6, the CB
technique provided the best balance between the forecasted and observed values, with
an R” = 98.21% in the testing phase and R* = 99.14% in the training one. This is owing
to the fact that linear models lose accuracy when the dependencies are not linear, as is
the case with solar PV output. Moreover, by comparing the results obtained in the case
of raw data and reduced data resulting from the PCA analysis, the results are clearly
superior, demonstrating the critical importance of this dimensionality reduction
approach, which allows for cost and efficiency savings.
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Moreover, the Figure 3 gives extra information on model efficiency in addition to
the error metrics presented above. All observed points should, in theory, be close to
the diagonal line, which is the case of the CB algorithm.

Finally, several plots have been presented above to help in the analysis of the
predictive models in terms of residuals. From the plot of residual vs. observed values
presented in Figure 4, the CB method obviously surpasses the MLR method in terms
of prediction accuracy, since residuals in CB are more localized around the x-axis than
in MLR.

In addition, compared to MLR, Figure 5 shows that residuals in CB are more
localized around zero. Furthermore, looking at the Residual boxplots in Figure 6, we
can see that CB has the smallest number of residuals compared to MLR, which has a
much larger range of residuals.

All the results obtained show the superiority of the CB algorithm in predicting the
PV power compared to the classical approach MLR.

6. Conclusions

In the sector of PV power forecasting, machine learning techniques within artifi-
cial intelligence offer a lot of potential. The main benefit of these approaches is their
ability to handle complex problems and take into consideration a large number of
input factors, However, it is worth noting that selecting an optimum number of input
variables is beneficial for successful machine learning, since large datasets can be
difficult to analyze and interpret. As a result, the PCA approach is critical, as it allows
for faster computations and storage space savings, as well as the removal of redundant
variables, multicollinearity, and noise.

Finally, the comparison of machine learning approaches for PV power forecasting
will aid energy suppliers in identifying the best algorithms for effectively and safely
handling PV-integrated power.

Nomenclature

BHI beam horizontal irradiation
BNI beam normal irradiation

CB cubist

DHI diffuse horizontal irradiation
Eff efficiency

GHI global horizontal irradiation
MAE mean absolute error

MLR multiple linear regression

P pressure

PCA principal component analysis
PV photovoltaic

RH relative humidity

RMSE root mean square

R* R-squared

Tamb ambient temperature

Tm module temperature

TOA top of atmosphere radiation
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WS wind speed
YJT Yeo-Johnson transformation
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