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Chapter

Computational Methods for the 
Study of Peroxisomes in Health  
and Disease
Naomi van Wijk and Michal Linial

Abstract

Peroxisomal dysfunction has been linked to severe human metabolic disorders but 
is also linked to human diseases, including obesity, neurodegeneration, age-related 
diseases, and cancer. As such, peroxisome research has significantly increased in 
recent years. In parallel, advances in computational methods and data processing 
analysis may now be used to approach unanswered questions on peroxisome 
regulation, mechanism, function, and biogenesis in the context of healthy and 
pathological phenotypes. Here, we intend to provide an overview of advanced 
computational methods for the analysis of imaging data, protein structure modeling, 
proteomics, and genomics. We provide a concise background on these approaches, 
with specific and relevant examples. This chapter may serve as a broad resource for 
the current status of technological advances, and an introduction to computational 
methods for peroxisome research.

Keywords: high-resolution microscopy, structure prediction, integrative modeling, 
deep learning, genomics, proteomics, mass spectrometry, Zellweger syndrome

1. Preface

Peroxisomes are single membrane-bound organelles found in all eukaryotic cells, 
with diverse functions according to the cell type and metabolic conditions. The study 
of peroxisomes, their processes, and regulation activity has taken flight in the last 
decade, thanks to the introduction of novel cellular methodologies. Simultaneously, 
sequencing and human genetics methods have strongly improved, and a growing 
number of metabolic diseases have been associated with genetic variations in 
peroxisomal genes. However, a deep understanding of the coordinated workings of 
peroxisomal genes in health and disease is still lacking.

Peroxisomes play a key role in cell metabolism and homeostasis. For example, 
they are involved in the β-oxidation of fatty acids, the formation of specific ether 
phospholipids, and in the dissipation of damage caused by reactive oxygen species 
(ROS). At the same time, peroxisomes are very dynamic organelles that use creative 
solutions in their biogenesis and assembly, import of large proteins, morphological 
changes by fusion and fission, and complex interactions with other organelles and 
lipid droplets. Several insightful review articles summarize the current challenges of 
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the metabolism and biology of peroxisomes [1, 2]. This chapter explores the use of 
state-of-the-art computational approaches and methods for the study of peroxisome 
biology at various levels. First, we discuss the basics of deep learning and machine 
learning algorithms. Then, we explore how deep-learning-augmented cell imaging 
explores peroxisomal biology. Advances in microscopy have yielded a trove of high-
resolution, high-throughput imaging data from living cells that require and enable a 
more advanced level of analysis. We then zoom in to a higher-level resolution, focus-
ing on structural analysis and integrative modeling of peroxisomal proteins and their 
protein complexes. Next, we explore high throughout methods to study the interac-
tions between proteins and lipids at the level of the proteome and lipidome. Finally, 
we discuss genetic approaches considering peroxisomal dysfunction and pathology. 
We highlight the role of computational and bioinformatics-based approaches to major 
open questions in the field of peroxisome biology.

2. Analysis of cell biology and imaging data

Observation remains one of the central pillars of biological research and cell 
biology in particular. Throughout the second half of the 20th century, electron 
microscopy (EM) images were fundamental to unveil the intracellular structures and 
organelles of a static cell at nanoscale resolution. The field of cell biology was revived 
by merging molecular biology techniques with in vivo dyes in the form of reporters 
and biosensors (e.g., GFP and its derivatives). The use of such fluorescence probes 
allowed monitoring cell dynamics under varying conditions while remaining as close-
to-native state.

Current microscopy technology enables imaging at exceptional resolution, in 
the xy-plane varying from about 200 nm in confocal microscopy to about 10 nm in 
single-molecule localization microscopy [3]. Since peroxisome size ranges from 100 
to 1000 nm in size, high-resolution microscopy is required for accurate and detailed 
imaging of protein expression and cellular localization. With the advances in high-
resolution microscopy linked to automated, robotic lab support, the experimental 
results produce unprecedented big data of images and videos of cell dynamics. 
Although each technique has its advantages and limitations, the level of detail they 
reveal requires advanced data processing, analysis, and storage solutions. In past 
years, advanced algorithms, and especially deep-learning algorithms, developed for 
application to the biological domain, have skyrocketed.

2.1 Basics of deep learning

Supervised deep-learning algorithms require an annotated dataset, training 
on that dataset, and the use of the trained model on unseen, new data. In imaging 
applications, a dataset can be augmented and diversified by providing the model with 
edited (e.g., zoomed or rotated) images. The model is then trained on the dataset. The 
classification task aims to construct a function that takes this array as input to predict 
a label. In neural networks, which are usually used for classification problems, the 
learning task then aims to minimize the “loss function” (i.e., error), by optimizing a 
set of parameters, or weights, that multiply input data to obtain the output data that is 
passed on to the next layer in the neural network. A common loss function is cross-
entropy to measure the difference between a true label and the predicted one. The 
algorithm architecture should be chosen to minimize overfitting, that is, when the 



3

Computational Methods for the Study of Peroxisomes in Health and Disease
DOI: http://dx.doi.org/10.5772/intechopen.103178

model performs better on the training data than on a validation dataset. In the case of 
underfitting, the model performs poorer on the training set, resulting in suboptimal 
performance. For an elaborated review of the use of deep learning for cellular image 
analysis see ref. [4] and references within.

2.2 Advanced image analysis

The field of cellular and molecular biology had benefited from the availability 
of analytical tools for classical microscopy images. Major tools include CellProfiler, 
Microscopy Image Browser, OMERO, Fiji, and others [4]. Applying cell imaging tools 
according to unified standards led to the success of large-scale resources, such as the 
Human Proteome Atlas (HPA). HPA compiled enormous amounts of microscopical 
confocal images for annotating the subcellular information by using specific 
antibodies for most human coding genes across several human cell lines [5].

Recent years have seen the publication of updates of these tools with added 
components of deep-learning algorithms. Important applications of these tools 
include image classification, image segmentation, object tracking, and augmented 
microscopy. Specific examples of image analysis for the study of organelles are briefly 
discussed. Figure 1 shows a scheme for addressing open questions in peroxisome 
biology using a large set of raw microscopic images (static and dynamic) and state-of-
the-art methods of deep learning for the task of deciphering cross-organelle interac-
tions [6, 7].

2.2.1 Image classification

In image classification, labels can be added to images, for example, to identify 
if a fluorophore-labeled protein is localized to a specific organelle or resides in the 
cytoplasm. For this purpose, machine-learning-based image classification has long 
focused on the generation of classifiers to identify changes in morphology following 
exposure to compounds or growth conditions or to identify changes in cell state.

Figure 1. 
A scheme for addressing open questions in peroxisome biology using a large set of raw microscopic images (static 
and dynamic). The image data is transformed by a convolutional neural network (CNN) whose output provides 
insights on large-scale cell biological challenges such as the task of organelles interactions, shape, and their 
dynamic crosstalk. Mito, mitochondrion; LD, lipid droplet: PhagoM, phagophore membrane; Lys, lysozyme, 
ER, endoplasmic reticulum; Cyt, polymerized cytoskeleton fiber (e.g., actin). Peroxisomes are colored red and 
membranes are colored yellow.
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A popular software package called ilastik provides an addition to classical cell 
imaging tools with workflows for image segmentation, object classification, counting, 
and tracking. The pixel classification workflow produces semantic segmentation of 
images, attaching a user-defined class label to each pixel of the image. This step also 
forms the first step for object classification with morphological object features or may 
be used as initial input for the carving workflow. For example, ilastik was used for the 
reconstruction of 3D data from focused ion beam scanning EM (FIB-SEM) to seg-
ment the ER, using a pseudo-automated approach [8].

In a study by Li et al. [9], deep learning was used to classify organelle morphology 
of chloroplasts, mitochondria, and peroxisomes in the plant model Arabidopsis. The 
authors described a deep-learning framework, DeepLearnMOR (Deep Learning of 
the Morphology of Organelles), that identifies organelle morphology abnormalities 
at 97% accuracy. In the study, a dataset of 47,000 confocal fluorescence microscopy 
images from Arabidopsis wild-type and mutant plants with abnormal division in 
chloroplasts, mitochondria, or peroxisomes, was used to train the model. The dataset 
was augmented by using rotated, flipped, and split images. The model is based on 
both transfer learning and convoluted neural networks and significantly outper-
formed conventional machine-learning methods. In deep learning, transfer learning 
entails training a model on a large dataset and then fine-tuning the model for a dif-
ferent task using a new, smaller dataset. In this framework, the model distinguished 
well between mitochondria and peroxisomes, despite the overlap in their sizes. The 
framework can be used to study subtle morphological changes to classify intact and 
aberrant human peroxisome morphology.

In another example, a multi-scale convolutional neural network approach was 
developed and trained on eight publicly available cellular imaging datasets [10]. 
Following training, both the binary phenotype classification task as well as a multi-
label classification task, performed at least as good as state-of-the-art architectures, 
saving time on the manual adjustment of parameters for segmentation and feature 
selection, that is needed for conventional image analysis pipelines. The datasets 
included images of stains for various organelles and cell types. Although peroxisomes 
were not included in the datasets used, this approach can be used for expanding the 
classification to cover peroxisome phenotypes.

An additional classic classification question regards the observation that proteins are 
localized into multiple subcellular compartments. About half of human proteins exist in 
more than one organelle simultaneously, and these multi-locational proteins are likely to 
play critical roles in cellular functions [5]. To deal with these multilabel proteins, most 
existing methods converted the multilabel classification problem into L binary problems, 
L being the number of classes. However legitimate, such simplified approaches ignored 
label dependencies that actually exist among subcellular locations [11]. The difficulty 
of the classification part mainly lies in the multilabel nature of protein localization, as is 
also exemplified in ref. [10]. Even in a simplified setting of a cell line in culture, cells are 
at different stages of cell division and density, yielding nonuniform localization profiles.

2.2.2 Image segmentation

Image segmentation is the task of identifying multiple objects or features within 
an image, for example, cell counting. LysoQuant is a deep-learning approach for the 
detection and segmentation of organelles and is available as an ImageJ plugin. Its 
efficacy was demonstrated using the ER as a model organelle and a polymerogenic 
α1-antitrypsin Z (ATZ) variant as a model disease-causing aberrant protein [12]. The 
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model’s performance was validated on the quantification of catabolic pathways that 
maintain cellular homeostasis and proteostasis. The model was tested on two cell 
types and on the ER as a model organelle, but it may very well be applicable for use in 
other cell types and for the study of peroxisomes.

Due to the advancement of classification accuracy and the availability of high 
computational power, cell image segmentation approaches are often based on deep 
convoluted neural networks. One of the disadvantages of deep-learning approaches is 
the large amount of training data required to train them. Although software packages, 
such as CellProfiler, already use deep-learning models, they do not support retraining 
on new data, thus restricting their application domain to an available set of datasets. 
In contrast, U-Net is pretrained on a diverse set of data and for every new task needs 
only a few (<10) annotated images [13].

In addition, sequential images often differ one from the other in the sense that 
the number of objects belonging to each class differs from image to image, leading 
to an imbalance in the class weights. One approach to tackle this problem is by 
automatically updating the weights of the imbalanced classes by constructing a new 
objective function. In one recent study, a U-Net-like convoluted neural networks 
model is used with two updated loss functions to improve segmentation of cell 
organelles, including cytoplasm, plastics, nucleus, mitochondrion, and peroxisome 
[14]. This demonstrates the importance of adapting the loss function in deep-learning 
approaches for improving the success of segmentation tasks.

2.2.3 Object tracking

The challenges in imaging described so far assume cells to be rather static objects. 
Obviously, the dynamics and heterogeneity of cells define their biology. In object 
tracking, objects are followed through a series of time-lapse images. This requires two 
tasks—object detection and object linkage. Single-particle tracking (SPT) is often the 
rate-limiting step in live-cell imaging studies of subcellular dynamics. Many object 
tracking models are based on a tracking algorithm that addresses the principal chal-
lenges of SPT, namely high particle density, particle motion heterogeneity, temporary 
disappearance of particles, and merging and splitting of particles. The algorithm first 
links particles between consecutive frames and then links the resulting track seg-
ments into complete trajectories [15]. This approach forms the basis for software such 
as CellProfiler and TrackMate.

TrackMate is a software that offers several detections and tracking modules that 
allow combining manual and automated particle tracking approaches. An openly 
available tool, it is available as an extension of ImageJ. Moreover, the capabilities of 
the software can be tailored by the user through the addition of specific tracking, 
detection, visualization, or analysis modules. Its data model makes it a useful tool for 
a wide range of tracking applications, ranging from single-particle tracking of subcel-
lular organelles to cell lineage analysis. Importantly, the TrackMate study stresses 
the importance of avoiding photoinduced stress due to the continuous or repetitive 
illumination required for fluorescence microscopy [16].

An interesting example of the use of TrackMate for tracking, along with other 
image analysis methods, is presented in ref. [17]. While current imaging techniques 
are constrained by the small number of distinctive fluorescent labels within a single 
image, the use of confocal and lattice light sheet (LLS) fluorescence microscopy 
combined with computational sophistication allowed to track globular organelles and 
propose dynamic inter-organelle contacts. The study describes the frequency and 
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locality of two- to five-way interactions among major membrane-bound organelles 
(ER, Golgi, lysosome, peroxisome, mitochondria, and lipid droplet) and shows how 
these relationships change over time.

2.2.4 Image augmentation

Augmented microscopy is the extraction of latent information from biological 
images, such as the identification of the locations of cellular nuclei in bright-field 
images. Many augmented microscopies approach train neural networks to translate 
between label-free (bright-field, phase, differential interference contrast, and trans-
mission EM) and labeled (fluorescence) images of the same cells. The ability to pre-
dict fluorescence images from grayscale data is advantageous for increased imaging 
speed and improved time-lapse imaging. Moreover, this neural network methodology 
was adapted from the classical field of imaging processing and its implementation 
to organelle biology takes advantage of the overwhelming amounts of grayscale 
images already produced by standard biology labs [18]. In this study, the prediction 
performance across organelles and other subcellular structures reach an accuracy of 
detection between 70 and 90% for cellular compartments, such as nucleoli, nuclear 
envelope, mitochondria, and ER [18, 19]. Undoubtedly, the model can be trained and 
tested for the study of peroxisomes as well.

3. Protein structure modeling and analysis

Protein structure modeling and prediction are experiencing exciting times. The 
“protein folding problem,” which has puzzled scientists for many decades, asks to 
predict a protein’s structure from its primary amino acid sequence. It is thus not 
surprising that artificial intelligence (AI)-driven protein structure software, which 
includes both AlphaFold and RoseTTAFold, were announced as the Science break-
through of the year 2021. In this chapter, we will discuss these models, followed by 
a discussion of how protein prediction models may be integrated into classical 3D 
experimental methods, such as cryo-EM, X-ray crystallography, mass spectrometry 
(MS), and nuclear magnetic resonance (NMR). We will then discuss approaches for 
modeling protein–protein interactions (PPI) and protein complexes.

3.1 AlphaFold

The Critical Assessment of protein Structure Prediction (CASP) was initiated in 
1994 as a biennial open competition for advancing methods for 3D protein structure 
prediction. Until 2016, the average prediction accuracy score across multiple 
approaches was bound to 30–40 (on a scale of 100). In 2018, the AlphaFold model 
developed by the DeepMind company (owned by Google) scored ~55, and in 2020, 
AlphaFold2 reached an astonishing score of ~92. For reference, a score > 90 is roughly 
equivalent to the variation monitored from repeated experiments for determining 
protein structure [20].

The input of the AlphaFold model is based on the primary amino acid sequence of a 
protein and the sequence alignment compilation of known homologs. Specifically, the 
amino acid sequence is used to build a multiple sequence alignment (MSA) from similar 
sequences found in protein sequence databases. Assuming an accurate MSA, the amino 
acid pairs that were co-mutated along the evolution path can be detected. A crude 
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structure representation, or “pair representation” is then produced based on structural 
templates and on the paired amino acids that are likely in contact with each other. The 
templates and MSA are then passed through a transformer termed “Evoformer” that 
takes the MSA representation and the pair representation, to refine these representa-
tions. In the final step, the “structure module” takes the refined MSA representation 
and pair representation to construct a refined 3D structure model of heavy atoms [21].

The predicted structures contain atomic coordinates and per-residue confidence 
estimates on a scale from 0 to 100, with higher scores corresponding to higher confi-
dence. This per-residue confidence measure, pLDDT, is based on a preexisting metric 
used in the protein structure prediction field. Scores >70 are considered residues 
predicted with confidence and > 90 are considered as very high confidence prediction 
(Figure 2). It should be noted that in multi-domain predictions, individual domains 
may be largely accurate while their relative position is not [22, 23].

As of January 2022, AlphaFold database provides free access to >360,000 predicted 
structures across 21 proteomes. In comparison, the Protein Data Bank (PDB) that was 
announced 50 years ago contains “only” 180,000 experimentally solved 3D structures, 
and many of them do not cover the full length of the protein. However, the UniProtKB 
database includes almost 220 million entries. For many of the PEX proteins (peroxins) 
involved in peroxisome biogenesis, no experimentally determined structures are 
available [24]. However, a search for PEX proteins in the current AlphaFold database 
identified 28 hits from yeast, 26 from Arabidopsis, and 22 from human origin.

For example, the extensively studied peroxisomal targeting signal 1 receptor 
(PEX5), is represented in the PDB archive (nine entries) that mostly covers the 
well-folded domain at the C′ terminus. The AlphaFold database, however, includes 
a prediction of the full-length protein, which includes a very high confidence pre-
diction for the C′ terminal domain, but also revealed some helices that were previ-
ously not solved (Figure 2A). It should be noted that the low-confidence regions 
in AlphaFold predictions largely correspond with known intrinsically disordered 
regions (IDRs) [25]. For the human peroxisomal targeting signal 2 receptor (PEX7) 
protein, no experimentally solved structures are available. However, the AlphaFold 

Figure 2. 
Prediction of PEX5 (A) and PEX7 (B) structure by AlphaFold2. Model confidence—Dark blue, very high 
(pLDDT > 90); light blue, confident (90 > pLLDT > 70); yellow, low (70 > pLDDT > 50); orange, very low 
(pLDDT < 50). Note that many of the low-confidence structure predictions coincide with intrinsic disorder in the 
protein.
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predicted protein structure is a strikingly beautiful β-propeller structure with seven-
fold symmetry, similar to a published structure of its yeast homolog (Figure 2B) [26]. 
It is now possible to compare structural differences between the yeast and human 
homologs to shed light on differences in function. We anticipate that many structural 
and mechanistic questions regarding peroxisomal proteins can now be approached 
with a wealth of reliable modeled structural data.

3.2 Rosetta

The Rosetta software suite was initially developed in the Baker Lab at the University 
of Washington, Seattle, and was evolved as an active collaborative effort [27]. It 
includes many functionalities for macromolecular modeling. Its applications and 
protocols include ab initio modeling [28–30], including membrane protein modeling 
[31–33], comparative modeling using one or more known structures as templates 
for modeling, “fold-and-dock” application for the prediction of symmetric homo-
oligomer structures, FlexPepDock for ab initio or refinement of peptide docking to a 
receptor, “relax” that improves protein energy landscape modeling and more.

Around the same time that the AlphaFold model was published following its 
winning entry at the CASP14 competition, RoseTTAFold, another extremely success-
ful protein structure prediction model, was published. Like AlphaFold2, it uses deep 
neural networks to find sequence patterns in databases of similar sequences. When 
given a new sequence to model, RoseTTAFold proceeds along multiple tracks—one 
creates an MSA, another predicts pairwise interactions between amino acids within 
the protein, and the third constructs the 3D model structure. The program bounces 
among the tracks to refine the model, using the output of each one to update and 
refine the others [34, 35].

The trRosetta model is also Rosetta-based and incorporates restraints for predic-
tion. The algorithm starts off with MSA for distance and contact prediction to learn 
probability distributions over distances between residues and determine residue 
orientation. The predicted distances and orientations are then used to generate 3D 
structures using constrained energy minimization. The lowest-energy backbone 
is then subjected to Rosetta full-atom relaxation to add side chains and make the 
structures physically plausible, and to generate the lowest-energy full-atom model. 
The trRosetta network is able to identify the most important residues for determining 
protein folding and can apply this on de novo designed proteins, although the model 
was only trained on native proteins [36].

3.3 Modeling of protein: protein interactions

The prediction of multi-chain protein complexes is an even greater challenge  
than the prediction of monomeric protein structures. In the context of peroxisome 
biology, the functional and organelle mysteries reside in the dynamic interaction between 
the membranal and matrix proteins [2]. In addition, PEX protein’s subcellular localization 
is governed by post-translation modifications (PTMs), such as ubiquitination. All these 
aspects are executed by the dynamic of protein–protein interactions (PPI).

Many docking algorithms are being used for ab initio or template-based modeling, 
several of which we will discuss briefly. Some of the first methods for multimolecular 
modeling, developed in the Wolfson Lab at Tel Aviv University, include CombDock, 
PatchDock, FlexDock, and more recently, DockStar [37]. Input for the CombDock 
algorithm is an ordered set of protein sub-structures, which then combinatorically 
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assembles the inter-contacts that define their overall organization. PatchDock and 
FlexDock are based on the integration of local shape complementary evidence, where 
both input molecules are considered rigid, or in which one of the input molecules 
is considered rigid and the other flexible. DockStar integrates both low-resolution 
information (e.g., MS) and high-resolution (e.g., X-ray, NMR, and homology model-
ing) experimental data, combining atomic structures and interaction data. It then 
calculates the optimal assembly of the individual subunits.

Another approach is used by pyDock, which uses electrostatics, desolvation 
energy, and in a limited manner, van der Waals forces, to score rigid-body docking 
poses. InterEvDock and InterEvDock2 use co-evolutionary information in docking 
based on rigid-body sampling. In InterEvDock2, protein sequences can be provided 
as input, not only 3D structures. The algorithm then first performs comparative 
modeling based on template search. If biological input is available such as a pair of 
residues known to be in contact, restraints with a tunable distance threshold can 
be specified for use in the docking procedure. A recent review of multi-molecular 
modeling approaches can be found in ref. [38].

The latest developments in AI-harnessed modeling approaches will likely become 
some of our most important tools for the modeling of PPI and protein complexes. 
AlphaFold-Multimer is an AlphaFold model trained specifically for multimeric 
inputs of known stoichiometry. For example, an A2B2C2 heteromer was solved 
with a structural prediction score of 98, virtually identical to the solved structure 
for this complex [39]. In addition, AlphaFold2 was shown to successfully predict 
peptide-protein complexes even though it was trained only on monomer chains [40]. 
Open questions regarding peroxisome complexes can now be approached using 
this updated model. For example, the human PEX2-PEX10-PEX12 proteins form a 
protein-ubiquitin ligase complex for which currently no structure is available. The 
same is true for the AAA+ ATPase heterotrimeric complex PEX1-PEX6, and more.

RoseTTAFold has comparable performance in identifying PPI to that of 
experimental methods, but the combination of applying the RoseTTAFold model 
with AlphaFold further increases identification accuracy. A combined protein 
interaction identification pipeline that incorporates a rapidly computable version of 
RoseTTAFold with the slower but more accurate AlphaFold, evaluates interactions 
between the 8.3 million possible pairs of yeast proteins. In total, 106 previously 
un-identified assemblies and 806 that were structurally uncharacterized, were 
modeled. These models include higher-order complexes up to pentameric assemblies 
[41]. This combined approach demonstrates the strength of combining various neural 
network-based models to maximize modeling accuracy and speed.

3.4 Integrative modeling and analysis

The algorithms described above in some cases use experimentally solved 
structures as templates for the modeling of protein complexes. These are instances 
of integrative structural modeling, which involves the determination of macro-
molecular structures by combining experimental and computational modeling 
approaches [42].

Workflows for experimental methods can be improved with modeling approaches 
at various steps. In X-ray crystallography, protein modeling can be used to improve 
the determination of the protein structure, which is hampered by the “phase prob-
lem” that prevents the direct determination of the 3D structure from X-ray diffrac-
tion data. This approach was used by combining AlphaFold modeling with X-ray 
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diffraction data to the determination of the structure of the ORF8 protein of SARS-
CoV-2 [43].

Cryo-EM is more and more often used for structure determination. The highest 
resolution structures solved with cryo-EM have been solved at less than 2 Å [44]. 
This improvement in resolution has made cryo-EM a likely candidate to replace 
X-ray crystallography as the gold standard of experimental structure determina-
tion. A variety of software is available for modeling macromolecular assemblies 
using cryo-EM for de novo modeling, fitting, and validation of the atomic model. 
For high-resolution structures, data integration can be used for de novo model 
building and local refinement, whereas intermediate or low-resolution structures 
may benefit from rigid fitting and fully integrative modeling [45]. An impressive 
example of integrative modeling was the publication of the full structure of the 
52 MDa nuclear pore complex (NPC) from yeast. In that study, protein modeling 
was combined with data obtained from cryo-electron tomography (cryo-ET), a 
method similar to cryo-EM, chemical cross-linking mass spectrometry, in vivo 
imaging, and existing solved structures of NPC subunits, as the experimental data 
input [46]. The successful use of ab initio modeling is further illustrated by the 
cryoSPARC software, which makes it possible to very quickly perform unsupervised 
ab initio 3D classification to discover multiple 3D states of a protein without prior 
structural knowledge [47]. CryoSPARC is an end-to-end solution for cryo-EM 
analysis and structure refinement by combining 3D reconstruction algorithms with 
specially designed software.

NMR may benefit from systematic back-calculation of expectation spectra across 
a conformational space should then allow reconstruction of the experimental spectra. 
This would enable the comparison of the back-calculated and experimental data 
and provide us with a quantitative quality measure [48]. In addition, complex NMR 
results can benefit from the strength of a deep neural network-based approach such 
as DEEP Picker, to aid in the analysis of NMR spectra and correctly characterize 
overlapping peaks.

In cross-linking MS (CL-MS), an in vitro or in vivo cross-linking reaction 
covalently binds specific residues. The cross-linked proteins are then enzymati-
cally digested, followed by liquid chromatography–tandem mass spectrometry 
(LC–MS/MS). The covalently linked peptides provide valuable information about 
spatially close residues, whether intramolecular or intermolecular, which are 
then used as constraints in structural modeling [49]. XL-MS data can be useful in 
the validation and refinement of predicted structures as well. The benefit of this 
integrative modeling approach was recently demonstrated in the structural deter-
mination of three proteins from SARS-CoV-2. In this study, docking algorithms 
PatchDock, CombDock, and AlphaFold2 were used to model the proteins and 
refine them with CL-MS data that were collected from living cells. It was found 
that intradomain cross-links were satisfied in most cases, whereas interdomain 
cross-links were often violated, demonstrating the strength of this integrative 
modeling approach [50].

Importantly, the integration of diverse data sources into unified predictive models 
is likely to advance the knowledge of the protein complex of peroxisomes. While the 
structural study of peroxisomal proteins is in its infancy, we demonstrate the strength 
of recently developed computational software, tools, and algorithms to integrate 
data using breakthrough AI-based structural prediction approaches and integrative 
modeling.
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4. Proteomics

Although the studies of individual proteins are important, they mostly ignore the 
PPI, cellular and physical environment of the studied protein. In recent years, pro-
teomics approaches have become extremely valuable for the systematic analysis and 
discovery of the involvement of and interaction between proteins at the cellular or 
organellar level. Depending on the goal of the study, proteome analysis may include 
the determination of the full cellular or organellar proteome or PPI. The abundance 
profiles of proteins throughout all fractions of the purification can be compared to 
the profile of known marker protein to identify proteins that co-fractionate with the 
organelle of interest. To identify interactions, the abundance of interactors to a tagged 
protein of interest is compared to the abundance of the same, untagged protein. In 
addition, proteome dynamics can be followed by analyzing the organellar proteome 
at various time points following a stimulus [51]. Here, we discuss some of the most 
advanced methods for the analysis and application of proteomics data, with an 
emphasis on mass spectrometry (MS)-based proteomics. Importantly, MS and other 
advanced quantitative proteomics highlight regulation that cannot be explored using 
nucleic acids sequencing approaches. In the context of peroxisomal biology, the infor-
mation includes the presence of protein variants, PPI, subcellular localization, and 
the status of post-translational modifications (PTMs). Analyzing protein levels in an 
organelle is fundamental to exploring molecular signaling and dynamics in response 
to varying conditions.

4.1 Mass spectrometry-based proteomics

For organelle proteomics, three approaches can be taken to provide input for MS 
analysis, namely data-dependent acquisition, data-independent acquisition, and 
targeted proteomics, each of which is briefly discussed below. Following separation 
of the organelle, the organelle fraction can be run on SDS/PAGE to separate proteins 
and provide more specific input samples according to the size range of protein bands. 
The protein bands are then digested by specific proteases (e.g., trypsin) in-gel and 
analyzed. Alternatively, the organelle can be solubilized as a whole and digested in 
solution. The digested product is then analyzed. In addition, the organelle fraction 
can be fed into a workflow of liquid chromatography coupled with tandem mass 
spectrometry (LC–MS/MS) and subsequent data analysis [52]. A number of MS-based 
proteomics studies were undertaken in recent years to yield a comprehensive list of the 
mammalian proteome from specific tissues and cell lines [53].

4.1.1 Data acquisition approaches

In data-dependent acquisition (DDA), the eluted peptides from LC are detected 
by the first MS step, usually within a wide range of a mass-to-charge ratio of 
400–1,200 m/z. The most abundant peptides are then entered into the second 
MS step following fractionation to yield a more informative peak spectrum [54]. 
However, if the number of precursor ions exceeds the number of precursor selection 
cycles, peptides detected in repeat analysis become irreproducible [55]. An inherent 
difficulty in quantitative MS proteomics is that only a few peptides are consistently 
identified in a complex protein mixture. The uncontrolled complexity of biological 
samples leads to poor reproducibility of MS-identified peptides. Characteristic 



The Metabolic Role of Peroxisome in Health and Disease

12

features of prototypic peptides and their physicochemical properties were the 
basis for developing successful computational tools for predicting peptides for any 
organism [56]. To improve the detectability of all peptides in a sample, in data-
independent acquisition (DIA), the second MS step receives as input, not individual 
peaks, but instead all peaks within a defined m/z range, thus using all peptide 
precursors within a mass range of interest. Usually, most tryptic peptides are within 
the 400–1200 m/z range, so all the initial peaks within this range are further specified 
and analyzed [57]. Finally, in targeted proteomics, selected or multiple reaction 
monitoring (SRM/MRM) is applied, meaning that a set of key peptides from a target 
list is quantitatively followed in many samples. In this case, the mass spectrometer 
fragments and analyzes only those peptides, increasing sensitivity and enabling the 
study of low-copy number proteins [58].

4.1.2 Proteomics analysis platforms

Various proteomics workflow software and pipelines are available, includ-
ing Proteome Discoverer, MaxQuant, Mascot, OpenMS, CompOmics, and 
ProteomicsDB, as described in ref. [59]. These tools have developed drastically over 
the years, including more and more deep learning and advanced statistics capabilities. 
For example, MaxQuant is an open-source software package that supports DDA data 
and has an integrated peptide search engine, Andromeda. From the same developers, 
Perseus provides statistical tools for high-dimensional omics data analysis covering 
normalization, pattern recognition, time-series analysis, cross-omics comparisons, 
and multiple-hypothesis testing. MaxDIA was recently added to the MaxQuant pipe-
line and provides deep learning-based analysis of DIA data. Similarly, OpenMS is a 
much-used open-source software framework that enables both analyses of proteomics 
and metabolomics data. As such, it may be an especially relevant tool for peroxisome 
research. In addition, Proteome Discoverer includes deep-learning algorithms for the 
construction of spectral libraries as well as for the improved analysis of low-quality 
MS/MS spectra.

The retention time of a peptide refers to the time it takes for a peptide to elute 
from a liquid chromatography (LC) column prior to analysis by MS. As such, a 
peptide’s retention time is determined by the degree to which it interacts with the 
column, and as such is highly reproducible under the same LC conditions. The 
accurate prediction of peptide retention time can be used to improve the sensitivity 
of peptide identification against a peptide database. Early models such as SSRCalc 
are based on the retention times of 2000 peptides and base predictions on peptide 
sequence [60, 61]. More advanced, deep learning-based methods can be used for 
building libraries of MS spectra to enable data analysis from DIA MS. For example, 
the ProteomicsDB was recently expanded with Prosit, a neural network model that 
accurately learns and predicts chromatographic retention time and fragment ion 
intensity of any peptide, both tryptic (i.e., digested by trypsin) and non-tryptic. 
Other examples, based on different types of neural network algorithms, include 
DeepRT and, more recently, DeepDIA. The latter approach generates in silico 
spectral libraries, comparable to experimental libraries, to enhance DIA analysis. 
The various neural network-based models require large training datasets, often in 
the range of 100,000 peptides or more. However, the pretrained model can then 
be trained on much smaller experiment-specific datasets that make the model very 
accurate. The main challenges in this field remain retention time prediction of 
modified peptides and cross-linked peptides [62].
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4.2 Proteome-wide characterization of peroxisome proteins

The determination of the peroxisome proteome, as well as the interaction 
networks between them and the modifications they undergo that affect their 
function, can be done using a variety of computational tools and approaches. 
The proteome-wide study of peroxisome proteins is especially interesting to 
understand regulatory and functional aspects. Early experiments identified nearly 
all peroxisomal proteins, but it was then still challenging to discriminate between 
genuine peroxisomal proteins and co-isolated non-peroxisomal proteins, mostly 
derived from interacting organelles (e.g., mitochondria). The increasing sensitivity of 
MS enabled the detection of rare peroxisomal proteins, using improved experimental 
procedures such as organellar profiling [63, 64]. A more recent study of the proteome 
of HeLa cells provides a proteomic workflow for the generation of reproducible 
organellar maps. In the study, organellar clusters were assigned proteins based on 
a machine learning approach [65]. Based on this and other studies, an updated list 
of the mammalian peroxisomal proteome was made available in ref. [53]. However, 
many proteins are found in multiple organelles and peroxisome composition may 
vary between cell types.

An alternative approach to the MS-based proteomics approach described above 
is the prediction of localization to the peroxisome using peroxisomal targeting 
signals [66]. Matrix proteins are directed to the peroxisome with a type I or type II 
peroxisomal target sequence (PTS1 and PTS2) and are transported following the 
binding of PEX5 or PEX5/PEX7, respectively. In most cases, membrane proteins 
contain either of two types of PTS (mPTS-I/mPTS-II) and are inserted into the 
membrane by PEX19 and PEX3. Prediction algorithms for mammalian PTS1 motifs 
were published almost two decades ago and include PTS1-predictor, PTS1Prowler, 
PeroxiP, and an algorithm included in the PeroxisomeDB database. PTS1-predictor 
uses a position-specific scoring matrix (PSSM) or position weight matrix (PWM) 
approach, derived from aligned sequences of proteins known to harbor a PTS1 
sequence, but also peptide sequences of proteins bound to various PEX5 homologs. 
Thus, the tripeptide dataset used for PTS1 prediction includes a larger amount of 
variations to find less probable proteins as well [67, 68]. The prediction of PTS2 
proteins is much more challenging due to the small number of proteins bearing 
this signal peptide. A PTS2 prediction tool with a limited success rate is included in 
PeroxisomeDB. Finally, the In-Pero pipeline, based on a machine learning approach, 
was recently published for the prediction of sub-peroxisomal cellular localization of 
unclassified peroxisomal proteins.

The local concentration of functionally interconnected proteins yields PPI, the 
physical contact between two proteins, which may occur in a binary manner or may 
exist in multimeric complexes. Several proteome-wide PPI maps are available, includ-
ing HI-II-14, BioPlex 3.0, and CoFrac. The number of protein pairs in each of these 
maps is well above 10,000, but the overlap between the maps is very limited [69]. The 
HI-II-14 map includes only binary interactions, generated from yeast-2-hybrid assays, 
whereas the others are based on affinity purification or co-fractionation followed by 
MS. An interesting development is the combination of various databases and deposi-
tories, such as the recently published MuSIC 1.0 map that integrates immunofluo-
rescence images from the Human Protein Atlas (HPA) with affinity purification data 
from BioPlex 2.0 [70].

In addition to the interaction between proteins, PTMs include about 300 types of 
modifications, including phosphorylation, ubiquitination, glycosylation, acetylation 
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but also regulated peptide cleavage. The large number of potential PTMs strongly 
affects protein function. It is expected to increase the proteome’s complexity by at 
least an order of magnitude. PTMs can be identified experimentally in high-through-
put MS approaches or in small experiments. However, deep learning also enables 
accurate prediction of whether a given site can be modified (general site prediction) 
and if a site can be modified by a specific enzyme (enzyme-specific prediction). 
Multiple PTMs can be predicted using CapsNet or MusiteDeep. In addition, specific 
modifications can be accurately predicted with dedicated tools like DeepPhos for 
phosphorylation, DeepAcet for acetylation, DeepUbiquitylation for ubiquitylation, 
and more [62].

4.3 Metabolomics

Although not strictly a part of the proteomics field of study, we briefly discuss the 
understudied metabolomics methods as they are of especial importance in the context 
of peroxisome metabolism. Metabolomics studies are commonly done using NMR or, 
more frequently, MS for the analysis of whole-cell or subcellular fractions. As such, 
much of the metabolomics pipeline is similar to that of the proteomics pipeline—gas 
chromatography (GC) or liquid chromatography (LC) coupled with MS or tandem 
MS (MS/MS).

Metabolomics data analysis can be done in an unsupervised or supervised  
manner. The goal of the unsupervised analysis is the grouping of features  
(sample, metabolites, and spectral features) according to the measured molecular 
data, and as such, this approach is suitable when no prior information is available 
about the system. In contrast, in supervised analysis, a set of features is pre-
assigned to a class and is used as a training set for the method of choice to define 
a classifier that will be used for the classification of an unknown sample [71]. 
In addition, metabolomics studies can be divided into untargeted and targeted 
studies. Untargeted, also referred to as discovery-based metabolomics, focuses 
on global detection and relative quantitation of small molecules in a sample. In 
contrast, targeted or validation-based metabolomics focuses on measuring well-
defined groups of metabolites with opportunities for absolute quantitation [72]. 
Several metabolomics data analysis tools are available, one of the most popular 
being MetaboAnalyst. This web-based tool suite covers four analysis categories, 
including statistical analysis, functional analysis, data integration and systems 
biology, data processing, and utility functions.

One of the challenges of subcellular or organellar metabolomics is the difficulty to 
observe metabolic fluxes between compartments. Metabolic flux studies are usu-
ally done directly by using isotopically labeled nutrients and measuring isotopically 
labeled metabolites to infer flux via metabolic flux analysis (MFA) or flux balance 
analysis (FBA) [73]. In FBA, the flow of metabolites through a metabolic network is 
analyzed mathematically. Two widely used computational flux inference approaches 
include isotope tracing coupled with MFA (13C-MFA) and constraint-based 
reconstruction and analysis (COBRA) [74]. Spatial flux analysis was done for the 
mitochondria and cytosol using 13C-MFA: isotope tracing in intact cells and sub-
sequent rapid fractionation and metabolism quenching, followed by LC–MS-based 
metabolomics. Computational deconvolution with metabolic and thermodynamic 
modeling was used to infer compartment-specific metabolic fluxes [75]. In COBRA, 
which integrates various experimental and -omics data sources to reconstruct meta-
bolic networks, applying constraints, for example, mass conservation, maximum 
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reaction rates, and regulation, to construct a space of allowed network states [76]. 
These approaches could be used to model differences in metabolic flux in healthy and 
mutated peroxisome factors.

5. Human genetic research and peroxisomal disease

The contribution of peroxisomes to cells and organ physiology has been 
extensively discussed [77]. It was shown to have an indispensable role in the condition 
of specific metabolic needs, which explains the importance of peroxisomes in human 
congenital diseases. However, it becomes apparent that the amounts and properties of 
this organelle with respect to other organelles (e.g., ER, mitochondria) impact other 
pathologies of cell homeostasis, such as neurodegeneration, obesity, and more [2, 78].

Over the last decade, our knowledge of human diseases has drastically increased 
due to the breakthrough in sequencing technologies [79–81]. Projects such as the 
1000 Genomes Initiative, ClinVar, OMIM, gnomAD, and others, provide the genetic 
variation landscape across individuals and populations [82–85]. Databases from 
such projects and large biobanks (e.g., UK BioBank [86]) are successfully being used 
for linking genetics with human diseases. For example, the UK BioBank resource 
gathered genotyping and exome sequencing data of approximately 500,000 people, 
combining it with clinical and lifestyle information. The unprecedented quality of 
these resources, merged with computational solutions, data sharing, and standardiza-
tion advanced the field of human diseases. We briefly introduce computational-based 
methodologies used for improving the utility of genetic variations in the case of 
genetic-based peroxisomal diseases.

5.1 Advances in human genetics research

Mendelian diseases are caused by pathological mutations in a single gene with 
high penetrance. Consequently, the manifestation of the disease is determined by 
the simple rules of dominant or recessive inheritance. On the other hand, complex 
diseases result from the presence of many variants where each may carry a small 
effect. To study such diseases, genome-wide association studies (GWAS) have been 
used to connect human genetics with complex diseases. The ultimate goal of GWAS 
is to identify causal connections between genetic variants, traits, and phenotypes. 
GWAS provides a statistical value to a genotyped variant in the genome to assess the 
contribution of any specific variants to the studied phenotype. GWAS is useful to sug-
gest association in cases where the sample size, the allele frequency, and the effect size 
of the association reach statistical significance [87]. Unfortunately, GWAS is prone to 
confounding factors and biases due to unresolved population structure and linkage 
disequilibrium (LD) [88, 89]. To overcome the drawback of GWAS due to popula-
tion size, family-based studies are used as an attractive alternative. In such cases, the 
genetic variations of family members are determined (i.e., genotyping of parents and 
their inflicted child).

Another subfield in human genetics that is likely to impact modern medicine 
is polygenic risk scores (PRS). For PRS, genetics and data from health records are 
used to present a model for individuals’ risk of having the disease of interest [90]. To 
make a meaningful prediction, the PRS model aggregates an individual’s genotype 
information. Converting PRS to a machine learning prediction model calls for 
large-scale individual-level data, often using the summary statistics of GWAS results 
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to build such a PRS model [91]. Currently, PRS is not yet typically incorporated into 
clinical settings and its utility remains questionable [92]. With the improvement in 
sequencing quality and amounts, rare variants turned out to carry special interest and 
importance [93, 94]. They occur at a low frequency, still exerting strong phenotypic 
effects. It is expected that the contribution of rare variants may be substantial in 
explaining disease heritability. The release of 500,000 whole-exome sequences 
(WES) by the UK-Biobank allows us to expand our knowledge including the genetic 
basis of relatively rare occurring diseases [95]. Burden tests in which genes, or defined 
chromosomal segments, replace individual variants as the statistical relevant unit 
improve genetic interpretability and utility [96]. For example, under the PWAS 
(proteome-based association study) methodology, coding genes are associated with 
a disease by quantifying the effect of genetic variation on the protein function. To 
assign a valid association between genetic results and the medical condition, PWAS 
requests that the impact of the genetic variations in the disease and healthy cohorts 
will be significantly different [97].

Peroxisomal disease does not always fit a trivial definition of a simple Mendelian 
disease, nor does it match chronic complex disease (e.g., type 2 diabetes). Peroxisomal 
diseases occur with a wide range of symptoms, interaction with developmental 
disorders, and severity. Therefore, studying the genetic basis of peroxisomal diseases 
covers two molecular etiologies—(i) The genetics of PEX proteins with a cellular 
understanding of organelle biology (e.g., peroxisome formation); (ii) Compilation 
of an exhaustive list of genetic variants and genes associated with peroxisomes. In 
this section, we only address the genetic approach associated with these two research 
goals.

5.2 Classes of peroxisomal diseases

Peroxisomes play a critical role in a variety of metabolic processes, especially in 
lipid metabolism. All active cells contain many peroxisomes (100 s to 1000s), there-
fore displaying varying capacity toward metabolic homeostasis, oxidative stress, and 
lipid metabolism in general. A failure in producing functional peroxisomes is the 
cause of numerous genetic diseases [98]. Conversely, one or more genetic defects too 
may result in failure of functional peroxisome production. Peroxisomal disorders 
are classified into two groups: (i) Specific peroxisomal enzyme deficiencies; (ii) 
Peroxisome biogenesis disorders (PBDs). PBDs result from a failure in the post-
translational import of proteins to the peroxisome’s matrix. The underlying genetics 
was used to better understand peroxisome formation while focusing on the failure 
to regulate multiple processes in peroxisomal cellular dynamics. In this section, we 
briefly categorized the peroxisomal diseases that are directly attributed to the fail-
ure to produce functional organelle. These diseases are connected to defects in the 
recognition of newly synthesized proteins, defects in the synthesis of peroxisome 
membranes, and failure in the insertion into the peroxisomal membrane (Figure 3).

PBDs display a spectrum of related diseases that differ in their severity, clinical 
manifestations, and underlying genetics. PBDs with clear molecular causal genes are 
collectively called Zellweger spectrum syndromes (ZSS). This set includes Zellweger 
syndrome (ZS), infantile Refsum disease (IRD), and neonatal adrenoleukodys-
trophy (NALD). The class of peroxisomal diseases that are caused by enzymatic 
deficiencies includes, for example, rhizomelic chondrodysplasia punctata (RCDP) 
type 2. Altogether there are 12 known rare diseases whose protein deficiencies are 
known, simple biomarkers for definitive diagnosis standards are missing. The task of 
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diagnosis of the different peroxisomal diseases was empowered by a machine learning 
algorithm [100].

In most ZSS diseases, very long-chain fatty acids and branched-chain fatty acids 
accumulate in the plasma of the affected individuals. The accumulation of these 
lipids impairs multiple organs, leading to a poor prognosis. Among the ZSS diseases, 
Zellweger syndrome (ZS) accounts for most cases. ZS is a rare autosomal recessive 
disorder (1:50,000) that in most cases is caused by mutations in PEX1, a member 
of the AAA-type ATPase family. Mechanistically, the disease is caused by defective 
protein import due to the mutations in one of 13 major PEX proteins (Figure 3a). The 
partition between patients with isolated deficiencies of metabolic enzymes and those 
with ZSS can be clinically challenging. Thus, a set of biochemical assays were devel-
oped to monitor peroxisome functions and facilitate correct diagnosis (e.g., levels 
of alanine transaminase or alkaline phosphatase). In PBDs, the reported mutations 
occur in any of the 13 major PEX proteins at different frequencies (Figure 3b). The 
interpretation of the mutations’ effect on the peroxisome function is based on the 
accumulated knowledge of the role of PEX genes in the biogenesis of the organelle. 
Altogether, most peroxisomal human diseases are associated with a failure of the 
PEX proteins to import peroxisomal matrix proteins. In healthy individuals, newly 
synthesized matrix proteins reach the peroxisome by interacting with PEX5 or PEX7, 
cytosolic receptors that recognize either a C′-terminal PTS1 or an N′-terminal PTS2. 
In humans, two alternatively spliced PEX5 isoforms coexist, but only the longer 
version also binds PEX7. PEX2, PEX10, and PEX12 are zinc-binding RING finger 
proteins that are responsible for the ubiquitination of PEX5 which is essential for its 
recycling. The membranous peroxisomal membrane PEX26 combined with PEX1 and 
PEX6 is involved in the recycling process by releasing ubiquitinated PEX5 from the 
membrane. The malfunction of PEX7 results in a clinical phenotype of RCDP type 1 
disease.

The identification of the genes underlying PBDs initially relied on detailed studies 
in yeast using classical genetics complementation groups [101]. With the availability of 
genotyping and WES data, the field of genetic testing evolved, and currently, searching 

Figure 3. 
Molecular basis of peroxisomal diseases. (a) Molecular view of the peroxisomal membrane with the main PEX 
proteins. PEX5 and PEX7 are receptors for the PTS1 and PTS2 proteins, respectively. PEX19 binds to proteins 
for insertion in the peroxisome membrane. Light blue indicates cargo proteins. (b) Frequency distribution of 
mutations in PEX proteins listed in a. the percentage is based on > 1300 patients diagnosed with peroxisome 
biogenesis disorder (PBDs). Adapted from [99]).
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for pathological mutations in PEX genes is used as a diagnostic service [99]. It is 
important to note that some of the genetic mutations are not restricted to PEX proteins 
but are also associated with genes involving the dynamics of peroxisomes and other 
organelles (e.g., mitochondrial and peroxisomal fission). Remarkably, cells with intact 
and functional proteins that do not reach the lumen of the peroxisome, result in severe 
phenotypes, presumably due to the rapid degradation of these misallocated enzymes. 
This is a general trend among many of the peroxisome matrix proteins.

Mutations in PEX1 are associated with the majority of ZSS cases. PEX1 contains 
ATP-binding motifs with ATPase activity. All the mutations reported are either 
defined as loss of function, but others are single missense mutations that affect the 
ATP binding pocket of the protein interface of PEX1 and PEX6. For a detailed genetic 
summary of the other PEX proteins, see ref. [99]. In contrast, X-linked adrenoleuko-
dystrophy (ALD), an X-linked disorder, is caused by mutations in the ABCD1 gene 
that encodes an ABC transporter that act as a channel for the very-long-chain fatty 
acids entering the peroxisome.

5.3 Genomics tools for the study of peroxisome biology

A valuable resource called OpenTargets integrates multiple large-scale omics data 
including literature, drugs, and pathways [102]. The goal of OpenTargets is to bridge 
between molecular targets, drugs, and human diseases. Under the term of peroxisomal 
diseases in OpenTargets, many of the single enzyme defects that specify alteration in 
the metabolic enzymes are included. The strength of such a resource is in the ability in 
exposed overlooked processes that are dependent on intact peroxisome function. For 
example, among the 35 significant gene targets, all major PEX proteins are included 
(Figure 3). However, the strong support for human diseases that involve PEX11B, 
indicates that peroxisomal fission is a key process for cell homeostasis as PEX11B acts 
in recruiting dynamin-related GTPase to the peroxisomal membrane [103].

Based on GWAS results and support from mouse models the list of candidate 
genes for peroxisomal diseases keeps expanding. Currently, most of the peroxisomal 
mutated metabolic enzymes are listed, for example, acyl-CoA oxidase 1 (ACOX1), 
alanine-glyoxylate, serine-pyruvate aminotransferase (AGXT), and many more. 
Importantly, through an integrative approach that combines medical case studies 
and model organisms, several candidate genes whose function in peroxisome biology 
was not established are scored high, suggesting their overlooked roles in peroxisomal 
function, for example, UniProtKB entries E9PAM4 (Phosphatidylinositol 4-Kinase 
Type 2) and E9PPB4 (Peroxisomal Biogenesis Factor 19 Isoform 2). In summary, the 
list of variants associated with peroxisomal diseases was instrumental in shedding 
light on peroxisome metabolism and dynamics.

6. Conclusions

The last two decades have seen a fast-growing interest in the understanding of per-
oxisome biology with works on peroxisome biogenesis, import mechanisms, and the 
characterization of peroxisome proteins. It also emphasizes the existing gap between 
the more advanced methodologies of protein research concerning the understudied 
field of lipidomics. In parallel, the power of computational approaches will become 
pivotal in answering still-open questions regarding regulation, metabolism, and 
inter-organelle communication at a high level, and the elucidation of the mechanism 
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and structure of peroxisome proteins and complexes at a more detailed level. We 
have aimed to provide an overview of some of the most important computational 
approaches that are likely to serve the research community, both basic and clinical, to 
expand its research toolbox in the study of peroxisome biology in health and disease.
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