We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

9,800 142,000 180M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y



Chapter

Change Detection by Monitoring
Residuals from Time Series Models

Tom Burr and Kim Kaufeld

Abstract

Change detection in time series can be approached by fitting a model to the
no-change, ordinary background data and then monitoring time series of residuals,
where a residual is defined as residual = data - fit. In many applications, models that
fit time series data lead to residuals that exhibit no patterns unless the signal of
interest is present. Therefore, an effective signal or change detection approach is to
first fit a time series model to the background data without any signal and then
monitor the time series of residuals for evidence of the signal. This chapter briefly
reviews a few time series modeling options and then focuses on statistical tests for
monitoring residuals, including Page’s cumulative sum (cusum, a type of scan statis-
tic), the ordinary cumulative sum (cumsum), the matched filter (a version of the
Neyman-Pearson test statistic), and pattern tests, such as those used in quality con-
trol. Simulation and analytical approximation methods are recommended for studying
test behavior, as illustrated in three examples.

Keywords: time series models, residuals, scan statistics, cusum, matched filter

1. Introduction

This chapter’s focus is on change detection by monitoring residuals arising from
fitted models to time series data. The residual at time ¢ is defined as r; = x; — x;, where
X is the predicted (estimated) value of the data x;. Large residuals or patterns in
residuals could indicate that some type of change has occurred compared to usual
behavior during the analysis period that was used to fit the model. For example, the
number of positive test results for a disease could show a sharp rise or decline com-
pared to the recent past, perhaps indicating that a signal of interest is present, such as
a more infectious strain emerging. As another example, assembly line productions
monitor product quality, such as the diameter of a machined part, which can drift due
to measurement effects and/or machining effects. Diameter drifting can lead to
detectable residual patterns, where the residual is the measured diameter—target
diameter. Prior to diameter drifting, the time series should vary randomly around a
mean value that is close to the target mean diameter. Therefore, time series fitting of
the “in control” process data simply requires estimation of the mean and standard
deviation of the measured diameter of each part. Other time series fitting options are
less simple.
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There are many types of time series, such as series of the unit or system failure
times in reliability data, series of new disease cases or deaths, series of measured
product quality, such as geometric dimensions in machined parts or salt content in
bags of chips. This chapter does not consider predicting the next failure time, the time
to the next spike in disease counts, or the time for the machined part mean dimension
to shift. Instead, the chapter focuses on monitoring for possible changes in the mean-
time to failure, changes in the distribution of disease counts, or machined part
dimensions. There are many applications in which a training period for model fitting
is assumed to define normal behavior, and then the testing period monitors for
various types of changes from the normal behavior, such as a shift to a different mean
value.

Figure 1 is a time series of # = 50 values that have mean 0 and standard deviation 1
(independently and identically distributed normal random values, denoted iid N(0,1)
in the figure caption) that exhibit no change in (a), a mean shift of 2 units on period 25
in (b) a mean shift of 2 units at time indices 26-30 in (c), and a mean shift at time
indices 26-50 in (d). The human brain/eye is reasonably effective at spotting such
changes but is vulnerable to being fooled by spurious patterns. Statistical methods,
some very simple and some less simple have been developed to detect changes of
interest, as this chapter explains.

Let x1,%2, ..., X, denote a time series, which is a sequence of values at times
1,2, ..., n. Figure 2 plots an example simulated time series with z = 50.

An effective time series model leads to residuals that are approximately
independently and identically distributed (iid) [1, 2]. The residual at time ¢ is defined
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Figure 1.

Time series, iid N(0,1).
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Figure 2.
Time series, MA (1) generated from iid N(o,1).

as7; = X; — X¢, where X, is the predicted (estimated) value of x;. For example, f() could
be linear in the x’s, resulting in the well-known auto-regressive (AR) model,

fO = pixe—1 + ppxe—2 + ... +py,%:-1, or f() might be linear in both the x’s and an
underlying iid noise sequence e1, ¢y, ...,e,, resulting in the auto-regressive moving
average (ARMA) model f () = pyx;— 1+ paxs2 + oo +pp, X1, + 011+ O2x, 2 + ... +
01,,%:—1,, where [ is the AR lag, and [j is the moving average (MA) lag [1, 2]. The lag-
one MA, AR, and ARMA models are given in (Egs. (1)-(3)).

Xy = 91€t_1 + e (1)
Xt = P1Xr-1 + € (2)
Xy = p1Xe—1 + O1er1 + ¢ (3)

Conditions on the magnitudes of 6 and p ensure stationarity (constant mean and
variance over time). Often, time series can be transformed to stationarity by taking
first differences, as is commonly done in stock market price series [1, 2]. Of course, f()
might not be linear in prior x values or e values and in general could be an arbitrarily
complicated function, f (X1, .., Xr—1,>€—15 o> €—1,,)-

Figure 2 is simulated data from a lag one MA model, x; = 01¢;_1 + ¢, . Figure 3 is
the cumulative sum (cumsum, C; = Zlexi) and Page’s cusum S; with parameter k
(see [3] and examples 2 and 3) defined as.

S, = max (0,S;_1 +x; — k (4)

for the data plotted in Figure 2 [3]. Because of the reset-to-0 feature of S; if the
sum goes negative and because of the parameter k, Page’s S; does not have the large
drift behavior that the cumulative sum does. Figure 4 is the estimated underlying
residual sequence and the actual underlying simulated residual sequence. Figure 5 is
the same as Figure 4 but plots the difference between the estimated and true resid-
uals. All plots and analyses are performed in R [4]. Statistical tests for changes in the
background due to signal are applied to estimated residuals, so alarm thresholds and
signal detection probabilities should be estimated using estimated residuals obtained
via simulation.
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IID N(o,1) time series, cumulative sum, and Page’s Cusum.
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Estimated residuals for MA (1) from N(o,1) data.
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Figure 5.
Same as Figure 4, but plotting the difference, residual-estimated vesidual.
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This chapter describes three change-detection examples. Example 1 monitors for
patterns of large residuals, such as a consecutive string of three residuals exceeding a
threshold. Example 2 monitors for excessive numbers of tweets in any of the 65
Florida counties. Example 3 monitors for nuclear material loss. Portions of Examples 1
and 3 have been published. Example 2 is entirely new.

2. Example 1: monitoring for patterns of large residuals

The Stein-Chen (SC) method approximates the probability density function (pdf)
that assigns probabilities to the number of times that a pattern such as Iy, I 41,112 =
{10 1} occurs, starting at position ¢ in a binary time series of length 7. In example 1,
the original time series that is converted to binary is assumed to consist of a sequence
of independent iid residuals that result from fitting any type of time series model.
Recently the SC method was shown to provide an accurate Poisson-based approxima-
tion and corresponding total variation distance bounds in a time series context [5].
The binary values.

I1,15,15, ..., I, are assumed to be independent and identically distributed with
constant probability p = P(I; = 1). The probability p is the probability that the original
time series X exceeds a threshold, and the I notation denotes an indicator or binary
variable. As an aside, the SC method can also be applied if p is not constant over time,
but the independence assumption is difficult to avoid [5-10]. Any type of time series
model [1, 2] can be fit, and then the resulting residuals become the original series that
is thresholded to convert to binary; therefore, the application is quite general.

Figure 6 is the estimated residuals from Figure 4 but thresholded at 1.4 (values of 1.4
or larger are set to 1; values less than 1.4 are set to 0) to convert to binary.

Note that if {1 0 1} is known to not occur, for example, starting at positiont = 1,
then this information impacts the probability that {1 0 1} occurs starting at position
t =2 ort = 3, because the trials to obtain {1 0 1}are overlapping and thus not
independent, so the Poisson distribution assumptions are not met. Nevertheless,

Ref. [5] showed that Poisson-based approximation (that is strictly correct only for
independent trials) can be remarkably accurate, and the SC method provides a bound
on the total variation distance between the true and approximate pdf.
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Figure 6.
Binary version of the estimated vesiduals in Figure 3.
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Consider scanning for {1x 1} with x = 0 or 1, with p = P(I; = 1) being quite small,
such as 0.10 or less in a residual series of length # = 10. Then the probability of the
pattern {1x 1} is p, = p?, and there are n — 2 = 8 possible starting locations for the
pattern in N = 10 trials. Because there are only 2'° = 1024 possible patterns of 0s and
1s, all 1024 patterns could be listed, and the probabilities assigned to each set of 10
binary values that include {1 x 1} at least once could be summed to provide an exact
calculation. For larger values of #, this exact calculation is unwieldy, so an approxi-
mate method is desired, provided the approximation is highly accurate with provable
error bounds.

Start at index 7 = 1 and check whether {1 x 1} occurs in positions {1 2 3}, then start
at index i = 2 and check whether {1 x 1} occurs starting at index 2 in positions {2 3 4},
then start at index 3, etc. Note, for example, that if {1 x 1} occurs starting at position
i = 1, then the probability that {1 x 1} also occurs starting at index 3 is p. Clearly, there
is a small neighborhood of dependence around each starting index, as just illustrated.
This neighborhood of dependence violates the assumptions for a Poisson distribution
(as a limit distribution for a sequence of N Bernoulli trials, each with a small proba-
bility of success), but Ref. [6] shows that provided the dependence neighborhood is
modest, the Poisson distribution can still provide an excellent approximation to the
pdf defined on the number of times {1 x 1} occurs in a series of length N.

2.1 Stein-Chen method

The Poisson pdf with mean parameter 4 = (N — 2)p,, provides an approximation ¥
to the true pdf W for the number of times {1 x 1} occurs in a series of length 7 [5, 6].
The value (n — 2) is used instead of # because the length 3 pattern could only be found
starting at index 1, 2, ..., n — 2.

The quality of the Poisson(4) approximation can be measured by computing b1 and
b,, where by = Z;’:lzjeNipipj, with N; = {i — 2,i — 1,i,i + 1,i + 2} being the
dependent neighborhood N; of index 4, and by = Y7 13" ;i v E{I] j }, wherej # 5.
The term b3 is equal to 0 in Theorem 2 of Ref. [6] by the construction of N; in this
example. Then, the total variation distance (TVD) satisfies.

drvp (Y, W) <4(by + bs) = 4(n — 2,97 + 3p,p ) (5)

The TVD is a general distance measure between two pdfs. The TVD is defined here
as the maximum absolute difference between the probability assigned by Y and the
probability assigned by W to any specified subset of possible integer values. In the
current scanning context, the most important subset of possible values to consider is
the single value {0}, which would imply that the pattern {1 x 1} never occurred
(occurred O times) in the n — 2 overlapping trials. Then, the SC method, in this
context, uses the Poisson approximation to assign a value to P {0} and this method
ensures that the Poisson approximation to P{0} is quite accurate, as shown by the
numerical example below.

According to the Poisson approximation, P({1x 1} never occurs) = e *. For
example, usingz = 1000 and p = 0.01, 1 = 998p, = 0.0998, then e*=0.905 is the
approximate probability that the pattern never occurs, with an SC-based bound of

4(n —2) (910127 + 3ppp> = 0.0123. Therefore, the maximum difference between the
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true probability defined by the Y random variable and the approximate probability
assigned to any subset of the possible number of occurrences of {1 x 1} defined by the
approximating W (Poisson random variable) is 0.01236. So, for example, if the
probability that ({1 x 1} never occurs) = ¢* = 0.905, then the true probability of 0
occurrences of the pattern is between 0.89 and 0.92. Section 2.3 uses simulation to
confirm the quality of the SC approximation in Eq. (5) in this context.

Simulation can be used to closely approximate the true probabilities, but only for
moderate values of 7. For example, in 10° repeated sets of # = 1000 Bernoulli trials
with p = 0.01, then 1 = 998pp = 0.0998, and ¢~* = 0.905, the simulation-based P(0

occurrences of {1x 1}) = 0.907. The Poisson-based approximation gives 0.905 with a
SC-based TVD bound from Eq. (4) of 0.0123.

2.2 Summary

The SC method was described to approximate the pdf for the number of
occurrences of an example pattern in an independent binary time series. In scanning
for whether a pattern, such as {1 x 1}, occurs starting at index i, there are overlapping
tries to achieve the pattern, resulting in many non-independent trials consisting of the
values in three successive indices. As the time series length increases and the
probability p = P(I; = 1) decreases, the SC method shows that the Poisson approxima-
tion is excellent, with a small total variation distance bound.

The SC bound does not seem to be commonly used; however, related references
are available [5-10]. For example, Ref. [7] applies the SC method to calculate
coincidence probabilities. References [8, 9] apply the SC method in different time
series contexts than considered here. To simplify the calculation of bivariate Poisson
moments, Ref. [10] applies the SC identity Xf(X) = uE(f(X + 1)), where X is a
Poisson(p) random variable, E denotes expected value, and f () is any bounded
function defined on the nonnegative integers. The SC identity was used to develop the
SC approximation method used in Ref. [5] and the example above. Reference [5]
showed that the SC bound defends the use of the Poisson approximation in real
applications (as opposed to unwieldy combinatorial calculations for long time series),
and provides a small bound on the approximation error. Simulation and/or analytical
approximation are needed to estimate p = P(I; = 1) to apply the Poisson approximation
and associated SC bound.

3. Example 2: monitoring for excessive numbers of tweets in 65 Florida
counties

3.1 Introduction

Example 2 analyzes two types of daily tweet counts. The first type of counts is
available from March 8, 2010, to December 31, 2015, in each of 65 Florida counties. In
the available data from 65 counties (instead of the full 67), Lafayette is merged with
Madison, and Liberty is merged with Gadsden; see Appendix 1. Such merging changes
the spatial resolution available to detect spatial-temporal outbreaks for the four rele-
vant counties. Reporting counts at the county (or merged county) level also changes
the available spatial resolution, compared, for example, to geo-tagged counts. The
second type of counts is time-tagged (to the nearest second) and geo-tagged (latitude
and longitude) tweets, not aggregated to county-level counts.
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One approach to monitor any numerically-valued time series has two main steps—
(1) use training data to fit a model or models to the daily counts by county; and (2)
monitor the corresponding residuals during training and testing to detect departures
from the fitted model(s). For (1), effects such as day-of-week or time-of-year effects
with multiple seasonal trends could be present, so the model building should be
comprehensive, including assessment of simple exponentially weighted moving aver-
age (EWMA) models as well as models to fit trends and/or seasonal effects. For (2),
the anomalies of interest could arise in neighboring counties (such as a reaction to a
severe weather event such as a hurricane), and so could cluster in time and/or space.

3.2 Exploratory data analysis

Figure 7 is daily tweet counts from March 8 to December 31, 2010 (236 days) for
(a) Brevard, (b) Broward, (c) Duval, and (d) Flagler counties (4 of 65 counties). This
report addresses what types of models might fit these data, and options for monitoring
residuals from the fitted model(s).

Question 1: Is the distribution of daily counts stable or stationary? Stationary
means that, for example, the mean and variance of the counts is constant over time
[1, 2]. Informally, it appears that spiking occurs in Broward county and that a mean
shift occurs in Duval county. If the counts are not stationary, sometimes, for example,
the first differences in counts are at least approximately stationary, perhaps with
occasional spikes (Figure 8) [1, 2].

Question 2: Is the background (“training”) data such as the 2010 counts adequately
fit by a Poisson distribution [11-13]? Figure 9 plots the variance/mean ratio (which
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Figure 7.

The daily tweet counts for four of 65 Florida counties from march 8 to December 31, 2010.
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should be approximately 1 for Poisson data) for each of the 65 counties. Hillsborough,
Miami-Dade, and Orange counties appear to be outliers. In view of Figure 9, question
2 is academic here, because it is not expected that a simple constant-mean Poisson
model will be adequate [11-13]. Figure 9 suggests non-Poisson behavior.

Figure 10 plots the daily number of tweets for Broward county and simulated
counts assuming a constant mean (equal to the mean of the Broward county counts)
Poisson model. Figure 10 also suggests non-Poisson behavior.
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Figure 8.

The first differences in daily tweet count for four of 65 Florida counties from March 8 to December 31, 2010.
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Figure 9.
The variance/mean for each of 65 Florida counties in 2010. The three largest variance/mean ratios are
Hillsborough, Miami-Dade, and Orange counties.
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Figure 10.
The daily number of tweets in Broward county from March 8 to December 31, 2010, real (top), and simulated

Poisson (bottom).

In Figure 10, the largest simulated count is 11 (the mean count is 3.4) but 7 of the
236 real counts exceed 11, and 2 of those exceed 20. More formally, the 99th percentile
of the variance/mean ratio when sampling 236 observations from Poisson (3.4) is 1.23,

n 236 2
but%2 = 3.4 (Figure 8), where X = % is the sample mean and s = % is the
sample variance. All analyses are performed using R [4]. Together, Figures 9 and 10
strongly suggest that a constant mean Poisson model is not adequate. Possibly, resid-
uals around a fitted model could display approximate Poisson behavior, or perhaps
another model such as the negative binomial for which variance/mean > 1 would be
more appropriate [11].

Figure 11 is the total counts overall 65 Florida counties for each year in 2010-2015.

En (xi—X) ( (x i —9_6)

Figure 12 is the autocorrelation function ACF; = p; = J\/l
an:1(xi_9_c)2

(with a

minor adjustment to avoid negative indices [1]) using indices 1-117, prior to the large
drop at index 118 for the total Florida counts in 2015. The ACF is useful for selecting
possible models, such as those included in the class of ARMA models [1]. Modern
machine-learning (ML) methods can also be evaluated, typically using AR modeling
[1, 2,12, 13]. An example of linear AR model is the lag one model x; = u + px;_1 + ¢,
where y is the long-term mean and the condition |a| <1 ensures that the {x;} series is
stationary. The noise term is denoted e;. An example of a linear MA model is in Eq. (1);
fitting an MA model requires estimating the noise sequence ¢; [1, 2]. Figure 13 is (a)
simulated MA(1) data and (b) estimated residuals versus true residuals as was also
shown in Figures 4 and 5.

3.3 Model selection and fitting

Exploratory data analysis (EDA) indicates no significant correlations in the resid-
uals from the ARIMA(0,1,1) fit, so a simple MA(1) model could be competitive. The
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Figure 12.
The ACF for total Flovida counts in 2015 over indices 1—117 before the large drop.

exponentially weighted moving average (EWMA) fit leads to the same fits as an MA
(1) fit to the lag-one differences, which can be easily seen [1] as follows:

Xp = (1= M%e1 + 201 =21+ (1= ) (%1 — X 1) (6)
Xt = (1 - ﬂ)et—l + & (7)
Xy =Xp—1 — (1 - ﬂ)et—l (8)

The forecast x; in Eq. (6) from EWMA is the same as the forecast %; in Eq. (7) from
ARMA(0,1,1) which is an MA(1) after differencing [1, 2]. It should be pointed out
that Poisson EWMA control charts as described in Ref. [11] are designed to monitor
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Figure 13.
(a) Simulated MA (1) data and (b) estimated vesiduals versus true residuals.

whether the Poisson mean ;, is constant over time. In that case, i, = (1 — 4)j1,_ +
Ax;_1 is monitored rather than monitoring residuals from a local fit to the time-varying
mean as in the twitter count monitoring.

The EWMA is among the simplest and most effective methods to forecast a time
series. However, anomalies that persist for more than one day will impact the EWMA
forecast in a manner that leads to reduced detection probability (DP) to detect the
anomaly. For example, suppose an anomaly persists for 5 days. The EWMA forecast
will be quite effective for day 1 of the anomaly, but the day 2 EWMA forecast will
tend to increase due to the elevated expected count on day 1; this increased forecast
leads to a reduced residual, thus reducing the DP.

Smooth fits using wavelets [13], EWMA [1, 2], and iterative bias reduction (IBR)
[14-16] have been compared on this data. Edge effects are present in the wavelet and
EWMA smoothers at the beginning of the data. The RMSE for wavelets, EWMA, and
IBR are 4.05, 3.33, and 3.58, respectively, so EWMA is the simplest and has the smallest
RMSE in this example. In data regions that have peaks, EWMA also performs accept-
ably well. The smoothing parameter 4 in Eq. (6), x; = (1 — A)X;—1 + Ax;_1 can be chosen
by using a grid search in Ref. [0,1] to minimize the RMSE in the training data. It is not
unusual for EWMA to provide a competitive RMSE compared to other methods. As an
example, Figure 14 is the daily counts and the EWMA fit for Bay county counts.

Figure 15 is the residuals from the EWMA fit in Figure 14.

The standard deviation of the residuals in Figure 15 is 3.43 while the standard
deviation of the counts is 4.43. Figure 16 is the ACF of the residuals in Figure 15.

3.4 Monitoring residuals

One effective option to monitor residuals from a fitted model is Page’s statistic
applied in this case to residuals in a single county, or to sums of residuals from
neighborhoods of counties [17-20]. Reference [20] describes a scan statistic that spans
temporally and spatially. Reference [21] illustrates that if the temporal and/or spatial
spanning window is selected to provide maximum evidence of an anomaly, then the
false alarm probability can be undesirably large unless the variable spanning is taken
into account.
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To monitor for positive mean shifts due to anomalously-large count(s), Page’s
statistic applied to the residuals e; = x; — &, is defined in Eq. (4)
(S¢ = max (0,S;_1 + e — k)). The parameter k is chosen to have good DP for a specific
mean shift, but monitoring whether S; > for threshold / can be effective for a range
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Figure 14.
Daily counts and a smooth fit for bay county. The green “P’s” ave local maxima in the smooth fit.
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Figure 15.
Residuals e = x — x for the EWMA fit in Figure 14.
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Figure 16.
ACF of the residuals in Figure 15.
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of values of k. For the Poisson distribution, by using the ratio of the likelihood under
the background mean pj to the shifted mean pg, the optimal value of k& (leading to the

largest DP) is given by k = **&-. A statistical test based on the maximum of Page’s

In (28
HB

statistic over an analysis window is equivalent to a statistical test based on a scan

statistic defined as max,;> ./ ,{e;; — k} over the analysis window.

Because the mean clearly changes over time in the background/training counts,
the approach taken here is to fit a model and monitor the residuals ¢; that are scaled
to have variance 1, so k = 0.5 is chosen on the assumption that the residuals are
symmetric around 0, and approximately normally distributed, so & = 0.5 is optimal
(leads to the largest DP) for a mean shift of one standard deviation. However, k = 0.5
can lead to large DPs for other mean shift magnitudes. Figure 17 plots Page’s statistic
applied to residuals from an EWMA fit for days 1-256 in 2012 in the first four counties
(alphabetically: Alachua, Baker, Bay, and Bradford). Figure 18 is similar to Figure 17,
but Page’s statistic is applied to the net residual in each county plus the residuals in all
the nearest-neighbor of each respective county.

To select a threshold (see Figure 19) for monitoring all 65 residuals (one from each
county) and all 65 residuals (one from each county including the neighboring
counties), the 0.95 or 0.99 quantiles of the distribution of the maximum of the 65 or
130 Page’s statistic values can be estimated (corresponding to a FAP or either 0.05 or
0.01 per analysis period (256 days in this example).

Figure 20 plots the DP for one-county-at-a-time monitoring and one-county-
plus-nearest-neighbors monitoring. The 65 Florida counties are mapped in Appendix
1, defining the neighborhood scheme. For example, the five neighbors of Brevard
county are Indian River, Orange, Osceola, Seminole, and Volusia. The nearest-
neighbor county DPs are slightly smaller than the one-county-at-a-time DPs because
the injected anomalies only impacted one county, and the alarm thresholds are slightly
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Figure 17.

Page’s statistic versus day for Alachua, baker, bay, and Bradford.
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Page’s statistic versus day for Alachua, baker, bay, and Bradford and their respective nearest neighbors.

Max(Page)

Max(Page)

Figure 19.
The maximum value of Page’s statistic overall 65 counties (a) and overall 65 counties with vesiduals from the
respective county’s neighbors (b).

larger when monitoring both individual counties and individual plus nearest-neighbor
counties.

If the injected anomaly impacts all five neighbors of Brevard county then the DPs
are much larger than those in Figure 19. For example, the DPS are 0.36, 0.78, and 0.99
for a mean shift of 1, 2, or 3 standard deviations in each of the five neighbors.
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Figure 20.
The DP versus the mean shift occurring on days 1—10 in Brevard county. The nearest-neighbor monitoring includes
both one-county-at-a-time and nearest neighbor monitoring.
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Figure 21.
The probability density of log(T; — T;_,) for each of the 3 days.

Another Florida data set records each tweet to the nearest second by geo-location
in latitude and longitude for each of 3 days during 2017 (January 16, June 13, and
November 29). Figure 21 plots the log of the lag-one time differences,

log(T; — T;_1) for each of the 3 days (with the T values measured in seconds, but
the time unit is ignored in applying the log function). If the inter-arrival times
followed an exponential distribution with mean 1/y, then Figure 20 would exhibit a
single peak, and the number of counts in any given time interval of duration ¢
would be distributed as Poisson(u = yt). Clearly, the counts do not exhibit exponential
inter-arrival times, and the lag-one time differences between the tweets show
considerable similarity across the 3 days. The 3 days have a total of 8102, 6376, and
5839 counts, respectively.

The custom R function generate.data() can be extended to include seasonality
such as a single dominant peak per year if appropriate; however, typically more
than one local peak is present per year. For example, find peaks applied to the
IBR-based smooth finds an average of 4.9, 5.0,3.9, 4.8, 4.1, and 4.7 peaks (across all
65 counties) in years 2010, 2011, ..., 2015, respectively. Simulated data from
generate.data() can be used to assess candidate fitting options and to estimate DPs
when synthetic anomaly effects are added. However, DP estimates tend to be too
optimistic if a data generator such as generate.data() does not include enough realistic
effects [18, 19].
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Model fitting includes both model selection and estimating parameters in the
selected models [13, 18, 19]. Recall that ARMA models are linear models but more
generally, for example, AR models such asx; =f (xt_l,xt_z, ,xt_p) + e, can be
linear in the previous x values or not. Multivariate adaptive regression with splines
(MARS) is a flexible nonlinear fitting option that was evaluated using the first
300 days to train and the next 300 days to gest for Brevard county counts. Although
the RMSE from MARS fits was 2.48 in training (EWMA has an RMSE of 2.78 in
training), the RMSE increased to 3.82 in testing (EWMA has an RMSE of 3.67 in
testing), so EWMA remains competitive. Bayesian additive regression trees (BART)
are another flexible option to fit AR models. The RMSE for BART (using gbart in R)
was 5.07, which is larger than the standard deviation of the daily counts in the testing
data (4.04).

Together with the time record of each tweet (to the nearest second), the latitude
and longitude provide an option to monitor for spatial and/or temporal clustering. If
there is no space-time clustering, then the event of being close in time is independent
of the event of being close in time. It is, therefore, possible to check for independence
by comparing the number of tweets that are close in space and time to the expected
number assuming independence. Arbitrarily defining close in time to be the 0.1
quantiles of all the pairs of time gaps between tweets (and defining close in space to be
the 0.1 quantiles of all the spatial distances between pairs of tweets), the 2-by-2 tallies
for January 16 is in Table 1.

The y’test for independence strongly rejects the independence of space and time.
Alternatively, the latitude and longitude values can be randomly reordered, breaking
any true possible connection between space and time. The resulting test for indepen-
dence is then not expected to be rejected; however, as an aside, while the random
resorting of latitude and longitude reduced the 0.026-0.014, it turns out that 0.014 is
large enough to 0.01 in this example, that some type of discretization phenomenon
leads to this unexplained behavior. This same discretization phenomenon occurs for
other arbitrary definitions of close, such as the 0.05 or 0.2 quantiles instead of the 0.1
quantiles.

Time-tagged Twitter counts with geo-locations are also available for
Minnesota, Ohio, and Texas from January 01, 2016 to December 31, 2018
(1093 days with 3 missing days). Reference [19] provides plots of daily Twitter counts
for Minnesota, Ohio, and Texas. Decreasing trends are obvious in all three states, and
a t-test comparing the first 500 counts to the last 500 counts strongly rejects
stationarity.

Reference [19] provides historgrams of the daily counts for Minnesota, Ohio, and
Texas, respectively, along with simulated daily counts from a Poisson distribution
having that respective state’s mean count rate. The real data are much more dispersed
than a corresponding Poisson distribution.

Close in time (0.1 quantile) Not close in time
Close in space (0.1 quantile) 856,752 23,761,044
Not close in space 2,893,098 5,306,257

Table 1.

For the 8102 geo-located tweets on January 16, 2017, there are 8102%8101/2 = 32,817,151 comparisons (the
sum of the four entries in Table) of time and space. The expected number in the “close in time and space” cell is 0.1
X 0.1 X 32,817,151 = 328171.51, while the observed counts are 856,752 and 856,752/32817151 = 0.026,
which is statistically significantly lavger than 0.01.
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3.5 Summary

Example 2 and Ref. [19] focused on monitoring residuals from simple EWMA fits.
Other possible fitting options, such as MARS or BART for autoregressive modeling are
described in Refs. [13, 18, 19]. If there were a more consistent seasonal peak, then
model fitting could appropriately include seasonal peak fitting as in Ref. [22] for
influenza forecasting. Another data source is Google’s flu query data (counts of google
searches that seek information about influenza symptoms) as a real-time option to
monitor for flu outbreaks [23]. It would be valuable to investigate why the google
flu data monitoring option has not been effective. Also, in monitoring for spatial-
temporal clustering, it was assumed that “close in space” and “close in time” were
defined arbitrarily at the 0.1 quantiles of their respective distributions. If instead
several possible quantile values were examined for statistical significance, and the
quantile choice leading to the highest evidence of clustering is used, then a simulation-
based method [21] could adjust for such maximal selection of statistical evidence of
clustering.

4. Example 3: monitoring for nuclear material loss

In nuclear material accounting (NMA), the material balance (MB) is defined as
MB = Ipegin + Tin — Tout — lend, Where Ty, is transferred in; Ty is transferred out; Ipegin
is beginning inventory; and I.nq is ending inventory [24-34]. All terms involve mea-
sured material, so the MB values should vary around 0 if there is no NM loss. The
measurement error standard deviation of the MB is denoted cyg. Typically, many
measurements are combined to estimate the terms Ti,, Ipegin, Touts and Ienq in the MB;
therefore, the central limit effect and years of experience suggests that MBs in most
facilities will be approximately normally distributed with a mean equal to the true NM
loss y and standard deviation oy, which is expressed as X ~ N(u,0mp), where X
denotes the MB. If the MB at a given time (“balance period”) exceeds k oy with & in
the 2-3 range, then the NMA system “alarms.”

A sequence of n MBs is often assumed to have approximately a multivariate

normal distribution X = X3, ..., X, ~ N(u,X), where the n-by-n covariance matrix
22 2
61612 cee Gln
2 2 2
02102 -+ Oy WA . . :
Xl= . Estimating X is often one of the most tedious steps in frequent
2 2 2
Gnlanz coe Gn

NMA (near real-time accounting, NRTA). A simplified example of estimating a
component of X using a model of a generic electrochemical facility with one input
stream, one output stream, and two inventory items is as follows. First, each individ-
ual measurement method is modeled with a measurement error model. A typical

model for multiplicative errors is M;; = T; (1 +S; + R,-j) with §; ~ N (O, 5%)

and R;j ~ N (O, 5}23), where the jth measurement results (oftenj = 1) M;; of item i, T;
is the true value of item i, R;; is a random error of item , S; is a short-term
systematic error for item 7. Then, the error variance for the two inventory items is
67 = (T1 + T,)*6% + T26% + T25%, just as one example [26-29, 34] of error modeling
and variance propagation used to estimate a component of X.
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In the early 1980s, some believed that a plant reporting an MB every 30 days would
have a larger detection probability (DP) than that same plant reporting an MB every
year (typically a facility is inventoried and cleanout out approximately once per
year). However, Ref. [27] then showed that for optimal (from the diverter’s
viewpoint, meaning that the DP is minimized) protracted diversion with the
per-period loss being proportional to the row sums of the covariance matrix, X of the
MB series, annual MB testing has larger DP than monthly mass balance testing.
Reference [27] dampened hopes that frequent NMA, referred to as NRTA,
would allow challenging diversion DP goals to be met. However, Ref. [27]
conceded that NRTA has shorter detection times and higher DPs against abrupt
diversion. Reference [27] showed that the best statistical test, the Neyman-Pearson

1<Z”]_:12,- j
~—" \~b <
Ziﬂz jo1 i

(NP)-based matched filter for the worse case loss with y;" = , is based on

the cumsum, C; = Zlexi.
There are several reasons to apply statistical tests to a transformed sequence
defined as Y; = {X; — E(X;|X;_1,Xi_2, ..., X1)}/6; where E denotes the expectation

and the standard deviation 6; of {X; — E(X;|X;1,Xi 2, ..., X118 6; = \/ 07 —fZ_lfT

where f = X, 1(;_1), the 1 to (i-1) entries in the ith row of X [2, 7]. From properties

of the MVN, each component Y; vector can be computed by calculating the
conditional mean E(X;|X; 1, X; 2, ..., X1) :fZl:llXi_l where 2;11 is the inverse of the
(i-1)-by-(4-1) matrix X, 4 that corresponds to balance period 1 through period i-1. The
Cholesky factorization X = LU leads to a more computationally efficient recursive
approach that avoids matrix inversion [28]. The transformed sequence Y = L1 X has
Yy =1, s0Y is a residual time series.

This is a logistic advantage and a DP advantage to transform the X3, X>, ..., X, time
series to the series of residuals Y, Y, ..., Y, known in NMA as the SITMUF (stan-
dardized, independently transformed material unaccounted for sequence, here MUF
is another term for the MB). The logistic advantage is that the SITMUF time series is
iid N(0,1) if the loss 4 = 0, so alarm thresholds depend only on the sequence length n
and the desired FAP. The DP advantage is a DP increase for many loss vectors arises
because the variance of the SITMUF sequence decreases over time, so particularly if a
diversion occurs late in the analysis period, the DP is larger for the Y sequence than for
the X sequence. Note that one cannot claim higher DP for the Y sequence than for the
X sequence in general, because the true loss scenario is never known, and the DP can
be larger for X than for Y for some loss scenarios. Modern NRTA systems use a suite of
several statistical tests, usually applied to the Y series.

Example DPs are plotted in Figures 22-24 (three different loss vectors for n = 16)
for these five tests: (1) SITMUF test, (2) Page’s test applied to the SITMUF series, (3)
CUMSUM test, (4) a combination of (1-3), and (5) the NP-based matched filter is also
useful to compute the largest possible DP for a specified loss. The alarm threshold % is
chosen so that the FAP per analysis period (usually one year) is 0.05 or whatever FAP
is specified. In Figures 22-24, the covariance matrix X from Ref. [34] has 1 on the
diagonal, —0.48 on the lag-one off diagonals, and 0.01 on all higher-lag off diagonals.
The loss 1 vector (Figure 21) is 0 on periods 1 to 5, constant on periods 6-10, then 0
on periods 11-16 (the nonzero entries summing to the quantity plotted on the hori-
zontal axis). The loss 2 vector (Figure 22) is all 0 except for an abrupt loss on period 6.
The loss 3 vector (Figure 23) is constant for all 16 periods.
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Figure 22.
DP versus the total mean shift (loss) for n = 16, for loss vector 1 (constant loss on periods 6 to 10).
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Figure 23.
DP versus the total mean shift (loss) for n = 16, for loss vector 2 (abrupt loss on period 6).
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Figure 24.
DP versus the total mean shift (loss) for n = 16, for loss vector 3 (constant loss).
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Figure 25.
MB sequences over 36 months using fixed-period (annual) decision periods.

This example is concluded with two remarks.

Remark 1. Reference [24] showed that assuming the model X3, ..., X, ~ N(u, X)
leads to larger DPs than fitting an ARMA model on training data for which it would
have to be assumed that the NM loss y = 0 [31], provided X is well estimated. If X is
not well estimated, a Bayesian updating scheme to improve the estimate of X could be
used on training data for which the NM loss y = 0 [35].

Remark 2. Figure 25 illustrates fixed-period testing and data-driven testing [29].
Some versions of NRTA use the most recent 1-year length sequences, so for n = 12
balance periods per year, the first evaluation period is months 1-12, the second
evaluation period is months 2-13, etc. This scheme allows for a statistical decision to
be made at every annual physical inventory, such as at months 12, 24, and 36. An
alternate scheme consisting of a hybrid of period-driven and data-driven testing is
described in Ref. [29], where it is pointed out that one should not simply truncate
sequential statistical tests at the time of the annual physical inventory because the
adversary could remove a portion of an SQ during year 1 and the remaining portion
during year 2. The scan statistic has the highest DP (0.95 in this case, verified by
simulation) if one knows that a loss will occur over a 12-month period with an
unknown start period (such as month 7). The scan statistic computes a moving sum of
months 1-12, 2-13, 3-14, etc.

5. Summary

This chapter has described three change-detection examples. Example 1 monitored
for patterns of large residuals, such as a consecutive string of three residuals exceeding
a threshold. Example 2 monitored for excessive numbers of tweets in any of the 65
Florida counties. Example 3 monitored for nuclear material loss. Portions of examples
1 and 3 have been published as cited in Refs. [5, 34]. Example 2 is entirely new. Page’s
statistic is generally recommended because of its reasonably large DP for a range of
change patterns, such as any of those in Figure 1.
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Appendix 1: The Florida counties in example 2

> ctyhst

] “alachua” “baker” “bay” “bradford”

5] “brevard” “broward” “calhoun” “charlotte”

9]

13]

17] “flagler” “franklin” “gadsden” “gilchrist”

21] “glades” “gulf” “hamilton” “hardee”

5] “hendry” “hernando” “highlands” “hillsborough”

9] “holmes” “indian river” “jackson” “jefferson”
]

[1
[
[
[
[
[
[
[
[33] “lake” “lee” “leon” “levy”
[
[
[
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41] “miami-dade” “modroe” “nassau” “okaloosa”
45] “okeechobee” “orange” “osceola” “palm beach”
49] “pasco” “pinellas” “polk” “putnam”

53] “st. johns” “st. lucie” “santarosa” “sarasota”
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Figure A.1.

The 65 Florida countries. In the available data, liberty county is merged into Gadsden and Lafayatte county is
merged into Madison to reduce the 67 Florida counties to 65. Therefore, there ave 65 identified regions (counties)
for which spatial and/or temporal residuals patterns can be monitored for change.
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Figure A.1is the 67 Florida counties, and this data merged Liberty into Gadsden
and merged Lafayatte into Madison to reduce the 67 Florida counties to 65.

> ctynbrs([5,] # Brevard county: neighbors of Brevard county

[110000000000000000000000000000010000000

[3810000000011000000000100001000.

ctylist[ctynbrs[5,]

> ctylist[as.logical(ctynbrs[5,])]

<« . 3 » (49 » <« » <« . » (49 £
[1] “Indian river orange osceola seminole volusia
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