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Chapter

Macrophage: A Key Player of 
Teleost Immune System
Ragini Sinha

Abstract

Fish, the free-living organisms, residing in aquatic environment, are earliest  
vertebrates with fully developed innate and adaptive immunity. Immune organs 
homologous to those of mammalian immune system are found in fish. Macrophages 
are best known for their role in immunity, basic function of which being cytokine 
production and phagocytosis. Due to environmental adaptation and whole genome 
duplication, macrophages in teleost are differently modulated (pro-inflammatory, 
M1-type, and anti-inflammatory/regulatory, M2-type) and perform a variety of 
different functions as compared with those of mammals. Phagocytosis is a major 
mechanism for removing pathogens and/or foreign particles in immune system and 
therefore is a critical component of the innate and adaptive immune system. One of 
the most competent phagocytes in teleost is found to be macrophages/monocytes. 
Increasing experimental evidence demonstrates that teleost phagocytic cells can rec-
ognize and destroy antigens to elicit adaptive immune responses that involve multiple 
cytokines. A detail understanding of teleost macrophages and phagocytosis would 
not only help in understanding the immune mechanism but will also help in disease 
prevention in teleost.

Keywords: inflammatory response, cytokine production, macrophages, phagocytosis, 
teleost

1. Introduction

Fish, the first vertebrate group, appeared in evolution after adaptive radiation 
during the Devonian period, presenting the most successful and diverse group of ver-
tebrates. Importantly, immune organs homologous to those of the mammalian system 
are found in fish. This population possesses complicated innate immune networks 
and are the earliest vertebrates that have fully developed both arms of the immune 
system, i.e., innate and adaptive immunity [1]. Macrophage lineage cells are integral 
to fish immune responses like any other vertebrate, and hence, recent fish immunol-
ogy research focuses on fish macrophage biology. Macrophages are one of the most 
important immune cells that bridge the innate and adaptive immunity. It plays a 
crucial role in tight regulation of immune response by secreting different immune 
mediators [2, 3]. Macrophages are present in most animal tissues and play crucial 
roles in host protection and homeostasis. They are known by different names such as 
amebocytes, hemocytes, coelomocytes, granulocytes, monocytes, and macrophages, 
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but have similar morphology and comparable functions [4–6]. Due to whole genome 
duplication and environmental adaptation, teleost monocyte/macrophages possess 
a variety of different functions and modulation compared with those of mammals. 
The basic functions of macrophages are production of cytokines and phagocytosis 
in vertebrates. Monocytes give rise to macrophages during inflammatory conditions 
in both mammals and fish [7]. Macrophages play multiple roles in immune system. 
Macrophages are potent innate immune cells, which exert a crucial antimicrobial 
defense through phagocytosis and release of different antimicrobial mediators, 
including reactive oxygen and nitrogen species (ROS and RNS). Additionally, they 
also serve as professional antigen presenting cells (APCs) to activate the adaptive 
immune system (T and B cells) [8]. Macrophages pose the phagocytic activity, which 
is the initial step in the immune response in fish and is the major line of defense for 
all foreign material, including pathogenic agents [9]. Measurement of macrophage 
activation serves as a bio-indicator and reveals the impact of environmental stress as 
well as chemical contamination of the aquatic bodies.

2. Development of macrophages

Teleost blood cell development occurs within primitive waves of hematopoiesis 
[7]. In mammals, macrophages are predominantly derived from the hematopoietic 
precursors born in the yolk sac (YS) and the aorta-gonad-mesonephros (AGM) where 
embryonic and adult hematopoiesis occurs [10–14]. Likewise, macrophages originate 
from the rostral blood island (RBI) and ventral wall of dorsal aorta (VDA), the fish 
hematopoietic tissue equivalent to the mammalian YS and AGM for myelopoiesis, 
respectively [15–19]. During primitive hematopoiesis, embryonic mesoderm becomes 
committed to produce monopotent hematopoietic precursors in the rostral blood 
island that give rise to macrophages [20–22]. Following monopoiesis, first multilin-
eage progenitor cells arise, known as erythromyloid progenitors (EMPs), which can 
develop into both erythroid and myeloid cells. Later, a population of hematopoietic 
stem cells (HSCs) arises in the AGM. The existence of renal marrow-derived HSCs has 
been documented in both zebrafish and ginbuna carp [23, 24]. The progenitor cells 
that are found in the kidney have been shown to be able to differentiate into erythro-
cytes, lymphocytes, thrombocytes, granulocytes, and monocytes. Monocytes mainly 
exist in the bone marrow, blood, and spleen. They can differentiate into inflammatory 
macrophages and dendritic cells during inflammation [25, 26]. Macrophages reside in 
a variety of tissues including lymphoid and non-lymphoid ones. Until recently, tissue 
macrophages were believed to arise from circulation monocyte precursors in response 
to different stimuli [27]. Recent evidence by fate-mapping blood cell lineages suggests 
that contribution of monocytes is limited in maintaining the population of tissue 
macrophages. Instead, tissue macrophages are “seeded” during primary haematopoie-
sis and self-maintain the resident population like that of the mammals [28–30]. There 
is a specific group of cytokines that act as hematopoietic group of cytokine, which can 
regulate the development of multiple cell lineages and can act individually or concur-
rently to stimulate a specific response. Hematopoietic cytokines are produced by a 
variety of cell types, which can act in paracrine, endocrine, juxtracrine, or autocrine 
manner on the target cells for their renewal and development [31, 32]. Cytokine 
sensitivity is determined by a complex regulatory network, a hematopoietic cytokine 
may induce different developmental changes in different circumstances. Specific cell 
lineage can be responsive to certain cytokines.
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3. Role of transcription factor in macrophage development

The regulation of hematopoiesis is carried out in and orchestrated manner 
involving cell-cell and cell-extracellular matrix. Transcription factors play a critical 
role in determining the fate of development of macrophages. Transcription factors 
are DNA-binding proteins that recognize specific domains. Improper expression of 
transcription factors and activity results in serious consequences within the hemato-
poietic system including inhibition of proliferation [33, 34]. Synergistic interactions 
between transcription factors are generally required for the activation of specific 
genes. Apart from that, negative interaction between transcription factors is also 
necessary for the control of hematopoiesis [31].

3.1 Role of colony-stimulating factor-1

Macrophage colony-stimulating factor-1 (CSF-1) is an important growth and 
differentiation factor of both fish and mammalian macrophages [35]. The survival, 
proliferation, differentiation, and functionality of most of the macrophage lineage 
cells are governed by CSF-1 through binding to its cognate receptor (CSF-1R). 
CSF-1R is expressed exclusively on committed myeloid precursors and derivative 
macrophage populations [36–42]. CSF-1 has recently been identified in several fish 
species including trout [43], zebrafish [43], and goldfish [43, 44]. Recombinant trout 
CSF-1 was found to promote the proliferation of trout head kidney leucocytes [43]. 
Reports suggest that the recombinant goldfish CSF-1 (rg-CSF-1) induced chemotactic 
response and enhanced antimicrobial functions of macrophages. It plays a central 
role in regulation of goldfish pro-inflammatory macrophage responses [35]. Many 
teleost fish species have two distinct CSF-1 genes (CSF-1.1 and CSF-1.2) [43], which 
happen to work by upregulating pro-inflammatory components [45, 46]. A variety 
of cytokines can induce the production of CSF-1 by monocytes and macrophages, 
such as GM-CSF [47], TNF-α [48], IL-1 [49, 50], and INF-γ [51, 52]. The capacity of 
monocyte/macrophages to produce CSF-1 suggests that these cells can auto-regulate 
their own proliferation and functions [31]. CSF-1 also stimulates the production 
of several cytokines including G-CSF, GM-CSF, IL-1, IL-6, IL-8, and TNF-α and 
interferons [38, 53]. Cyprinid fish produce a soluble CSF-1 receptor (sCSF-1R) that 
downregulates their pro-inflammatory responses by reducing available soluble 
CSF-1. The sCSF-1R is produced by mature macrophages and not by monocytes 
and efficiently removes a variety of inflammatory events including macrophage 
chemotaxis, phagocytosis, and production of ROS intermediates and recruitment 
of leukocytes [54]. Circulating CSF-1 can effectively be cleared by the process of 
CSF-1 receptor-mediated internalization followed by intracellular destruction of the 
growth factor. Liver and splenic macrophages have been demonstrated to be capable 
of absorbing approximately 94% of the circulating CSF-1 [55, 56]. Adding CSF-1 to 
primary cultures has proven to increase the longevity of the cultures and can drive 
the culture from a heterogeneous population of progenitor monocyte and macro-
phage cells, toward a homogeneous population of macrophages [57].

4. Activation of macrophages

Macrophage activation occurs under various intracellular as well as environ-
mental influences. Based on the activation cue and the following effector functions, 
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macrophages have been broadly classified in two types: classically activated macro-
phages (M1) induced in a T helper 1 (TH1) cytokine environment and alternatively 
activated macrophages (M2) induced in a T helper 2 (TH2) cytokine environments 
[58]. In a different terminology, M1 macrophages have been termed to be “inflamma-
tory,” whereas M2 macrophages have been termed to be “healing” in nature. There 
have been studies indicating four different phenotypes of macrophages, which are 
innate activated, classically activated, and alternatively activated and regulatory 
macrophages. Classically activated macrophages present higher respiratory burst 
activity and iNOS expression as compared with innate activated macrophages [59]. 
Macrophages that are activated by microbial stimulus and innate danger signals 
without any influence of adaptive immune cells lead to the formation of the M1 popu-
lation [5, 59]. M2 macrophages that form in the presence of TH2 cytokines can again 
be classified into three groups: activated by IL-4/IL-13 or M2a macrophages [60], 
stimulated by Toll-like receptor (TLR) ligands in combination with second signal or 
M2b, developed in response to IL-10 or M2c [60].

4.1 M1 macrophage activation

Innate activation of M1 macrophages is induced by microbial stimulus, which 
can be detected by various receptors on the macrophage surface [61]. These micro-
bial stimuli can activate macrophages through a large array of pattern recognition 
receptors (PRRs) [62]. Fish species poses a wide variety of PRRs both putative 
mammalian orthologues and fish-specific family members [63] and can be activated 
in the absence of exogenous cytokines. M1 macrophages are induced by pathogen 
associated molecular patterns (PAMPs) such as lipopolysaccharides (LPSs), a major 
component of outer membrane of Gram-negative bacteria [5, 6]. A number of 
publications show that in vitro stimulation of fish macrophages with LPS leads to 
increased respiratory burst activity and increased secretion of pro-inflammatory 
cytokines [64]. Classically activated macrophages require a microbial stimulus 
plus the presence of the cytokine INFγ (Figure 1) [65]. INFγ has been sequenced 
in fugu [66], rainbow trout [67], zebrafish [68], Atlantic salmon [69], catfish [70], 
common carp [71], goldfish [72], Atlantic cod [73], and flounder [74]. Certain fish 
species possess two distinct types of INFs. Both the isoforms, initially named INFγ1 
and INFγ2, contain typical INFγ motifs and are now referred to as INFγ- related 
(INFγrel) and INFγ, respectively [75]. In carp and in grass carp, both isoforms are 
regulated by different stimuli [71, 76], in vivo bacterial infection in zebrafish embryo 
indicated that INFγ and INFγrel act partly redundantly, they have largely overlap-
ping functions [77]. Goldfish INFγrel induced significantly higher phagocytosis and 
nitrite production in monocytes and macrophages, respectively, when compared 
with INFγ [72]. Research studies suggest that most probably INFγrel proteins are 
antiviral proteins without direct effects on M1/M2 polarization in fish [78]. It is 
particularly notable that certain teleosts possess two INFγ-receptor-binding chains 
(IFNGR1-1 and IFNGR1-2) in comparison to other vertebrates that have a single INFγ 
receptor 1 (INFGR1) [72, 79, 80]. These suggest that fish have adopted very unique 
strategies surrounding their M1 activation cytokine system. INFγ as a combination 
stimulus with LPS induces inflammatory M1 population. These macrophages show 
higher respiratory burst activity and nitric oxide synthase expression [62].

Classically activated macrophages are induced by a combination of INFγ and 
TNFα [81, 82]. Like its mammalian counterpart, teleost TNFα is one of the mark-
ers of M1 macrophages [83, 84]. Multiple isoforms of TNFα have been found in a 
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variety of fishes. These isoforms have been shown to enhance inflammatory gene 
expressions, macrophage chemotaxis, and phagocytosis [85–96]. Functional evalu-
ation of fish TNFα has discovered some contradictory results. In some fish species, 
recombinant TNFα (rTNFα) was found to hardly activate macrophages [97–99], 
whereas the trout and goldfish TNFα1 and 2 are shown to be active in macrophages 
[87, 100]. Two different TNF receptors have been found in goldfish, namely TNF-R1 
and TNF-R2, which bind the goldfish TNFα1 and TNFα2 in a homodimeric confor-
mation unlike the trimeric conformations of mammalian TNF ligands and receptors 
[101]. The bacterial LPS readily induces the TNFα gene expression, which in turn 
plays a major role in polarizing the macrophages [99, 102]. From different studies it 
is clearly understood that fish possess a well-defined M1 polarization upon microbial 
stimuli.

Figure 1. 
M1 and M2 macrophage activation.
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4.2 M2 macrophage activation

M2 macrophages also known as alternatively activated macrophages can be 
generally characterized as having “anti-inflammatory” or “pro-healing” phenotypes 
(Figure 1) when developed in the presence of TH2 cytokines IL-4 and/or IL-13 [103]. 
To date, at least two genes have been identified in fish that share homology with both 
the mammalian IL-4 and IL-13 cytokines (IL-4/13A and IL-4/13B) [104] even though 
variable number of copies of these genes are present in different fish due to genome 
duplication events [105]. Of the two may be IL-4/13A shows complete synteny 
with other genes in TH2 cytokine complex [106]. There is a common homodimeric 
receptor subunit called IL-4Rα for both cytokines (IL-4 and IL-13) found in mam-
malian vertebrates [107], paralogues of which, IL-13Rα1 and IL-13Rα2, have also 
been identified in teleosts [108, 109]. Teleost recombinant IL-4/13A and IL-4/13B 
have anti-inflammatory roles including upregulation of immunosuppressive genes 
(TGF-β, IL-10, SAP1, and SOC3) and downregulation of pro-inflammatory cytokine 
gene expressions (TNFα, IL-1β, and INFγ) [110–112]. These M2 macrophages show 
increased arginase activity. In M1 macrophage, the iNOS enzyme converts L-arginine 
to L-cutrulin and NO. By contrast, in M2 macrophages, the enzyme arginase, a 
manganese metallo-enzyme, converts L-arginine to L-ornithine and urea [113, 114]. 
Mammals possess two arginase isoforms including arginase-1 located in cytosol and 
arginase-2 located in mitochondria [115]. Teleosts possess both the forms arginase-1 
and arginase-2, which are found to be mitochondrial forms unlike that of their 
vertebrate counterparts. In carp, arginase-1 gene expression was found mainly in 
the mid kidney, whereas arginase-2 expression was found in all organs with the liver 
having the maximum expression [116]. Under stimulation of exogenous cAMP, carp 
head kidney-derived macrophages show upregulation of arginase-2 but not arginase-1 
expression, suggesting that arginase-2 might be an excellent marker of M2 macro-
phages in fish.

M2 macrophages that are deactivated by glucocorticoids or by cytokines such as 
TGF-β or IL-10 are also referred to as regulatory macrophages. Glucocorticoids dif-
fuse across plasma membrane and alter the expression of immune-related genes [60]. 
It has been shown to be a strong inhibitor of NO production in goldfish macrophages 
[117] and increases fish susceptibility to diseases due to its immunosuppressive nature 
[118–120]. Grass carp recombinant IL-10 and recombinant TGF-β1 have found to 
attenuate LPS-stimulated inflammatory gene expressions in monocyte/macrophages 
[121]. The goldfish TGFβ downregulates the nitric oxide response of TNFα-activated 
macrophages [122]. Mammalian IL-10 functions through IL-10R1 and IL-10R2 lead-
ing to activation of STAT3 [123]. Similar to mammalian IL-10, carp IL-10 acts through 
a signaling pathway involving phosphorylation of STAT3 and leading to upregulation 
of SOCS-3 expression [124]. An IL-10R1 has been found in zebrafish, goldfish, and 
grass carp [125, 126], whereas IL-10R2 has been found in rainbow trout [127]. These 
cytokines demonstrate an evolutionary conserved role in fish immunology.

5. Function of macrophages

Macrophages and monocytes serve as professional phagocytes in fish [128]. 
Phagocytosis is a specific type of endocytic process by which cell engulfs solid partic-
ulate targets. These solid particles (including microbial pathogens) are internalized to 
form phagolysosome followed by antigen degradation [129–132]. Phagocytosis plays 



7

Macrophage: A Key Player of Teleost Immune System
DOI: http://dx.doi.org/10.5772/intechopen.103804

an essential role of linking the innate and adaptive immune response in vertebrates. 
It is well established that fish have both the innate and adaptive immune system in 
which macrophages happen to play a crucial role. The phagocytic mechanism depends 
on recognition of the foreign particle by cell surface receptors and killing by oxygen 
radicals [133, 134]. Phagocytosis plays a crucial role in the macrophage inflamma-
tory immune response through hydrophobic interaction between the phagocytic 
membrane and the target particles. The multiple receptors present on the phagocyte 
can recognize their targets coated with opsonin molecules and form the phagosome 
by engulfing them [135]. Lysosome then fuses with the phagosome to form the 
phagolysosome, the vesicles in which the internalized microbes would be killed and 
degraded. Potent antimicrobial compounds including degradative enzymes (prote-
ases, nucleases, phosphatases, lipases) and antimicrobial peptides (basic proteins and 
neutrophilic peptides) are generated by active phagocytes, which help in destruction 
of the phagocytosed pathogens [136–141]. Both M1 and M2-type macrophages form 
phagolysosomes. Reports suggest that M1 macrophages form a phagosome with 
relatively neutral pH as compared with M2 macrophages that form phagosomes with 
acidic pH [142]. Macrophages are known to be “professional” phagocytes along  
with polymorphonuclear cells (PMNs), monocytes, and dendritic cells in vertebrates. 
Apart from this, some “amateur” phagocytic cells (epithelial cells, fibroblasts, and 
B lymphocytes) show a lower degree phagocytic activity [129, 143]. Research sug-
gests that succinate is critical in controlling phagocytosis in macrophages. Exogenous 
methyl-succinate was found to enhance phagocytosis, pro-inflammatory cytokine 
production, and expression of phagocytic genes [46].

The destruction of the internalized microorganism occurs by robust production 
of ROS (reactive oxygen species) by active macrophages. The multi-component 
enzyme NADPH assembles on the phagosome membrane during macrophage respira-
tory burst, which transfers electrons from NADPH to molecular oxygen-producing 
superoxide anion [144]. The functional sites of fish and mammalian NADPH oxidase 
are highly conserved. All of the components of NADPH oxidase have been found in 
teleosts, and fish ROS generation has been well documented following PAMP stimula-
tion [145–148] and antimicrobial responses [149, 150].

Classically activated M1 macrophages abundantly express high levels of inducible 
nitric oxide synthase enzyme iNOS, which catalyze the conversion of L-arginine to 
L-citruline, resulting in the production of nitric oxide (NO) [151]. iNOS serves as a 
marker of M1 macrophage and is upregulated in response to INFγ, TNFα, and microbial 
compounds [82]. The fish iNOS has been characterized with marked similarity to the 
mammalian enzyme counterpart. The fish iNOS gene expression is induced by antimi-
crobial and inflammatory stimuli including cleaved transferring products [152, 153]. 
iNOS plays an important role in protection of fish from a variety of pathogens.

Another hallmark of M1 macrophages is upregulation of the expression of 
indoleamine2,3-dioxygenase (IDO) enzyme that depletes local tryptophan levels 
[154]. Tryptophan degradation produces certain metabolites that may inhibit T cell 
proliferation. Teleost IDO is less effective in tryptophan degradation as compared 
with their mammalian counterparts [155].

6. Conclusion

Teleosts are found throughout the world and are highly susceptible to variations 
caused by natural as well as man-made external changes, which affect their immune 
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system. Macrophages are one of the basic immune cells found in teleosts like their 
mammalian counterparts, which play a crucial role in bridging the innate and adap-
tive immunity in fish. Macrophages of teleost fish exhibit many functions from that 
of homeostasis to host immune defense. They possess the phagocytic activity, which 
is initial step of defense in fish immunity. Measurement of macrophage activation 
serves as a bioindicator of fish health. Teleosts have shown to have different macro-
phage polarizations (M1 and M2) pathways under different stimuli, which provides a 
great support in understanding the evolutionary development of fish immune system. 
Despite having multiple isoforms of key macrophage cytokines in fish, functional 
studies of these have been limited. Whole-genome duplication events are responsible 
for the availability of multiple isoforms of immune mediators in different fish [156]. 
A greater understanding of teleost macrophages and their function with growing 
genetic resources would help widely in deciphering the minutes of fish immune 
system and its evolutionary linkage with that of their mammalian counterparts.
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