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Chapter

Assessing Heterogeneity of
Two-Part Model via Bayesian
Model-Based Clustering with Its
Application to Cocaine Use Data
Ye-Mao Xia, Qi-Hang Zhu and Jian-Wei Gou

Abstract

The purpose of this chapter is to provide an introduction to the model-based
clustering within the Bayesian framework and apply it to asses the heterogeneity of
fractional data via finite mixture two-part regression model. The problems related to
the number of clusters and the configuration of observations are addressed viaMarkov
Chains Monte Carlo (MCMC) sampling method. Gibbs sampler is implemented to
draw observations from the related full conditionals. As a concrete example, the
cocaine use data are analyzed to illustrate the merits of the proposed methodology.

Keywords: model-based clustering, finite mixture model, two-part model, Markov
Chain Monte Carlo sampling, cocaine use data

1. Introduction

A recurring theme in the statistical analysis is to separate the unstructured data
into groups to detect the similarity or discrepancy within or between groups. This is
especially true in the fields, e.g., discriminant analysis [1–3], pattern recognition
[4, 5], gene expression [6–8], machine learning [9], and artificial intelligence [10].
In the literature, the clustering problem is often formulated within the cluster
analysis framework, which is generally categorized into two classes: the non-
probabilistic framework and the probabilistic framework. The non-probabilistic
clustering method, including the K-means method [9, 11, 12] and the hierarchical/
agglomerative clustering algorithms [13–15], is based on the distance between any
two observations or groups. It clusters data by merging or removing observations
according to the “closeness” specified by the distance. This method is more general
since it does not impose any distributional assumptions on data, hence having
greater flexibility in the real applications. Instead, the non-probabilistic clustering
algorithm, also termed the model-based clustering, groups data by positing a proba-
bility model on data and then clustering data via configuration function related to
the model. Compared with the non-probabilistic framework, the model-based
methods enable us to assess the statistical properties of the solutions, e.g., how
many clusters are there, how well the configuration function works, and how robust
the method is against the model deviation and so on. There is rich literature on this
issue. Among them, finite mixture model (FMM, [16–18]) perhaps is the most
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popular choice and has often been proposed and studied in the context of
clustering (see a short review in Fraley and Raftery [2]). FMM assumes that each
cluster is identified with a probability distribution indexed by the cluster-specific
parameter(s), and each observation is related to clusters via configuration or mem-
bership function. The statistical task is the inference about the number of clusters,
the estimation of the unknown parameters, and the allocation of observations.

In this chapter, we pursue a Bayesian model-based method to address the hetero-
geneity of fraction data. Fractional data are very common in the social and econom-
ical surveys. A distinguished feature of fractional responses is that its measurements
are responded on a scale in the unity interval [0,1] but suffer from excessive zeros
and unities on the boundaries. In understanding such type of data, the commonly
used method is to separate the whole data into three parts: two corresponding to the
zeros and unities respectively, and one corresponding to the continuously positive
values. Two separative logistic models are suggested to model two discrete value parts
respectively while single normal linear regression model is formulated for the con-
tinuous value part. This method, though more appealing, ignores the instinct associ-
ation across different parts and readily leads to inconsistence of the occurrence
probabilities on each part. Instead, we propose a three-category multinomial model
for the occurrence variable, in which the usual separated models can be considered as
the marginal models of our proposal. Such modeling always ensures the probabilities
on each part to be proper, thus avoiding parameter constraints, see for example, [19].
To assess the heterogeneity underlying data, we formulate the problem into a finite
mixture analysis of which each component is specified by two-part regression model.
In view of the model complexity, we implement Markov Chains Monte Carlo sam-
pling method to implement posterior analysis. Block Gibbs sampler is implemented to
draw observations from the target distributions. The posterior inference including
parameters estimates, model selection, and the configuration determination of obser-
vations are obtained based on the simulated observations.

The chapter is organized as follows. Section 2 introduces a general model-based
clustering method to address the heterogeneity of regression model within the
Bayesian framework. In Section 3, we apply the proposed method to the fractional
data. Section 4 presents a cocaine use study. And Section 5 concludes the chapter.

2. Method description

2.1 General framework

Suppose that for i ¼ 1, 2,⋯, n, yi is an observed response, each associated with
an m dimensional fixed covariates xi ¼ xi1,⋯, ximð Þ. In the context of regression
analysis, the interest mainly focuses on exploring the pattern of the influence of xi

on yi and predicting the mean of a future response y in terms of a new x. This is

usually achieved by formulating xi, yi
� �

as  yijxi

� �

¼ m xið Þ for some mean function
m �ð Þ. In the parametric fitting framework, the function m xð Þ is assumed to be
related to x via linking function as the form of

m xð Þ ¼ h xTβ
� �

(1)

which induces the so-called generalized linear model [20] for xi, yi
� �

, where β is
the regression coefficients used to quantify the uncertainty about m, and h �ð Þ is the
known linking function used to link the mean and the predictors.

More often, the single relationship such as Eq. (1) may not be sufficient when
the patterns among the subjects take on the heterogeneity such as clustering. The
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heterogeneous data occur when the observations are generated from the different
populations of which the number of populations and the membership of each
observation to the population are unknown. The main objective is to separate data
into different clusters to detect the possible similarity within clusters or the dis-
crepancy between clusters. This is generally accomplished by defining a cluster’s

membership/configuration function K : x1, y1
� �

,⋯, xn, yn
� �� �

↦ 1,⋯,Kf g such

that Ki ¼ K xi, yi
� �� �

¼ k if xi, yi
� �

belongs to the cluster k, where K is assumed to be

less than n. The discrepancy between any two clusters is characterized by the
cluster-specific parameters such as intercepters, regression coefficients, and/or dis-
perse parameters.

The model-based clustering assumes that given the clusters membership Ki,

xi, yi
� �

within the cluster k has the following sampling density

yijKi ¼ k,xi

� �

�
ind:

f k yijx
T
i βk, τk

� �

(2)

while Ki is specified by

 Ki ¼ kð Þ ¼ πk (3)

where f k, maybe independent of k, is the probability density function, βk and τk
are the cluster-specific regression coefficients and the disperse parameters, respec-
tively, and πk is the mixing proportion identifying the proportion of the component

k over the entire population. It is assumed that πk ≥0 and
PK

k¼1πk ¼ 1:0.
Two important issues arise when formulating data clustering problem as Eqs. (2)

and (3). One is related to the number of clusters, and the other is pertained to the
determination of configurations. Within the Bayesian framework, several methods
have been proposed for the first issue. One can, for example, follow [21] and treat K
to be random and assign a prior to it. The reversible jump MCMC method
(RJMCMC, [21, 22]) can be implemented to conduct the joint analysis of K with
other random quantities. Another method is along the lines with the hypothesis test
procedure and routinely to estimate K via model comparison/selection procedure.
This perhaps is the most popular choice in the model-based clustering context, in
which various measures such as the Akaike information criterion (AIC) [23], the
corrected AIC (AICc) [24, 25], the Bayesian information criterion (BIC) [26], the
integrated completed likelihood (ICL) [27], and Bayes factor (BF, [28, 29]) can be
adopted to select a suitable model. It is worth pointing out that the deviance
information criterion (DIC) [30] may not be appropriate for the mixture model
comparison. The well-known software WinBUGS® [31] for Bayesian analysis does
not provide DIC results for mixture analysis. In addition, many authors suggested
modeling heterogeneous data into the mixture of Dirichlet process (MDP, [32, 33]).
However, as discussed in Ishwaran and James [34], DP fitting often overestimates
the number of clusters and readily leads to model over fitting.

For the second issue, the complexity of problem depends on the methods adopted
in the analysis. In the frequency framework, for example, the configuration of obser-

vation i is often achieved by maximizing  Ki ¼ kjY, π̂ , Ξ̂
� �

over k ¼ 1,⋯,K, where

π̂ and Ξ̂ are the maximum likelihood estimates (MLE) obtained via, e.g., the
expectation-maximization algorithm (EM, [35]). In the next section, we will present
a Bayesian procedure for determiningK. Compared with the frequency approach, the
nice feature of the Bayesian approach is its flexibility to utilize prior information for
achieving better results. Also, the sampling-based Bayesian methods depend less on
the asymptotic theory and hence have the potential to produce reliable results even
with small sample size.
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Let Y be the set of all observed responses and X be the set of fixed covariates;
Write Ξ as the collection of βk and τk. Integrating over Ki produces a K-component
mixture model for yi, which is given by

p yijπ,Ξ,xi

� �

¼
X

K

k¼1

πk f k yijx
T
i βk, τk

� �

: (4)

The log-likelihood of the observed data conditional on K is given by

L π,Ξ jY,Xð Þ ¼
X

n

k¼1

log
X

K

k¼1

πk f k yijx
T
i βk, τk

� �

 !

: (5)

As an illustration, Figure 1 presents a three-component normal linear mixture
regression model with one covariate. It can be seen clearly that the density function
illustrates strong heterogeneity. The regression line is obviously different from
those of components, which indicates that single model is unappreciate in fitting
such data. In what follows, we suppress X for notational simplicity.

2.2 Bayesian model-based clustering via MCMC

Bayesian analysis for analyzing Eqs. (2) and (3) especially K requires the speci-
fication of a prior distribution p π,Ξð Þ for the parameters of the mixture model. By
model convention, it is naturally to assume that π and Ξ are independent, and the
components among Ξ are also independent. In particular,

βk �
iid:

Nm β0,Σ0ð Þ, τ�1
k �

iid:
W ρ0,R0ð Þ (6)

in whichW ρ0,R
�1
0

� �

is the Wishart distribution with the degrees of freedom ρ0
and the scale matrixR0, and reduces to the scaled Chi-square distribution when τk is a
univariate; β0, Σ0, ρ0 and R0 are the hyper-parameters, which are treated to fixed and
known. In the real applications, if no extra information can be available, the values of
these hyper-parameters are often taken to ensure βk and τk to be dispersed enough.
For example, one can set Σ0 ¼ λ0I with large λ0 (Throughout, we use I to signify an
identify matrix). In this case, the values of β0 are not really important and can be set
to any values, e.g., zeros. Note that for the mixture models, Diebolt and Robert [36]

Figure 1.
Plot of the three-component normal mixture model 0:3N �4� 2x, 1ð Þ þ 0:5N 0:5þ 0:5x, 1ð Þ þ
0:2N 4:5þ 3x, 1ð Þ. Left panel: Plot of the density functions of the mixture as well as their three weighted
components ; right panel: plots of regression lines. Mixture model: solid line “�” component one: dotted lines “⋯”

component two: dashed lines “��” and component three: dotted-dashed lines “��”
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(see also, for example, [37]) showed that using fully non-informative prior distribu-
tions may lead to improper posterior distributions and hence is strictly prohibitive.

We assign a symmetric Dirichlet distribution to π as follows

π ∣α � DK α,⋯, αð Þ (7)

in which α >0ð Þ is the hyper-parameter, which is treated to fixed and unknown.
In the applications, we can take sensitive analysis by setting smaller and larger
values for α. See section 4 for more details.

Let K ¼ K1,⋯,Knf g be the collection of all configurations. A Bayesian proce-
dure for model-based clustering mainly focuses on exploring the behavior of the
posterior of K given data, which is given by

p KjYð Þ∝ p YjKð Þp Kð Þ (8)

where p YjKð Þ is the marginal distribution of p Y, π,Ξ jKð Þ with π and Ξ being
integrated out. Generally, no closed form can be available for this target
distribution. Markov Chain Monte Carlo [38, 39] sampling method can be used to
conduct posterior analysis. In particular, one can follow the routine in Tanner and
Wong [40] and treat the latent quantities π,K, Ξf g as the missing data and
augment them with the observed data. Posterior analysis is carried out based on the
joint distribution p π,K,Ξ jYð Þ. In this case, block Gibbs sampler [41, 42] can be
implemented to draw observations from such target distribution. The Gibbs
sampler is iteratively implemented by drawing: (i) Ξ from p Ξ jπ,K,Yð Þ; (ii) π from
p π jK,Ξ,Yð Þ and K from p Kj π,Ξ,Yð Þ till convergence. The convergence can be
monitored by the “estimated potential scale reduction” (EPSR) values [43] or by
plotting the traces of estimates against iterations under different starting values.
Note that except for (i), all full conditionals involved in the Gibbs sampler are
standard. However, drawing Ξ in (i) depends on the specific form of the density
function f k and sometimes requires implementing Metropolis-Hastings algorithm
(MH, [44, 45]) or rejection sampling [46].

2.3 Label switching

Formulating the model-based clustering problem into mixture model Eq. (2)
faces the model identification. A statistical model is said to be identified if the
observed likelihood is uniquely determined by unknown parameters. A less identi-
fied model may be problematic and will distort the estimates of unknown parame-
ters. It is easily showed that the observed likelihood of data is only determined up to
the permutation of the component labels. As a matter of fact, suppose that there are

the pair π 1ð Þ, Ξ
1ð Þ

� �

and π 2ð Þ, Ξ
2ð Þ

� �

such that

p yjπ 1ð Þ, Ξ
1ð Þ

� �

¼ p yjπ 2ð Þ,Ξ 2ð Þ
� �

(9)

then there exists a permutation ν : 1, 2,⋯,Kf g↦ 1, 2,⋯,Kf g such that π
1ð Þ
k ¼

π
2ð Þ
ν kð Þ, β

1ð Þ
k ¼ β

2ð Þ
ν kð Þ and τ

1ð Þ
k ¼ τ

2ð Þ
ν kð Þ. In this setting, we can not distinguish K and ν ∘K in

terms of data (“ ∘ ” denotes the operator of function composition). With this in
mind, any exchangeable priors on π and Ξ like Eqs. (6) and (7) produces symmetric
and multi-modal posterior distributions with up to K! copies of each “genuine”
mode, which induces the so-called label switching problem on Bayesian estimate.
Traditional approaches to eliminating such exchangeability is to impose
identifiability constraints on the parameter space. However, as pointed out by
Frühwirth-Schnatter [18], an unappropriate identifiability constraint may not be
able to eliminate label switching. Many efforts have been devoted to coping with
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this issue, see Chapter 11 in Lee [47] for a review. Among them, the relabeling
algorithm [48] is more appealing due to its simplicity and flexibility. The relabeling
sampling procedure takes a decision-theoretical approach and requires specifying
an appropriate loss function to measure the loss in terms of the classification
probability. The model identification problem is addressed via postprocessing the
MCMC output to minimize the posterior expected loss. Specifically, let θ be the
collection of Ξ and π, and write Q ¼ qik θð Þ

�

as the matrix of allocation probabilities

of order n� K with qik θð Þ ¼  Ki ¼ kjY, θð Þ. In the context of clustering, the loss
function can be defined on the cluster label K as follows

L0 K; θð Þ ¼ �
X

n

i¼1

log qiKi
θð Þ: (10)

Given that θ 1ð Þ,⋯, θ Mð Þ are the sampled parameters and let ν1,⋯, νM be the
permutation applied to them. The relabeling algorithm proceeds by selecting initial
values for the νms, which are generally taken to be the identity permutations, then
iterating the following steps until a fixed point is reached.

a. Choose K̂ to minimize
PM

m¼1L0 K, νm θ mð Þ
� ��

;

b. For m ¼ 1, 2,⋯,M, choose νm to minimize L0 K̂, vm θ mð Þ
� ��

.

2.4 Posterior inference

Once the label switching is taken care of, the MCMC samples can be used to
draw posterior inference. For example, the joint Bayesian estimate of θ can be
obtained easily via the corresponding sample means of the generated observations
via ergodic average as follows:

β̂k ¼ M�1
X

M

m¼1

β
mð Þ
k , τ̂k ¼ M�1

X

M

m¼1

τ
mð Þ
k , and π̂k ¼ M�1

X

M

m¼1

π
mð Þ
k (11)

The consistent estimates of the covariance matrix of estimates can be obtained
via sample covariance matrix.

Given the observations K mð Þ
: m ¼ 1, 2,⋯,M

� �

drawn from the posterior
p KjYð Þ via MCMC sampling, serval methods can be available for arriving at a point
estimate of the clustering using draws from the posterior clustering distribution.
The simplest method, known as the maximum a posteriori (MAP) clustering, is to
select the observed clustering that maximizes the density of the posterior clustering
distribution, i.e.,

K̂ : K̂i ¼ argmaxk¼1,⋯,K Ki ¼ kjYð Þ (12)

in which  Ki ¼ kjYð Þ can be approximated by

 Ki ¼ kjYð Þ≈M�1
X

M

m¼1

I K
mð Þ
i ¼ k

n o

: (13)

A more appreciate alternative to MAP is based on the pairwise probability
matrix, an n� n association matrix δ Kð Þ with the i, jð Þth element formed by the
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indicator of whether the subject i is clustered with subject j. Element-wise averaging
of these association matrices yields the pairwise probability matrix of clustering,
denoted ψ̂. Medvedovic and Sivaganesan [49] and Medvedovic et al. [50] suggested a
clustering estimate of K by using the pairwise probability matrix ψ̂ as a distance
matrix in hierarchical/agglomerative clustering. However, as augured by Dahl [51],
such routine seems counterintuitive to apply an ad hoc clustering method on top of a
model which itself produces clusterings. In the context of Dirichlet process mixture-
based clustering, Dahl [51] proposed a least-squares model-based clustering method
by using draws from a posterior clustering distribution. Specifically, the least-squares
clustering KLS is the observed clustering KLS, which minimizes the sum of squared
deviations of its association matrix Kð Þ from the pairwise probability matrix:

K̂LS ¼ argmin
K∈ K 1ð Þ,⋯,K mð Þf g

X

n

i¼1

X

n

j¼1

δ i, jð Þ Kð Þ � ψ̂ i, jð Þð Þ2: (14)

Dahl [51] showed that the least-squares clustering has the advantage over those
in Medvedovic and Sivaganesan [49] since it utilizes the information from all the
clusterings and is intuitively appealing for the “average” clustering instead of
forming a clustering via an external, ad hoc clustering algorithm.

3. Assessing heterogeneity of two-part model

In this section, we first proposed a two-part regression model for the fractional
data especially for the U shaped fractional data and then extend the method
discussed above to the current situation to address the possible heterogeneity of the
population underlying data.

3.1 Two-part model for U shaped fractional data

Suppose that for subject/individual i ¼ 1,⋯, nð Þ, yi is an univariate fractional
response taking values in 0, 1½ �; xi is an m� 1 fixed covariate vector denoting
various explanatory factors under consideration. Usually, yi suffers from excess
zeros and ones on the boundaries, and the whole data set takes on the U shape. In
modeling such data, we introduce a three-category indicator variable di and a
continuous intensity variable zi such that

di ¼

1 if yi ¼ 0

2 if yi ¼ 1

3 if 0< yi < 1

8

>

<

>

:

and zi ¼
h yi
� �

if 0< yi < 1

irrelevant if yi ¼ 0, 1

(

(15)

where h �ð Þ is any monotone increasing function such that zi ∈ �∞,þ∞ð Þ. That is,
we break the data set into three parts: two parts corresponding to zeros and ones
respectively and one part corresponding to the continuous values between 0 and 1.
We formulate a two-part model for yi by first specifying a baseline-category logits
model [52] for di and then a conditional continuous model for zi. The baseline-
category logits model is assumed that conditional upon xi, dis are independent
satisfying the following logits models simultaneously: for j ¼ 1, 2,

log
 di ¼ jjxið Þ

 di ¼ 3jxið Þ
¼ xT

i α j (16)
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where α j is anm� 1 regression coefficients vector. We use category di ¼ 3 as the
reference for the ease of parameters interpretation. For example, the magnitude of
α jℓ in α j indicates that the increase of one unit in xiℓ will increase eα jℓ times chance
of di ¼ j over that of di ¼ 3.

The conditional continuous model for zi is given by

p zijdi ¼ 3,xið Þ ¼ pz zijx
T
i γ, τ

� �

(17)

or equivalently

p yij0< yi < 1,xi

� �

¼ pz h yi
� �

jxT
i γ,ψ

� �

∣ _h yi
� �

∣ (18)

where _h sð Þ ¼ dh=ds, pz uja, τð Þ is the normal density with mean a and variance
τ>0, and γ like that in Eq. (16), is the regression coefficient vector. Although the
identical covariates are taken in Eqs. (16) and (17), this is not necessary in practice.
Each equation can own their covariates. This can be achieved by imposing particu-
lar structure on the regression coefficients. For example, we can exclude xi1 from
Eq. (17) by restricting γ1 in γ to be zero.

It follows from Eqs. (16) and (17) that marginal distribution of yi is given by

p yijxi, β, τ
� �

¼ qi1δ0 þ qi2δ1 þ 1� qi1 � qi2
� �

p yij0< yi < 1, xi, γ, τ
� �

(19)

where qij ¼  di ¼ jjxi, α j

� �

j ¼ 1, 2ð Þ is the response probability specified by

Eq. (16) and β is the regression parameters constituted by α1,α2 and γ.

3.2 Assessing heterogeneity of two-part model

To detect the possible heterogeneity among yi, we extend the model Eq. (18) to
the mixture case by assuming that conditional upon Ki ¼ k, di and zi satisfy
Eqs. (16) and (17) with α j replaced by αjk and γ, τð Þ by γk, τkð Þ respectively. This

indicates that the mixture component f k in Eq. (1) in Section 2 is given by Eq. (19)
with β ¼ βk and τ ¼ τk.

For the Bayesian analysis, the general forms of full conditionals involved in the
model-based clustering have been given in Section 2. We here only focus on the
technical details of the conditional distribution of Ξ in (i) in the Gibbs sampler.

We assume that the prior of τk is the same as that in Eq. (6), while the priors of
βk are taken as p βkð Þ ¼ p αk1ð Þp αk2ð Þp γkð Þ, in which

p αkℓð Þ ¼
D
Nm αℓ0, Σαℓ0ð Þ ℓ ¼ 1, 2ð Þ, p γkð Þ ¼

D
Nm γ0, Σγ0

� �

: (20)

where αℓ0, γ0, Σαℓ0 and Σγ0 are the hyper-parameters treated to be known.
Gibbs sampling Ξ now becomes drawing αk, γk and τk alternatively from the full

conditional distributions p αkjK,Yð Þ, p γkjτk,K,Yð Þ and p τkj γk,K,Yð Þ respectively.
By some algebras, it can be shown that

p αkjK,Yð Þ∝ p αkð Þ
Y

Ki¼k

p dijxi, αkð Þ,

p γkjτk,K,Yð Þ∝ p γkð Þ
Y

Ki¼k

p zijdi ¼ 3,xT
i γk, τk

� �

,

p τkj γk,K,Yð Þ∝ p τkð Þ
Y

Ki¼k

p zijdi ¼ 3,xT
i γk, τk

� �

(21)
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in which the full conditionals of γk and τk are easily obtained and given by

p γkjτk,K,Yð Þ ¼
D
N γ̂k, Σ̂ γk

� �

(22)

p τ�1
k jγk,K,Y

� �

¼
D
Gamma α̂k, β̂k

� �

(23)

in which

Σ̂ γk ¼
X

Ki¼k:di¼2

xix
T
i =τk þ Σ

�1
γ0

 !�1

,

γ̂k ¼ Σ̂k Σ
�1
γ0 γ0 þ

X

Ki¼k, di¼3

xizi=τk

 !

,

α̂k ¼ α0 þ nk=2,

β̂k ¼ β0 þ
X

Ki¼k, di¼3

zi � xT
i γk

� �2
=2

(24)

and nk ¼ # Ki ¼ k, di ¼ 3f g.
However, drawing αkℓ is more tedious since its distribution loses the standard

form. We first note that

p αkℓj αk,�ℓ,K,Yð Þ∝ p αkℓð Þ
Y

n

Ki¼k

exp ~diℓ xT
i αkℓ � Cikℓ

� �

� �

1þ exp xT
i αkℓ � Cikℓ

� � (25)

where ~diℓ ¼ I di ¼ ℓf g and Cikℓ ¼ log 1:0þ exp xT
i αk,�ℓ

� �� �

; αk,�ℓ denotes the
set αk with αkℓ removed. Following the similar routine in Polson, Scott, and Windle
[53], we recast the logistic function Eq. (25) as follows

exp ~diℓ xT
i αkℓ � Cikℓ

� �

� �

1þ exp xT
i αk1 � Cikℓ

� � ¼ 2�1 exp κi1 xT
i αkℓ � Cikℓ

� �� �

�

ð

∞

0
exp �

1

2
ωiℓ xT

i αkℓ � Cikℓ

� �2
� 	

pPG ωiℓð Þdωiℓ

(26)

in which κiℓ ¼ ~diℓ � 1=2 and pPG is the well-known PG 1, 0ð Þ density function
[53]. If one introduces n independent Pólya-Gamma variables ωiℓ into the current
analysis, then,

p ωiℓj αkℓ,αk,�ℓ,K,Yð Þ ¼
D
PG 1, xT

i αkℓ � Cikℓ

� �� �

(27)

p αkℓj αk,�ℓ, Ω,K,Yð Þ ¼
D
N α̂kℓ, Σ̂αkℓ

� �

(28)

where

Σ̂αkℓ ¼
X

Ki¼k

xix
T
i ωiℓ þ Σ

�1
αℓ0

 !�1

, α̂kℓ ¼ Σ̂αkℓ Σ
�1
αℓ0αℓ0 þ

X

Ki¼k

xiηikℓ

 !

(29)

with ηikℓ ¼ κiℓ þ Cikℓωiℓ. Consequently, drawing αkℓ is accomplished by first
drawing ωiℓ from the Pólya gamma distribution and then drawing αkℓ from the
normal distribution. The draw of ωiℓ is a little intractable since its density function
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involves the infinite sum. By taking advantage of series sampling method [54],
Polson et al. [53] devised a rejection algorithm for generating observations from
such type of distribution. Their method can be adapted to draw ωiℓ, see also [55].

4. A real example

In this section, a small portion of cocaine use data is analyzed to illustrate the
practical value of the proposed methodology. The data are obtained from the 322
cocaine use patients who were admitted in 1988–89 to the West Los Angeles Vet-
erans Affairs Medical Center. The original data set is made up of 68 measurements
in which 17 items were assessed at four unequally spanned time points. In this
study, we mainly focus on the measurements 1 year after treatment and ignore the
initial effects at the baseline. The measurements cover the information on the
cocaine use, treatment received, psychological problems, social status, employ-
ments, and so on. Among them, the measurement “cocaine use per month”
(denoted by CC) plays a critical role since it identifies the severity of cocaine use of
patients and therefore is treated as the dependent response. The CC is originally
measured by 0–30 points but suffered from small portion of fractions. We identify
CC/30 as the fraction response in [0,1]. In view of that the missing data are
presented, we delete the subjects with missing values. The total sample size is 228. A
primary analysis shows that CC/30 has excessive zeros and ones. Figure 2 gives the
histograms of CC/30 and their fractional values in (0,1) via logistic transformation.
It can be seen clearly that there is a large number of zeros and unities accumulated
on the boundaries. The proportions of zeros and unities are about 15 and 4%,
respectively. Moreover, panel (b) in Figure 2 indicates that single parametric model
may be unappreciate for fitting the continuous valued variable.

To explore the effects of exogenous factors on the cocaine use, the following
measurements are selected as the explanatory variables: the occupational status of a
patient (x1). This is a binary indicator: 1 for employment and 0 for non-
employment; the level of technical proficiency of patients engaged in work (x2):
scaled on 0–4 points and the patient’s lifestyle (x3) with five-point scale. To unify
the scales, all covariates are standardized. However, a preliminary analysis shows
that there exists strong multiple collinearity among these covariates. The minimum
eigenvalue of sample covariance matrix equals to 0.06284, which approaches zero.
We remove such collinearity by implementing principle component analysis (PCA)

Figure 2.
Plots of CC in cocaine use data: (a) Histograms of CC/30; and (b) histograms of CC/30 on logistic
transformation conditional on CC/30 in (0,1).
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and treat the scores of the first two components (still denoted by x1 and x2) as our
explanatory variables. These two principle components can be interpreted as the
levels related to the patients’ occupation and their live life.

To formulate a two-part model for the observed responses, we identity CCi/30
with di and zi, where di is the three-category indicator indicating the state of cocaine
use after one year treatments: quitting cocaine successfully (state 1), insisting on
cocaine use every day in a month (state 2) and taking the cocaine occasionally (state
3); zi is the intensity variable representing the numer of days of cocaine use in a
month. We assess the effects of exogenous factors x1 and x2 on the cocaine use via
Eqs. (16) and (17), respectively.

We proceed data analysis by first fitting data to the K-component mixture two-
part models with K ¼ 1, 2,⋯, 6. The model fits are assessed via AIC, AICc, and BIC,

which are defined as �2 log p Yj θ̂K
� �

penalized by 2dK, 2n dK þ 1ð Þ= n� dK � 2ð Þ,

and dK log n respectively, where θ̂K is the MLE of θK and dK is the dimension of
unknown parameters under the model K. In view of that the Bayesian estimates and
the ML estimates are close to each other, we replace the ML estimates by their
Bayesian counterparts in evaluating AIC, AICc, and BIC. For computation, we take
α ¼ n�1, n0, n1, and n2 in Eq. (7), which represents our knowledge about π a prior.
Note that for large value of α, the Dirichlet distribution places most of the mass on its
center and the prior Eq. (7) tends to be informative. However, for small α, the
Dirichlet distribution concentrates the mass on the boundaries of sampling space and
the distribution tends to be degenerated and sparse. As a result, some components in
π reduces to zeros. When α ¼ 1, DK α,⋯, αð Þ becomes an uniform distribution on the
simplex K . For the inputs of the hyper-parameters involved in the priors Eq. (20),
we take α0ℓ ¼ γ0 ¼ 03, Σαℓ0 ¼ Σγ0 ¼ 100I3, αγ0 ¼ 2:0 and βγ0 ¼ 2:0. These values

ensure the priors Eq. (20) to be inflated enough and represent the weak information
on the parameters.

The relabeling MCMC algorithm described in Section 2 is implemented to draw
observations from the posterior. The convergence of algorithm is monitored by
plotting the traces of estimates against iterations under three starting values.
Figure 3 presents the values of EPSR of unknown parameters against the number of

Figure 3.
Plots of values of EPSR of estimates of unknown parameters against the number of iterations under three
different staring values in the cocaine use example: K ¼ 2.
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iterations under three different starting values with K ¼ 2. It shows that the con-
vergence of the proposed algorithm is fast and the values of EPSR are less than 1.2 in
less than 1000 iterations. Hence, 3000 observations, after removing the initial 2000
iterations, are collected for calculating AIC, AICc, and BIC. The resulting summary
is given in Table 1.

Examination of Table 1 shows that all measures favor the model with K ¼ 2.
This indicates that the proposed model with two groups seems to give a better fit to
the data. It also indicates that large α favors the model fit. Furthermore, we calculate
the posterior predictive density estimate of zi under the elected model. Results (not
represented here for saving spaces) show that our method can be successful in
capturing the skewness and modes of data. We also follow [56] to plot the estimated

residuals δ̂i ¼ zi � γ̂xT
i and find that these plots lie within two parallel horizontal

lines that are centered at zero, with nonlinear or quadratic trends detected. This
roughly indicates that the proposed linear model Eq. (18) is adequate.

Table 2 presents the estimates of unknown parameters associated with
corresponding standard deviation (SD) estimates under K ¼ 2. Based on Table 2,
we can find the following facts: (i) for Part one, we observe that except for α̂23, the
Bayesian estimates of unknown parameters within two clusters have the same signs
but their magnitudes are more different. For example, the estimate of α11 within
Cluster one is �1.540 with SD 0.587 while equals to �0.732 with SD 0.481 within
Cluster two. This indicates that the baselines of logits Eq. (16) exist obvious differ-
ence. For α23, the estimates between two clusters have the opposite signs. Recall that
α23 quantifies the magnitude of effects of live life on the probability  di ¼ 2ð Þ over
 di ¼ 3ð Þ on log scale. This shows that increasing the level of live life will lead to an

Model α ¼ 1=n α ¼ n0 α ¼ n α ¼ n2

AIC K ¼ 1 921.3887 – – –

K ¼ 2 923.0580 907.4485 901.9474 901.4380

K ¼ 3 929.0698 926.5423 956.4945 994.5039

K ¼ 4 990.7506 949.5966 1014.5477 1006.4228

K ¼ 5 989.2483 971.4688 1069.1561 1037.5005

K ¼ 6 1097.6853 1007.4899 1091.8049 1086.8491

AICc K ¼ 1 882.4025 – – –

K ¼ 2 885.5434 869.9339 864.4329 863.9234

K ¼ 3 875.9005 873.3730 903.3253 941.3347

K ¼ 4 925.3159 884.1618 949.1130 940.9880

K ¼ 5 915.5836 897.8041 995.4914 963.8357

K ¼ 6 1020.6483 930.4529 1014.7679 1009.8120

BIC K ¼ 1 995.6821 – – –

K ¼ 2 995.0742 979.4647 973.9637 973.4542

K ¼ 3 1038.8088 1036.2814 1066.2335 1104.2429

K ¼ 4 1138.2125 1097.0585 1162.0096 1153.8846

K ¼ 5 1174.4330 1156.6534 1254.3408 1222.6851

K ¼ 6 1320.5928 1230.3973 1314.7124 1309.7565

Table 1.
Summary statistics of AIC, AICcc, and BIC for model selection in cocaine use data analysis.
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opposite effect among two clusters; (ii) for Part two, although all the estimates
within two clusters have the same signs but the levels of effects among them are
obviously different. The estimates of γ1 is �2.779 with SD 0.144 in the cluster one
and attains �0.490 associated with SD 0.215 in the Cluster two. This indicates that
the baseline of cocaine use in Cluster one is 50 times as much as that in Cluster two;
and (iii) investigation of the estimate of τ also indicates that there exists the
different amount of the fluctuation among two clusters.

5. Discussion

This chapter introduces a general Bayesian model-based clustering procedure for
the regression model and proposed a Bayesian method for assessing the heteroge-
neity of fractional data within the mixture of two-part regression model framework.
The heterogeneous fractional data arise mainly from two resources: one is that the
excessive zeros and ones are accumulated upon the boundaries, and the other is that
the underlying population may consist more than one components. For the first
issue, we propose a novel two-part model, in which a three-category multinomial
regression is suggested to model the occurrence probabilities of each part, and a
conditional normal linear regression is used to fit the continuous positive values on
logit scale. Such formulation is more appealing since it can ensure the probabilities
on each part to be consistent and and at the same time maintains the coherent
association across parts. For the second problem, we resort to the finite mixture
model in which the cluster-specific components are specified via two-part model.
MCMC sampling method is adopted to carry out the posterior analysis. The number
of clusters and the configuration of observations are addressed based on the simu-
lated observations from the posterior. We illustrate the proposed methodology in
the analysis of cocaine use data.

When interest is concentrated upon the estimates, model identification is surely
an important issue since it involves whether or not the estimates of component-
specific quantities are meaningful. For a finite mixture model, model identification
mainly stems from the label switching, in which the likelihood and the posterior are

Para. Component I Component II

Est. SD. Est. SD

α11 �1.540 0.587 �0.732 0.481

α12 0.150 0.317 0.604 0.322

α13 0.261 0.703 0.188 0.601

α21 �1.337 0.480 �1.059 0.545

α22 �0.166 0.355 �0.229 0.418

α23 0.232 0.378 �0.184 0.411

γ1 �2.779 0.144 �0.490 0.215

γ2 �0.029 0.080 �0.011 0.154

γ3 0.087 0.144 0.179 0.240

τ 0.674 0.150 0.924 0.234

Table 2.
Summary statistics for the Bayesian estimates of unknown parameters in the cocaine use data.
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invariant under label permutation. Many efforts have devoted to alleviating such
indeterminacy. Among them, parameters’ constraints may be the most popular
choice. However, an unappreciated constraint fails to deal with the label switching.
In this case, one can follow the routine in Frühwirth-Schnatter [18] and implement
random permutation sampling to find the suitable identifiability constraints. The
random permutation sampler is similar to the unconstrained MCMC sampling but
only at each sweep, the labels 1,⋯,Kf g are randomly permutated. The permutation
aims to deliver a sample that explores the whole unconstrained parameter space and
jumps between the various labeling subspaces in a balanced fashion. The output of
such balanced sample can help us to find a suitable identifiability constraint. A more
detailed discussion on model identification in the mixture context can be referred
to, for example, [18, 57]. Instead, we resort to the relabeling algorithm for simplic-
ity. Compared with the random permutation sampling, the relabeling method
requires implementing MCMC samplng only once, thus saving the computation
cost.

The methodology developed in this chapter can be extended to the case where
latent factors are included to identify the unobserved heterogeneity due to some
fixed convariates absent. Another possible extension is to establish a dynamic LVM,
wherein model parameters vary across times. These issues may raise theoretical and
computational challenges and therefore require further investigation.
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