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Chapter

Salt Stress Tolerance in Rice 
and Wheat: Physiological and 
Molecular Mechanism
Mohammad Hasanuzzaman

Abstract

Salinity is a major obstacle to global grain crop production, especially rice 
and wheat. The identification and improvement of salt-tolerant rice and wheat 
depending upon the genetic diversity and salt stress response could be a promis-
ing solution to deal with soil salinity and the increasing food demands. Plant 
responses to salt stress occur at the organismic, cellular, and molecular levels 
and the salt stress tolerance in those crop plant involving (1) regulation of ionic 
homeostasis, (2) maintenance of osmotic potential, (3) ROS scavenging and 
antioxidant enzymes activity, and (4) plant hormonal regulation. In this chap-
ter, we summarize the recent research progress on these four aspects of plant 
morpho-physiological and molecular response, with particular attention to ionic, 
osmolytic, enzymatic, hormonal and gene expression regulation in rice and 
wheat plants. Moreover, epigenetic diversity could emerge as novel of phenotypic 
variations to enhance plant adaptation to an adverse environmental conditions 
and develop stable stress-resilient crops. The information summarized here will 
be useful for accelerating the breeding of salt-tolerant rice. This information may 
help in studies to reveal the mechanism of plant salt tolerance, screen high effi-
ciency and quality salt tolerance in crops.

Keywords: antioxidant enzyme, Na+/K+ ratio, osmolytes, salt Tol gene, salinity,  
rice and wheat

1. Introduction

Salinity is an abiotic stress factor that has severe negative impacts on 
 agricultural crop growth and yield potentiality [1]. The seed germination, traits 
of growth and yield-related components of crop plants such as rice and wheat are 
seriously damaged under salinity conditions [1, 2]. Currently, 230 million hectares 
of world’s areas are used for cultivation in which 20% lands are affected by varying 
degree of salinity and amount of saline affected area is increasing continuously due 
to the effect of sea level rise, coastal subsidence, increased tidal effect and con-
tinuous reduction of river flow, particularly during dry periods [3–6]. Therefore, 
soil salinity is the major obstruction to crop cultivation. When the crop plants 
are exposed to salt-affected soil, the plants primarily develop osmotic stress and 
instantly inhibits the normal plant growth and development [7]. Later, ion toxicity 
is created in crop plants due to excess salinity level and causes imbalance in mineral 
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homeostasis [3]. Osmotic stress and ion toxicity are major salt-induced stresses 
which create secondary oxidative stress in plants and overall growth inhibition. 
Salinity stress also interferes with the photosynthetic process by severely damaging 
photosynthetic pigments [8] and ultimately results in huge loss of crop yield glob-
ally [9]. To feed up the huge global population and ensure the food and nutritional 
security of the rising population, it is urgent to increase the crop production at 
least 70% by 2050 [10].

Rice and wheat are the first two ranked cereal crops that jointly feed approxi-
mately 80% of the world’s population, and are sensitive to salt stress [11, 12]. 
Developments of salt tolerant rice and wheat varieties is a prerequisite for salt stress 
management. To improve rice and wheat production, a thorough understanding of 
physiological response, biochemical activity, metabolism, epigenetic response, and 
gene expression under salt stress conditions is required. In this chapter, we discuss 
the salt-induced oxidative stress, osmotic stress and mineral toxicity to rice and 
wheat plants. Moreover, we systematically summarize the current understanding 
of salt-stress response and morpho-physiological and molecular mechanisms, and 
epigenetic response underlying salt tolerance in rice and wheat. This theoretical 
basis could be further useful for developing salt-tolerant and high yielding rice and 
wheat varieties in future.

2. Salt stress response of rice and wheat plants

Plant showed several morphological and anatomical changes under high 
salinity stress conditions e.g. shorter shoot, root system impairment, total 
biomass reduction, shoot tip rolling, leaf chlorosis, fewer tillers per plant, lower 
grain weight, and fewer spikelets per panicle ultimately leading to decrease 
in harvest index and grain yield [13–16]. Salt stress significantly affects plant 
physiology and biochemical activity at germination, seedling and reproductive 
stages [17–19]. Excess salt causes osmotic stress and ionic toxicity on rice plants 
leading to overall oxidative stress and nutrient depletion [20, 21]. Plants show 
various morpho-physiological or biochemical changes and salt injury symp-
toms and even may die under high salinity stress conditions (Figure 1). Higher 
amounts of sodium ion (Na+) directly cause cellular damage in plants and excess 
Na+ in root areas inhibits K+ uptake because of their antagonistic effect which 
hampered photosynthetic activity [22]. Ionic or mineral stress causes excess 
accumulation of sodium (Na+) and chlorine (Cl−) in plant cells which finally 
results in premature leaf senescence and often plants die by salt antagonistic 
effects [23, 24]. Excess presence of Na+ in plant cells cytoplasm has an extreme 
inhibitory effect on enzyme activities which disrupted many cellular metabo-
lism (e.g. protein synthesis), bio-molecular function, and photosynthesis 
[25–29]. Furthermore, abundance of Na+ in the cytoplasm hampers the normal 
uptake and transport of potassium (K+) and other macro- and micronutrients, 
for example nitrogen (N), phosphorus (P), calcium (Ca2+), magnesium (mg2+), 
zinc (Zn2+), and iron (Fe2+) [25, 30–32].

Salinity-induced continuous stress diminish the plant cell turgor pressure, 
which in turn decreases normal cell growth, and plants must enhance enzymatic 
activity to adjust osmotic potential and maintain cell expansion and growth  
[17, 25, 32–34]. Many investigations reported that Na+ accumulation in plant shoots 
is directly correlated with the rice and wheat plants’ survivability under saline 
condition [25, 26]. Therefore, lowering the cytosolic Na+ level is playing a vital role 
to enhance salt tolerance mechanisms in rice and wheat [25]. Because of osmotic 
stress in plants, water uptake is obstructed and due to lower water potential 
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physiological drought is created in plants. Osmotic stress also results in interrup-
tion of nutrient uptake and rapid stomatal closure, which decline the CO2 assimila-
tion capability of plants and highly inhibits photosynthesis [35]. Oxidative stress 
due to osmotic and ionic imbalance, causes higher accumulation of reactive oxygen 
species (ROS), which may severely damage the cellular macromolecules (e.g. DNA, 
lipids and enzymes) and structural components [36, 37]. Under salinity condi-
tions, rice and wheat plants must amplify their physio-biochemical and enzymatic 
activity involved in the regulation of ion and osmotic homeostasis, oxidative stress, 
and nutritional balance [1, 23, 38, 39].

3. Salinity tolerance mechanism in rice and wheat

3.1 Maintenance of ionic homeostasis

Soil salinity induced stress in crop plants is commonly caused by high concentra-
tions of Na+ and Cl− [38, 39]. The ionic homeostasis must be regulated and re-estab-
lished in saline stressed conditions [40]. The final determinants of salt tolerance 
mechanisms are different ion transporters that transport toxic ions at plant organ 
and cell levels [41]. Therefore, the most important fact of salinity tolerance studies 
is to find which transporters interfere with the entry of Na+ into the cell [42]. Na+ 
and K+ are normally transported into the plant cell by the same transporters, where 
these two cations compete for space [43]. Excess Na+ competes with K+ for absorp-
tion across the plasma membranes of plant cells, and K+ is required for the activities 
of several important catalytic enzymes [44].

Figure 1. 
Schematic diagram represents the morphological, physiological, biochemical and yield associated response 
of rice and wheat plants under salt stress conditions. High salinity stress severely damage the plants mineral 
homeostasis and osmotic maintenance, thereby retarded the plant growth and developments and finally reduce 
crop yield.
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Moreover, K+ is essential for the preservation of cell turgor, protein synthesis, 
osmoregulation, normal photosynthesis [45, 46]. Therefore, the regulation and 
adaptation of cellular Na+/K+ ratio is a crucial indicator that discerns the plant’s 
capability to survive in salinity stress conditions. Moreover, mechanisms to reduc-
tion in cytoplasmic Na+ uptake, compartmentalization of Na + in the vacuole and 
increase of Na+ efflux [1, 47]. It was reported that the removal of cytoplasms Na+ 
into the apoplast is due to the salt-inducible enzyme Na+/H+ antiporter of cell 
plasma membrane [3].

In the rice plants, the plasma membrane Na+/H+ antiporter (OsSOS1) excludes 
Na+ from the shoot and roots, adjusting the lower Na+/K+ ratio at cellular level and 
developing salt tolerance in rice [48, 49]. The vacuolar Na+/H+ antiporters (for 
instance OsNHX1, OsNHX2, OsNHX3, OsNHX4, OsNHX5 and OsARP/OsCTP) 
contribute a necessary roles in the vacuolar compartmentalization of Na+ and K+ 
which is accumulated by cells cytoplasm and so determine salt tolerance in rice 
[50–52]. In wheat, the accumulation of Na+ is controlled by the genes Nax1 and 
Nax2, located at 2A and 5A chromosomes position, respectively [53, 54]. These 
are also used as molecular markers in a wheat breeding program for salt tolerance. 
Under salt stress, vascular Na+/H+ antiporter (TNHX1, TNHX2, and TVP1) are 
responsible for wheat seedling growth and development by generating the pH 
gradient and facilitating sodium sequestration into [31].

3.2 Adjustment of osmotic potential

Osmotic adjustment is critical for regulating cell turgor for the maintenance 
of plant metabolic activity, growth, and finally productivity [55]. Crop plants 
synthesize compatible osmolytes for example proline, polyamines, soluble sugars 
and proteins, betaine, glycine to provide osmotic balance at the cellular level 
[56–58]. Under salinity stress, those important osmolytes provide the plants 
osmotic adjustment under as they reduce osmotic potential, stabilizing proteins 
and finally maintain cellular structures [2, 59]. Proline, a dominant substance 
for osmotic adjustment, possesses high water solubility, low molecular weight 
and in a free state, thereby no net charge in the physiological pH range in crop 
plants. The plant cells tend to uptake soluble osmotic adjustment substances to 
mitigate salt-mediated osmotic stress caused, importantly the biosynthesis of 
proline is clearly activated [60]. Therefore, proline level may be used as a physi-
ological indicator of plant stress tolerance, especially salinity [61]. Wheat Ta-UnP, 
can significantly enhance the salt tolerance of transgenic Arabidopsis and rice. 
Liang et al. [2] described that proline content in transgenic Arabidopsis thaliana 
was significantly increased for maintaining the osmotic potential and protecting 
plant cells from salinity stress. The proline synthesis genes OsP5CS1 and OsP5CR 
enhances the proline production to improve the rice salinity stress tolerance [62]. 
A monosaccharide transporter, encoded by OsGMST1 increases monosaccharide 
accumulation and develops the salt tolerance in crop plants [63]. Glycine and 
betaine in rice, which is synthesized by the choline monooxygenase OsCMO and 
the betaine aldehyde dehydrogenase OsBADH1, enhance salt tolerance by pro-
moting glycine betaine accumulation [64, 65]. In wheat plants, some investigation 
proved that betaine can inhibit the transport speed and quantity of Naþ and 
Cl− from roots to the aerial parts and promote Kþ transport to enhance tolerance 
capability against salinity stress [33]. The salt-regulated gene OsSALP1 encodes 
a small plant-specific membrane protein that develops salinity tolerance mecha-
nism by enhancing the expression of OsP5CS and free proline content under salt 
stress [66].
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3.3 ROS scavenging and antioxidant enzymes

Oxygen is one of the essential biomolecules which involves in cellular metabo-
lism, mitochondrial respiration, and oxidative phosphorylation for energy 
production in plants. However, oxygen is converted into reactive oxygen species 
(ROS) during plants metabolic process. Plants under salt stress conditions can 
up-regulate the excess production of ROS e.g. O2− (superoxide radical), H2O2 
(hydrogen peroxide), and OH− (hydroxyl radical) [67, 68]. Although lower pres-
ence of ROS can act as a signal to salt stress responses, excess uptake of ROS causes 
cytoplasmic membrane damage, DNA mutation, peroxidation of carbohydrates, 
lipids and protein degradation, irreversible metabolic dysfunction, and finally cell 
death [68, 69]. In other crop plants, several important antioxidant enzymes and 
non-enzymes are activated during salinity stress to alleviate ROS stress in rice and 
wheat [69–71]. Various Enzymatic scavengers includes catalase (CAT), ascorbate 
peroxidase (APX), superoxide dismutase (SOD), glutaredoxin (GRX), glutathione 
peroxidase (GR), glutathione S-transferase (GST), and glutathione peroxidases 
(GPXs) [1, 72–78]. Nonenzymatic scavengers include ascorbic acid (ASH), 
alkaloids, carotenoids, flavonoids, glutathione (GSH), phenolic compounds, and 
tocopherol [45, 70, 79].

Catalase (CAT) and glyoxylic acid-circulating is found in plant peroxisomes 
and bodies, respectively, which is one of the main enzymes that remove H2O2 
and APX. Studies revealed that CAT is a main enzyme for scavenging H2O2 and is 
essential for H2O2 tolerance of crop plants [45]. The increment of ROS in the crop 
plant leads to lipid peroxidation in the cell membrane during higher and continu-
ous salinity stress. Superoxide dismutase (SOD), the first line of defense of the 
plant antioxidant enzyme system, can eliminate the excess superoxide anions in 
the cells. SOD can disproportionate O2 to form H2O2 and diminish the toxicity of 
the superoxide anion. Ascorbate peroxidase (APX) is one of the main enzymes 
that remove excess H2O2 in cells Chloroplast APX mainly removes the H2O2 
produced by the Miller reaction. Malondialdehyde (MDA) is the key product of 
membrane lipid peroxidation when plants are under salt stress, and its content 
represents the degree of cell membrane damage [80] Therefore, MDA content 
can indicate plant salt stress and salt tolerance. OsAPX2, OsAPX7, OsAPx8, 
OsAPXa, and OsAPXb increase APX activity, lower H2O2 and malondialdehyde 
(MDA) levels, decrease oxidative stress damage, and enhance rice tolerance to 
salt stress [81–84]. Glutathione responsive rice glyoxalase II (OsGLYII-2) func-
tions in salinity adaptation by maintaining better photosynthetic efficiency 
and increasing the antioxidant pool [85]. All these studies suggest that enhanc-
ing ROS-scavenging ability can efficiently increase the salt tolerance of rice 
and wheat.

3.4 Regulation of RGRs under salinity stress

Phytohormone levels fluctuate downstream of the early salt signaling phase, 
and the salt-induced signaling cascade eventually leads to adaptive responses [14]. 
Phytohormones are important endogenous chemical signals that regulate plant 
growth and development in both ideal and challenging environments [14]. Multiple 
phytohormones must be integrated and coordinated in order to respond and adapt 
to salt stress, such as abscisic acid (ABA), indole acetic acid (IAA), cytokinins (CK), 
ethylene (ETH), jasmonic acid (JA), gibberellic acid (GA), cytokinin (CK), and 
salicylic acid (SA), brassinosteroids (BR), triazoles (TR) which regulate normal 
growth and mediate responses to abiotic stress [14, 38, 86–88].
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4. Salt stress tolerant gene in rice and wheat

Seed germination, seedling growth and development, vegetative and flowering 
stage growth, fruit setting, and root system structural development are all harmed 
by high saline levels. Crop yields will eventually suffer as a result of this phe-
nomenon [89]. Modern agricultural research includes the use of biotechnological 
technologies and genetic engineering to study crop tolerance mechanisms, explore 
tolerant genes, and cultivated varieties of tolerant crops using molecular biology, 
molecular genetics, and other methods. The goal of plant tolerance research is to 
develop tolerant cultivars; nevertheless, the mechanism of plant stress tolerance 
is a difficult problem to solve. We can offer strategies to avoid salt damage and 
increase salt tolerance of plants based on basic research and a full understanding 
of the mechanisms of salt stress and salt tolerance of plants. A number of genes 
involved in salt stress have been investigated in order to better understand the 
salt tolerance process. It is hypothesized that overexpression of a single gene can 
increase transgenic plants’ salt tolerance. A. thaliana plasma membrane Naþ/
Hþ antiporter gene SOS1 and vacuolar Naþ/Hþ antiporter gene AtNHX1 can 
considerably improve the salt tolerance capacity of the transgenic plants [90]. 
Researchers found that AtSAT32 transgenic plants have higher salt tolerance and 
activity of vacuolar H transport pyrophosphatase in high salt environments after 
overexpressing AtSAT32 in A. thaliana. The AtSAT32 mutant, on the other hand, is 
extremely sensitive to salt [91]. Furthermore, through rice ABA-dependent regula-
tory mechanisms, the rice OsbZIP71 gene can considerably improve transgenic 
plant tolerance to high salt and drought [92]. Plant tolerance can also be improved 
by increasing the activity of antioxidant enzymes and increasing the degree of 
antioxidant metabolism in plants. The use of genetic engineering to create highly 
effective transgenic plants makes it possible to investigate the role of antioxidant 
enzymes in the scavenging of active oxygen. In numerous transgenic plants, the 
necessity of scavenging active oxygen has been demonstrated, and overexpression 
of SOD, APX, GR, and GAT improves plant tolerance to oxidative stress. The SOD 
isoenzyme has been the subject of the most extensive investigation among the 
numerous antioxidant enzymes [93]. Wheat salt tolerance gene research could lead 
to the utilization of saline soil and the expansion of wheat planting areas, resulting 
in higher wheat yields. Wheat salt tolerance genes have been studied extensively by 
researchers, with some successes. Wheat genes Ta-UnP, TaZNF, TaSST, TaDUF1, 
and TaSP have been shown in lab research to improve the salt tolerance of trans-
genic plants [1, 94–97]. Furthermore, ectopic expression of the wheat TaCIPK14 
gene increases transgenic tobacco’s salt tolerance [98]. Bread wheat with TaHKT1; 
5-D has a high salt tolerance [99]. The ability to tolerate salt is a multi-gene trait. 
Hundreds of thousands of genes and dozens of physiological systems are usually 
involved in its regulation. -As a result, research into the huge number of salt-toler-
ant genes is required. The study of salt-related gene function provides a theoretical 
foundation for increasing the stress signal network and improving rice and wheat 
plant tolerance to stress.

4.1 Epigenetic response to abiotic stress in rice and wheat

Histone post-transcriptional modifications, histone variations, DNA methyla-
tion, and non-coding RNAs are examples of chromatin state modification which 
can arrange diverse chromatin states that epigenetically define specific transcrip-
tional outputs. The identification of epigenetic markers and their effect on plant 
response to abiotic stressors has been made easier because to recent advances in the 
field of -omics of important crops.
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Recent research using –omics technologies have found a link between changed 
DNA methylation patterns and varied gene expression across the genome in 
three rice cultivars with variable susceptibilities to increasing salt and drought 
stress [100]. DNA methylation alterations were seen in both salt-tolerant and 
salt-susceptible rice varieties upon exposure into high salinity [101]. DNA immuno-
precipitation with the 5-methylcytosine antibody and high throughput sequencing 
(MeDIP-seq) were used to determine the genome-wide methylation status of a salt 
resistant rice variety under increased salinity in a recent study [102]. These research 
identified new epigenetic variables and target genes linked to rice’s response to 
salt stress, which could be used to improve resistance under salt stress conditions. 
The role of miRNAs in rice response to abiotic stress has been the subject of a 
lot of research over the last few years [103–106]. Rice tolerance to salt stress was 
boosted by overexpression of a miR156, while the expression of transcription factor 
target genes like SQUAMOSA PROMOTER BINDING ROTEIN LIKE-9 (SPL9) 
and DIHYDROFLAVONOL-4-REDUCTASE (DFR) which mostly associated with 
developmental processes was reduced [107].

Based on 850 RNA-seq data collected from 32 tissues sampled at differ-
ent growth stages and/or under different stress treatments, an analysis of the 
wheat whole genome expression pattern (e.g. “expression atlas”) found higher 
average methylation status in low expressed genes [108]. Gardiner et al. [109] 
discovered that methylation patterns in wheat are not evenly distributed across 
the A, B, and D subgenomes, indicating that methylation patterns in progenitor 
species are different. In recent years, several research on epigenetic modifica-
tions in wheat in response to abiotic stress have been published. Wheat drought 
stress response has been linked to heterochromatic small interfering RNA 
(hc-siRNA) and micro RNAs (miRNA), both tiny regulatory RNAs [110]. For 
example, 2055 putative sites for 113 conserved durum miRNAs and 131 targets 
for four novel durum miRNAs that may contribute to genotypic stress tolerance 
have been found [111]. Differential epigenetic modifications in certain genes 
such as HKTs (high-affinity potassium transporters) were discovered in the 
shoots and roots of wheat genotypes with variable levels of susceptibility to salt 
stress [112].

5. Conclusion

Salinity stress is the one of the main abiotic factors that limits crop growth, 
development and yield. In this chapter, we briefly summarize how crop plants, 
especially rice and wheat respond to salinity induced osmotic, ion, and oxidative 
stresses and collect a significant number of studies and progress on the effects of 
salt stress on plants. Much research was undertaken to clarify physiological and 
biochemical and molecular mechanisms of plants salt tolerance applying molecular 
biology and biotechnological approach which will further explain the plant salt-
tolerance mechanism and provide sufficient theoretical guidance for the future 
cultivation of salt stress tolerance rice and wheat. Moreover, by understanding the 
role of epigenetics in gene expression under abiotic stress could provide guidance in 
the development of climate-smart crops. Further enhancing plant salt tolerance and 
rich salt tolerant crop plants still need further study.
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