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Chapter

Waveguide Port Approach in EM
Simulation of Microwave Antennas
Faik Bogdanov, Irina Chochia, Lily Svanidze and Roman Jobava

Abstract

This chapter generalizes a recently proposed MoM-based approach to waveguide
port excitation (WPE) problems on arbitrary conducting and composite geometries.
This approach combines the canonical aperture coupling approach with the EFIE-
PMCHWT formulation for composite structures. Each WPE problem in this approach
is divided into equivalent sub-problems for internal and external regions, which are
solved using the MoM. Internal WPE problems are solved using waveguide modal
expansion in the port plane, while external problems are solved using the equivalence
principle to reduce these problems to the systems of algebraic equations for unknown
electric and magnetic currents. The developed approach is validated on radiation and
coupling problems for coaxial ports by comparing simulated results with those
obtained by other approaches and measurements. An excellent agreement between
the simulated and measured results is demonstrated. Finally, this approach is applied
to practical EMC problems for microwave antennas fed by coaxial ports.

Keywords: coupling problem, coaxial port, equivalence principle, method of
moments (MoM), waveguide modal expansion, waveguide port

1. Introduction

The excitation problem is of increasing importance at microwave frequencies [1].
Microwave antennas and other microwave devices are often fed by waveguides (rect-
angular, circular, and coaxial) or transmission lines (such as microstrips). In general,
these devices are composite structures consisting of both conductive and dielectric
elements. Therefore, the appropriate modeling of the waveguide excitation of such
structures is of great interest. Such modeling in numerical methods is usually done by
truncating the feed waveguide to create a waveguide port and formulate suitable
boundary conditions (BC) imposed on the port. Such BCs should be able to launch an
incident wave into the waveguide and absorb the reflected (in active mode) or
received (in passive mode) wave without spurious reflections [2].

To date, most approaches to solving the waveguide port excitation (WPE) problem
are based on volume discretization methods, such as the finite-element method
(FEM) [1, 2], finite difference time domain (FDTD) [3–5], discontinues Galerkin
time-domain (DGTD) [6], contour integral method (CIM) [7], etc. Most of these
works use various modal absorbing boundary conditions (MABC) [4, 5], developed
for time-domain methods as termination conditions imposed on the port.
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At present, many electromagnetic (EM) problems are solved using surface integral
equations (SIE) together with the method of moments (MoM) [8]. Within the frame-
work of SIE, the WPE problem was first formulated as an aperture coupling problem
for a conducting geometry, and the MoM solution for magnetic currents was obtained
in the presence of a short-circuited conductive sheet [9]. This approach was then
modified using the pseudo-image method for magnetic currents in addition to electric
currents [10]. Further, MoM was applied to the waveguide port problems [11] and
antenna radiation problems with aperture port excitation [12]. However, until
recently, a MoM-based solution to theWPE problem for arbitrary geometries has been
poorly represented in the literature. In our recent works [13–15], such a solution was
obtained for radiation and coupling problems for various types of geometries.

This chapter generalizes the recently proposed MoM-based approach to WPE prob-
lems [13–15] on arbitrary conducting and composite geometries. The obtained approach
combines the canonical aperture coupling approach with the EFIE-PMCHWT formula-
tion for composite structures [16–22]. Each WPE problem in this approach is divided
into equivalent sub-problems for internal and external regions, which are solved using
the MoM. The internal WPE problems are solved using waveguide modal expansion in
the port plane, while the external problems are solved using the equivalence principle to
reduce these problems to the systems of algebraic equations for unknown electric and
magnetic currents. The obtained solution also considers the problem of material junc-
tions between adjacent surfaces, considered in [19–22].

The developed approach is validated on radiation and coupling problems for coaxial
ports by comparing the simulated results with those from other approaches and mea-
surements. In addition, this approach is applied to practical EMC problems for micro-
wave antennas fed by coaxial ports. The MoM calculations were performed using the
TriD numerical code incorporated in the EMCoS Studio software package [23].

2. Waveguide port approach for conducting geometry

2.1 Dividing the original problem into equivalent problems

Figure 1a illustrates a canonical waveguide port problem for conducting geometry.
This geometry consists of a semi-infinite waveguide 1 with perfect electric conducting
(PEC) walls and a microwave structure 2, which is yet supposed to be conductive. We
intend to create port P in waveguide 1 to divide the geometry into two regions (A and
B) to truncate the mesh in the region A and impose appropriate termination
conditions in the port plane.

Figure 1.
(a) Waveguide port problem for conducting geometry; (b) Equivalence for the internal region A; (c) Equivalence
for the external region B.
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For this purpose, we follow the classical approach for the aperture problem [9] to
divide the original problem into two equivalent problems, as shown in Figure 1b and
c. We introduce a perfectly conducting surface Sa into the port plane P to separate
regions A and B and consider two equivalent sub-problems: internal (for region A)
and external (for region B). In addition, we introduce equivalent magnetic currents
and M on both sides of Sa to restore the tangential electric fields on the boundary
surface Sa. Let us consider these equivalent problems separately.

2.2 Formulation of the internal equivalent problem

Consider an internal equivalent problem for the region A. The total EM field in the

region A is composed of the incident field Einc,Hinc and the reflected field Eref ,Href

generated by magnetic currents in the presence of a conductor. According to the

equivalence principle [24], these currents are related to the total electric field ESa

A on
the port surface Sa by the relation:

�M ¼ �n� ESa

A ¼ n0 � ESa

A (1)

where n is the internal normal in the region A, and n0 ¼ �n is the propagation
direction of the incident wave.

Equation (1) relates the total electric field at the port surface Sa to magnetic
currents depending on the geometric and material properties of the external region B.
The internal equivalent problem is to find the modal expansion of the total EM field at
the port surface Sa through these currents.

2.3 MoM solution of the internal equivalent problem

The total EM field in the region A on the port surface Sa can be generally written as
the sum of the incident (+) and reflected (�) TEM (if exists), TE, and TM modes
[2, 13]:

ESa

A ¼ aþ0 þ a�0
� �

eTEM0 þ
X

NTE

s¼1

aþs þ a�s
� �

eTEs þ
X

NTM

s¼1

bþs þ b�s
� �

eTMs (2)

HSa

A ¼
1

Z
aþ0 � a�0
� �

n0 � eTEM0

� �

þ
X

NTE

s¼1

1

ZTE
s

aþs � a�s
� �

n0 � eTEs
� �

þ
X

NTM

s¼1

1

ZTM
s

bþs � b�s
� �

n0 � eTMs
� �

(3)

where a�s and b�s are the mode amplitudes, eTEM0 , eTEs and eTMs are the transverse modal

functions of TEM, TE and TM waves with wave impedances Z ¼
ffiffiffiffiffiffiffi

μ=ε
p

, ZTE
s ¼ ωμ=γs

and ZTM
s ¼ γs=ωε, respectively, ε and μ are the permittivity and permeability of the

medium, Γs is the propagation constant, and NTE and NTM are the numbers of
accounted TE and TM modes, respectively.

Next, we use the MoM to relate the mode amplitudes of the reflected fields in (2),
(3) to the magnetic currents M. The port surface Sa is discretized into planar patches,
and the unknown magnetic currents are approximated as
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M ¼
X

Na

n¼1

Mnfn (4)

where fn are linear independent basis functions (BFs),Mn are unknown expansion
current coefficients, and Na is the number of these BFs on the surface Sa. Substituting
now (4) and (2) into (1), multiplying both sides by n0 � eTEM0 , n0 � eTEs0 and n0 � eTMs0 ,
respectively, and integrating over the port surface Sa, we relate the amplitudes of the
reflected waves with those of the incident waves and magnetic current coefficients:

a�s ¼ �aþs �
X

Na

n¼1

MnTns

Rs
, b�s ¼ �bþs �

X

Na

n¼1

MnT
0
ns

R0
s

s ¼ 0, 1, 2, …ð Þ (5)

where

Tn0 ¼

ð

Sa

fn � n0 � eTEM0

� �

dS0, Tns ¼

ð

Sa

fn � n0 � eTEs
� �

dS0, T0
ns ¼

ð

Sa

fn � n0 � eTMs
� �

dS0

(6)

R0 ¼

ð

Sa

n0 � eTEM0

� �

n0 � eTEM0

� �

dS0, Rs ¼

ð

Sa

n0 � eTEs
� �

n0 � eTEs
� �

dS0,

R0
s ¼

ð

Sa

n0 � eTMs
� �

n0 � eTMs
� �

dS0:

(7)

Substitution of (5) into (2), (3) determines the total electric and magnetic fields on
the port surface in region A through the still unknown magnetic currents.

2.4 Formulation of the external equivalent problem for conducting geometry

Consider now an external equivalent problem for conducting geometry. The
scattered EM field in the external region B in Figure 1c of the conducting geometry is
produced by electric currents J flowing over surfaces Sa and Sc and equivalent
magnetic currents M at the surface Sa, which can be written as:

Esc
B J,Mð Þ ¼ LEJJþ LEMM (8)

Hsc
B J,Mð Þ ¼ LHJJþ LHMM (9)

where LEJ, LEM, LHJ and LHM are the linear integro-differential operators of electric
and magnetic fields applied to the electric and magnetic currents, respectively.
Applying the boundary conditions for the tangential electric and magnetic fields on
the surfaces Sa and Sc, we obtain the following system of integral equations for the
unknown electric and magnetic currents J and M

Esc
B J,Mð Þ

�

�

SaþSc

tan
¼ 0 just outside Sa (10)

Hsc
B J,Mð Þ SaþSc

tan ¼ HSa

A

�

�

�

�

tan
just inside Sa (11)

4

Microwave Technologies



2.5 MoM solution of the external equivalent problem for conducting geometry

To obtain the MoM solution to the BC (10) and (11), we consider, along with
Eq. (4), the following expansion for an unknown electric current J:

J ¼
X

NaþNc

n¼1

Infn, (12)

where fn are the BFs taken the same as for the expansion of magnetic currents in (4), In
are the unknown expansion current coefficients on the surfaces Sa and Sc, and Na and
Nc are the numbers of these BFs on these surfaces. Substitution of expansions (4) and
(12) in (8) and (9) gives the following expressions for the EM field in region B:

Esc
B J,Mð Þ ¼

X

NaþNc

n¼1

InL
EJfn þ

X

Na

n¼1

MnL
EMfn, (13)

Hsc
B J,Mð Þ ¼

X

NaþNc

n¼1

InL
HJfn þ

X

Na

n¼1

MnL
HMfn: (14)

Substituting now (3), (5), (13) and (14) into (10) and (11), introducing the bound-

ary operators L̂
JJ
¼ LEJ

�

�

�

SaþSc
, L̂

JM
¼ LEM

�

�

�

outside

SaþSc
, L̂

MJ
¼ LHJ

�

�

�

inside

Sa
and L̂

MM
¼ LHM

�

�

�

Sa
and

testing the resulting equations with appropriate weighting functionsw1 rð Þ, w2 rð Þ,… ,
wm rð Þ leads to the following system of linear algebraic equations

ZJJ
mn

� �

ZJM
mn

� �

ZMJ
mn

� �

ZMM
mn

� �

" #

In½ �

Mn½ �

� 	

¼
0

VW
m

� �

� 	

(15)

with elements defined as:

ZJJ
mn ¼ � wm, L̂

JJ
fn

D E

, ZJM
mn ¼ � wm, ~L

JM
þ

1

2
n�


 �

fn

� 

, (16)

ZMJ
mn ¼ � wm, ~L

MJ
þ

1

2
n�


 �

fn

� 

, ZMM
mn ¼ � wm, L̂

MM
fn

D E

þQW
mn, (17)

QW
mn ¼

T̂m0

W

Tn0

R0
þ
X

NTE

s¼1

T̂ms

WTM
s

Tns

Rs
þ
X

NTM

s¼1

T̂
0

ms

WTM
s

T0
ns

R0
s

, (18)

VW
m ¼ �2

T̂m0

W
aþ0 þ

X

NTE

s¼1

T̂ms

WTM
s

aþs þ
X

NTM

s¼1

T̂
0

ms

WTM
s

bþs

" #

, (19)

where ~L
JM

and ~L
MJ

are the regular parts of the boundary operators L̂
JM

and L̂
MJ
, the

notation w, fh i ¼
Ð

sw � fdS is used for the scalar product, and

T̂m0 ¼

ð

Sa

wm � n0 � eTEM0

� �

dS0, T̂ms ¼

ð

Sa

wm � n0 � eTEs
� �

dS0, ^T0
ms ¼

ð

Sa

wm � n0 � eTMs
� �

dS0

(20)
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In the case of Galerkin’s procedure wm ¼ fm, and coefficients (20) and (6) become
the same. The MoM system (15) determines the solution to the waveguide port
problem in the conducting geometry.

2.6 Validation of the developed approach for conducting geometry

The developed approach has been validated to simulate the scattering characteristics
of a flanged coaxial line as proposed in [25–27]. Such structures are frequently used in
biomedical engineering for non-destructive testing of various materials [25–27].

Whenmodeling a coaxial line, it is convenient to choose the port plane at the output of
the line to provide fast damping of evanescent waves. In this case, it can be assumed

NTE ¼ NTM ¼ 0 in (2) and (3) to take taken into account only fundamental, TEMmode
with the modal function eTEM0 ¼ eρ= ρ � ln D=dð Þ½ �, where ρ is the radial distance, eρ is the
unit radial vector, andD and d are the outer and inner diameters of the coaxial waveguide.

Figure 2 shows a flanged coaxial line consisting of a coaxial waveguide section with
an outer radius D/2 = 4.725 mm, an inner radius of d/2 = 1.4364 mm, and a length L =
10mm, ended with a circular disc with a diameter 2R = 200mm. The bottom plane of the
waveguide is accepted as a waveguide port, and the structure is excited in this port by
TEMmode. To validate the developed approach for conducting geometry, we analyze
the case when both the waveguide and outer space have the same permittivity εr ¼ 2:05.

Figure 3a and b show the magnitude and phase of the reflection coefficient at the
end of the coaxial line used as the reference plane. We compare the simulation results
obtained using the developed approach, the mode-matching technique [25], and the

Figure 2.
Geometry of open-ended coaxial line flanged with a circular disc: D/2 = 4.725 mm, d/2 = 1.4364 mm, L =
10 mm, 2R = 200 mm, εr ¼ 2:05 inside and outside the line.

Figure 3.
(a) Magnitude and (b) phase of the reflection coefficient versus the frequency of excitation at the end of the flanged
coaxial line, calculated for various approaches.
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matrix pencil method [26] with measurement data [27]. Note that infinite flanges are
assumed in [25, 26]. Phase data conforms to the time convention exp �iω tð Þ:

Comparison of various results shows excellent agreement between them. How-
ever, the phase characteristics obtained by our approach agree somewhat more accu-
rately with the measurement data. Thus, the obtained results validate the developed
approach to modeling a coaxial waveguide port for conducting geometries.

3. Waveguide port approach for composite geometry

3.1 Equivalent problems for composite geometry

Figure 4 shows the geometry of the problem, consisting of a composite structure
composed of k-1 homogeneous regions Di, i = 1,2,… , k�1, located in the free space
region D0 and exposed to waveguide excitation from the waveguide region B, which
will be considered as k-th region of the problem. The regionDk is a finite section of the
waveguide, confined by the PEC walls, the port surface Sa, and the dielectric surface

Sdk, through which the structure is fed. The port surface Sa separates the region Dk (B)
from the semi-infinite waveguide region A with incident waveguide excitation. In

addition, each region Di is excited, in general, by the incident field Einc
i , Hinc

i .
To formulate the waveguide port excitation problem through the port surface Sa,

we first consider the aperture coupling problem between the waveguide regions A and
B [9]. Thus, we cover the port surface Sa with a PEC sheet and introduce equivalent
magnetic currents �M andM on both sides of Sa to divide the excitation problem into
two different equivalence problems: the internal problem for region A, and the exter-
nal problem for region B (Dk), as done in Section 2.1. Then, the internal equivalent
problem is identical to that formulated in Section 2.2 and solved in Section 2.3. The
external equivalent problem requires consideration of equivalent problems for each
boundary surface in regions Di, i = 1,2,… , k, including the port surface Sa.

3.2 Formulation of the external equivalent problem for composite geometry

An external equivalent problem for composite geometry is reduced to a set of

equivalent problems for each conducting and dielectric boundary Sci and Sdi of free
space region D0 (i = 0), composite structure regions Di (i = 1,… ,k-1), and finite

Figure 4.
Waveguide port problem for composite geometry with waveguide excitation.
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waveguide region Dk (i = k). In turn, each surface Sdi comprises a set of boundary
surfaces sij ¼ Di ∩D j (i 6¼ j), being the interfaces between the regions Di and D j.

Per the equivalence principle [24], the total EM field inside the i-th region Di can

be expressed as the sum of the incident field Einc
i , Hinc

i and that induced by the total
surface currents distributed over its boundary surface Si and radiating into a homo-
geneous medium with constitutive parameters εi and μi of the region Di. The total
electric currents Ji on the boundary surface Si consist of conducting currents Jci ,
flowing on the inner sides of conducting boundaries Sci , and equivalent electric cur-

rents Jdi , flowing on the inner sides of dielectric boundaries Sdi . Magnetic currents in

the region Di are equivalent currents M
d
i , flowing on dielectric boundaries Sdi . In

addition, in the waveguide region Dk there are equivalent magnetic currents M on the
port surface Sa.

Unknown electric and magnetic currents can be found using the boundary condi-
tions at the conducting boundaries of the composite structure:

Einc
i þ Esc

i Jci , J
d
i ,M

d
i

� �� �

∣S
c
i

tan
¼ 0, i ¼ 0, 1, … , k� 1 (21)

dielectric boundaries of regions Di (i, j ¼ 0, 1, … , k,i 6¼ j):

Einc
i þ Esc

i Jci , J
d
i ,M

d
i ,Mδik

� �� � sij
tan ¼ Einc

j þ Esc
j Jcj

�h

, Jdj ,M
d
j,MδjkÞ�

�

�

�

�

�

�

sij

tan
, (22)

Hinc
i þHsc

i Jci , J
d
i ,M

d
i ,Mδik

� �� � sij
tan ¼ Hinc

j þHsc
j Jcj

�h

, Jdj,M
d
j ,MδjkÞ�

�

�

�

�

�

�

sij

tan
, (23)

and on the port surface Sa and the conducting boundary Sck of the k-th region:

Einc
k þ Esc

k Jck, J
d
k,M

d
k,M

� �� ��

�

SaþSck
tan

¼ 0 just outside Sa (24)

Hinc
k þHsc

k Jck, J
d
k,M

d
k,M

� �� �

Sa

tan ¼ HSa

A

�

�

�

�

tan
just inside Sa, (25)

where δik is the Kronecker delta, which shows that magnetic currents M radiate only
in a waveguide region Dk. The magnetic field on the right-hand side of (25) is
expressed by Eq. (3). The scattered EM fields in (21)–(25) can be expressed in terms
of electric and magnetic currents Ji and Mi in the dielectric region Di as

Esc
i Ji,Mið Þ ¼ �LEJ

i Jið Þ � LEM
i Mið Þ (26)

Hsc
i Ji,Mið Þ ¼ �LHJ

i Jið Þ � LHM
i Mið Þ (27)

where LEJ
i , LEM

i , LHJ
i and LHM

i are linear integro-differential operators of EM fields
applied to currents radiated in the i-th region. It can also be shown [19–22] that the
equivalent currents on opposite sides of the dielectric boundaries are related as:

Jdi ¼ �Jdj, Md
i ¼ �Md

j on sij (28)

Equation (21)–(25) together with relations (26)–(28) and expansions (3) represent
the general (EFIE-PMCHWT) form of integral equations for a composite structure
with an arbitrary excitation, including the waveguide port.
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3.3 MoM solution of the external equivalent problem for composite geometry

To solve the coupled system of integral Eqs. (21)–(28), we use the MoM to
discretize the geometry of all boundary surfaces of the regions Di (i=1,… ,k) into the
planar patches and to consider the following expansions for the unknown currents:

Jck ¼
X

NaþNc
k

n¼1

Icnfn, M ¼
X

Na

n¼1

Mn, Jci
� �k�1

i¼0
¼

X

NC

n¼1

ICn fn, (29)

Jdi
� �k

i¼0
¼

X

Nd

n¼1

Idnfn, Md
i

� �k

i¼0
¼

X

Nd

n¼1

Md
nfn, (30)

where fn are the suitable BFs, I
c
n,Mn,I

C
n , I

d
n andMd

n are the unknown expansion current

coefficients, and Na, Nc
k, N

C and Nd are the numbers of BFs on the surfaces

Sa, Sck, Sci
� �k�1

i¼0
, if any, and Sdi

� �k�1

i¼0
, respectively. Expansions (29) and (30) take into

account relations (28) for unknown equivalent currents on opposite sides of the
dielectric boundaries. They also consider the ratios for adjacent currents at material
junctions, which are the boundaries between several media [22].

Substituting (29) and (30) into (21)–(25) taking into account (3), (5), (26)–(28)
and testing the resulting equations with weighting functions w1 rð Þ, w2 rð Þ,… , wm rð Þ,
defined in the range of the respective boundary operators, we obtain the following
MoM system of linear algebraic equations:

ZJcJc

mn

� �

ZJcM
mn

� �

0 ZJcJd

mn

h i

ZJcMd

mn

h i

ZMJc

mn

� �

ZMM
mn þQW

mn

� �

0 ZMJd

mn

h i

ZMMd

mn

h i

0 0 ZJCJC

mn

h i

ZJCJd

mn

h i

ZJCMd

mn

h i

ZJdJc

mn

h i

ZJdM
mn

h i

ZJdJC

mn

h i

ZJdJd

mn

h i

ZJdMd

mn

h i

ZMdJc

mn

h i

ZMdM
mn

h i

ZMdJC

mn

h i

ZMdJd

mn

h i

ZMdMd

mn

h i

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Icn
� �

Mn½ �

ICn
� �

Idn
� �

Md
n

� �

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

¼

Vc
m

� �

VM
m þ VW

m

� �

VC
m

� �

Vd
m

� �

VHd
m

� �

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

(31)

where the matrix elements are defined as Zαβ
mn ¼ � wm, L̂

αβ
fn

D E

, L̂
αβ

is the respective

boundary integral operator, superscripts α, β ¼ Jc,M, JC, Jd,Md
� �

; Vc
m ¼ wm,E

inc
k

� �

,

VM
m ¼ wm,H

inc
k

� �

, VC
m

� �

i
¼ wm,E

inc
i

� �

, Vd
m

� �

ij
¼ wm,E

inc
i � Einc

j

D E

, VHd
m

� �

ij
¼

wm,H
inc
i �Hinc

j

D E

are the voltage elements due to the incident wave in i-th and j-th

media, and the elements QW
mn and VW

m are the same as those expressed by (18) and
(19) and determine the additional inclusions in the matrix and voltage elements due to
the waveguide ports.

The MoM system (31) generalizes the solution (15) of the canonical waveguide
port problem to the case of composite geometry. In the structure of the MoM matrix
of this solution, blocks of waveguide excitation, complex structure, and couplings
between these objects through dielectric interfaces are clearly seen.
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3.4 Validation of the developed approach for composite geometry

The developed approach has been validated to simulate the scattering characteris-
tics of a single monopole antenna, fed by waveguide excitation from a flanged coaxial
line with dielectric filling. Figure 5a shows a schematic view of such antenna with a
height ha = 10 mm placed above a square metallic plate of 20 mm � 20 mm, which
serves as a reflector. The coaxial line has an outer diameter D = 6.98 mm, an inner
diameter d = 2 mm, and a length hb = 15 mm. The line bottom end is accepted as a
waveguide port, and the input impedance of the antenna at this port is simulated for
various dielectric fillings of the line.

Figure 6 shows a comparison of the input impedances, calculated by the developed
approach for the model of Figure 5a with εr ¼ 1:0001 , by the WPE approach for the
conducting model of Figure 5b, and by discontinuous Galerkin time-domain (DGTD)
method [28]. An excellent agreement between the obtained results is seen, which
confirms the equivalence and correctness of both WPE approaches (for conducting
and composite geometries) for very low dielectric fillings of coaxial lines.

Figure 5.
Single monopole antenna fed by a flanged coaxial line: (a) with dielectric filling; (b) without dielectric filling.

Figure 6.
Comparison of the input impedances of a monopole antenna in the port plane, calculated by the MoM for εr ¼
1:0001 and εr ¼ 1 with DGTD method.
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Figure 7 shows a comparison of the input impedances, calculated for the model of
Figure 5a with εr ¼ 2:25 using the developed approach and DGTD method. An excel-
lent agreement between both results is seen, which validates our approach to treat
arbitrary dielectric and geometric parameters of composite structures with waveguide
port excitation.

Comparison of Figures 6 and 7 shows that the use of dielectric filling of the coaxial
line shifts the resonances of the input impedance to lower frequencies. In addition,
this leads to a change in the line’s characteristic impedance from 75 Ω in Figure 6 to
50 Ω in Figure 7. Thus, the developedWPE approach for composite geometries covers
a wider area of geometries and provides more control over the characteristics of the
analyzed structures.

4. Waveguide port approach in coupling problems

4.1 Problem formulation

Consider the coupling problem between several composite structures fed by wave-
guide excitations. Although each structure can be formed from an arbitrary number of
dielectric regions, for simplicity, we will consider only one-region structures with
composite (dielectric and conducting) boundaries. Figure 8 shows the geometry of the
problem consisting ofNwaveguidesW i radiating into dielectric regions Di, i = 1,2,…N,
surrounded by closed surfaces SDi

with partially conducting boundaries ScDi
and inward

unit normal nDi
. WaveguidesW i are filled, in general, by dielectrics with permittivities

εi and permeabilities μi, and the regions Di are filled by dielectrics with parameters εDi

and μDi
. An outer space region D0 is a free space with material parameters ε0, μ0.

The waveguide ports Pi in cross-sections Sai divide the waveguides W i into
semi-infinite regions Ai and finite regions Bi to truncate the mesh in regions Ai with
incident waveguide excitation and act as excitation sources of composite regions Di

through the dielectric boundaries SdDiBi
between the regions Di and Bi. Each region Bi,

Di and D0 is also excited, for generality, by the impressed EM field Einc
α , Hinc

α ,
α ¼ Bi,Di,D0.

Figure 7.
Comparison of the input impedances of a monopole antenna in the port plane for the dielectric filling of a coaxial
line εr ¼ 2:25 calculated by MoM and DGTD method.
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To formulate the waveguide port excitation problems through the port surfaces Sai ,
we consider the aperture coupling problems between the regions Ai and Bi to divide
an original problem into two sets of equivalence problems: internal problems for
regions Ai and external problems for regions Bi, Di and D0. For this purpose, we cover
the port surfaces Sai with PEC sheets and introduce equivalent magnetic currents �Mi

and Mi on both sides of Sai to restore tangential electric fields on the port surfaces Sai .

4.2 Solution of the internal equivalent problem

The internal equivalent problems for the considered geometry are similar to those
formulated in Section 2.2 and implemented in Section 2.3. According to the equiva-
lence principle [24], the magnetic currents in the regions Ai are related to the total

electric field E
Sai
Ai

on the port surface Sai by the relation:

�Mi ¼ �ni � E
Sai
Ai

¼ n0i � E
Sai
Ai

(32)

where ni is an inward normal in the regionAi, and n0i ¼ �ni is the propagation
direction of the incident wave. Thus, the solution of the internal problem is expressed
by formulas analogous to those obtained in Section 2.3 with adding the index i, when
necessary.

4.3 Formulation of the external equivalent problem

When considering the external equivalent problem, let ScBi
be the conducting

boundary of the region Bi, including the inner sides of the waveguide walls and the
conductive part of the boundary surface between the regions Bi and Di; S

c
Di

is the

conductive part of the boundary surface SDi
, and ScD0

is the conducting boundary of the

region D0, including the outer sides of the waveguide walls and all conducting

boundaries between the regions D0 and Di. Further, S
d
DiBi

is the dielectric boundary

between the regions Di and Bi, and SdDiD0
is the dielectric boundary between the

regions Di and D0. Per the equivalence principle [24], the dielectric boundaries
between different regions can be replaced by oppositely directed equivalent electric
and magnetic currents flowing on both sides of the dielectric interfaces.

The EM field in the waveguide region Bi is created by electric currents JcBi
flowing

along the port surface Sai and conducting surface ScBi
, equivalent electric and magnetic

Figure 8.
Geometry of the problem.
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currents �JdDiBi
and �Md

DiBi
flowing along the dielectric interfaces SdDiBi

, and equivalent

magnetic currents Mi flowing along the port surface Sai . The EM field in the region Di

is created by electric currents JcDi
flowing along the conducting surfaces ScDi

, equivalent

currents JdDiBi
and Md

DiBi
flowing on dielectric boundaries SdDiBi

between the regions Di

and Bi, and equivalent currents JdDiD0
andMd

DiD0
flowing on dielectric boundaries SdDiD0

between the regions Di and D0. The field in the free space region D0 is created by
electric currents ScD0

flowing along the total conducting boundary of the region D0,

and equivalent currents �JdDiD0
and �Md

DiD0
at dielectric boundaries between the

regions Di and D0.

The unknown currents JcBi
,Mi, J

c
Di
, JdDiBi

,Md
DiBi

, JcD0
, JdDiD0

,Md
DiD0

can be found from

the boundary conditions on the port surface and the conducting boundaries of the
waveguide region Bi:

Einc
Bi

þ Esc
Bi

JcBi
,Mi,�JdDiBi

,�Md
DiBi

� �h i
�

�

�

Sai þSci

tan
¼ 0 just outside Sai (33)

Hinc
Bi

þHsc
Bi

JcBi
,Mi,�JdDiBi

,�Md
DiBi

� �h i

Sai
tan ¼ H

Sai
Ai

�

�

�

�

�

�

tan
just inside Sai , (34)

and the boundary conditions on the conducting and dielectric boundaries of the
regions Di and D0:

Einc
Di

þ Esc
Di

JcDi
, JdDiBi

,Md
DiBi

, JdDiD0
,Md

DiD0

� �h i�

�

�

tan
¼ 0 on ScDi

(35)

Einc
Bi

þ Esc
Bi

JcBi
,Mi,�JdDiBi

,�Md
DiBi

� �h i
�

�

�

tan
¼

Einc
Di

þ Esc
Di

JcDi
, JdDiBi

,Md
DiBi

, JdDiD0
,Md

DiD0

� �h i�

�

�

tan

on SdDiBi
(36)

Hinc
Bi

þHsc
Bi

JcDi
,M ið Þ,�JdDiBi

,�Md
DiBi

� �h i�

�

�

tan
¼

Hinc
Di

þHsc
Di

JcDi
, JdDiBi

,Md
DiBi

, JdDiD0
,Md

DiD0

� �h i
�

�

�

tan

on SdDiBi
(37)

Einc
D0

þ
X

N

i¼1

Esc
D0

JcD0
,�JdDiD0

,�Md
DiD0

� �

" #�

�

�

�

�

tan

¼ 0 on ScD0
(38)

Einc
Di

þ Esc
Di

JcDi
, JdDiBi

,Md
DiBi

, JdDiD0
,Md

DiD0

� �h i
�

�

�

tan
¼

Einc
D0

þ Esc
D0

JcD0

� �

þ
X

N

i¼1

Esc
D0

�JdDiD0

�

"

,�Md
DiD0

Þ�

�

�

�

�

�

tan

on SdDiD0
(39)

Hinc
Di

þHsc
Di

JcDi
, JdDiBi

,Md
DiBi

, JdDiD0
,Md

DiD0

� �h i�

�

�

tan
¼

Hinc
D0

þHsc
D0

JcD0

� �

þ
X

N

i¼1

Hsc
D0

�JdDiD0

�

"

,�Md
DiD0

Þ�

�

�

�

�

�

tan

on SdDiD0
(40)

The scattered EM fields in (33)–(40) are related to the equivalent electric and mag-
netic currents by Eqs. (26) and (27). After substituting (26) and (27) into (35)–(40),
Eqs. (35)–(40) represent a coupled system of integral equations in terms of unknown
currents for solving the coupling problem between several composite structures.
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4.4 MoM solution of the external equivalent problem

To solve the boundary problem (35)–(40), we use the following MoM expansions
for the unknown currents:

JcBi

h iN

i¼1
¼

X

NaþNc
B

n¼1

IcBn fn, Mi½ �Ni¼1 ¼
X

Na

n¼1

Mnfn, JcDi

h iN

i¼1
¼

X

Nc
D

n¼1

IcDn fn, J
c
D0

¼
X

Nc
D0

n¼1

I
cD0
n fn, (41)

JdDiBi
, JdDiD0

h iN

i¼1
¼

X

Nd

n¼1

Idnfn, Md
DiBi

,Md
DiD0

h iN

i¼1
¼

X

Nd

n¼1

Md
nfn, Mi½ �Ni¼1 ¼

X

Na

n¼1

Mnfn (42)

where fn are the suitable BFs, I
cB
n , I

cD
n , I

cD0
n , Idn,M

d
n and Mn are the unknown expansion

current coefficients, and Na,Nc
B,N

c
D,N

c
D0

and Nd are the numbers of these BFs on the

surfaces Sai
� �N

i¼1
, ScBi

h iN

i¼1
, ScDi

h iN

i¼1
,ScD0

and SdDiBi
, SdDiD0

h iN

i¼1
, respectively. Substituting

now (41) and (42) into (35)–(40) with an accounting of (3), (5), and (26) and (27) for
each i-th region and testing the obtained equations with weighting functionsw1 rð Þ,
w2 rð Þ,… , wm rð Þ, defined in the range of the respective boundary operators, we obtain
the following MoM system of linear algebraic equations:

ZJcBJ
c
B ZJcBM 0 0 ZJcBJ

d

ZJcBM
d

ZMJcB ZMM þ QW 0 0 ZMJd ZMMd

0 0 ZJcDJ
c
D 0 ZJcDJ

d

ZJcDM
d

0 0 0 ZJcD0
JcD0 ZJcD0

Jd ZJcD0
Md

ZJdJcB ZJdJcD ZJdJcD ZJdJcD0 ZZJdJd

ZJdMd

ZMdJcB ZMdM ZMdJcD ZMdJcD0 ZMdJd ZMdMd

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

IcB

M

IcD

IcD0

Id

Md

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

¼

VcB

VM þ VW

VcD

VcD0

Vd

VHd

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

(43)

where the elements of the block matrices are defined as: Zαβ
mn ¼ � wm, L̂

αβ

i fn
D E

, L̂
αβ

is

the respective boundary integral operator, superscripts α, β ¼ JcB,M, JcD, J
c
D0
, Jd,Md

n o

,

voltage elements are defined in the same way as in Eq. (31), and the elements of the

block matrices QW and VW are expressed by (18) and (19) for each i-th feeding
waveguide and determine the additional inclusions in the matrix and voltage elements
due to the waveguide ports. The MoM system (43) defines a solution to the coupling
problem between several composite geometries. In the structure of the MoM matrix of
this solution, blocks of waveguide excitations, complex geometries, and couplings
between them are clearly seen.

4.5 Validation of the developed approach for coupling problems

The developed approach has been validated on a two-element antenna array fed by
coaxial waveguide ports by comparing the simulation results obtained using the
developed MoM approach and the DGTD method [28]. Figure 9 shows a schematic
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view of two identical monopole antennas flanged over the PEC plate and fed by
coaxial waveguides with generally different diameters and dielectric fillings. The
monopoles located at a distance La = 40 mm from each other have the same height ha
= 10 mm above the PEC plate with a width W = 40 mm and a length L = 80 mm,
which serves as a reflector. Coaxial waveguides have the same inner diameter d1 = d2
=2 mm, but generally different outer diameters D1 and D2 and relative permittivities
ε1 and ε2. The depth of each coaxial waveguide under the flange is hb = 15 mm, and its
end is taken as the reference plane of the waveguide port.

Figure 10 shows the real and imaginary parts of the transmission coefficient S21 ¼
a�02=a

þ
01 between waveguide ports 1 and 2 with the same radii and dielectric fillings:

D1/2 = D2/2 = 6.65 mm, and εr1 = εr2 = 5.17, which leads to the same characteristic
impedances: Zc1 ¼ Zc2 = 50 Ω. The developed MoM approach and the DGTD method
are compared. The first antenna in these simulations is considered active, and the
second is passive. Comparison of these results shows very good agreement between
them over a wide frequency range from 1 GHz up to 10 GHz. This validates the
developed approach in modeling coupling problems for coaxial waveguide ports with
the same characteristic impedance.

Figure 9.
Schematic view of an array of two identical monopole antennas fed by coaxial waveguides and flanged above the
PEC plate.

Figure 10.
Transmission coefficient between the of the antenna array waveguide ports with the same parameters of the feeding
coaxial waveguides.
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Figures 11 and 12 show a comparison of the transmission coefficient S21 ¼

a�02=a
þ
01

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Zc1=Zc2

p

between waveguide ports 1 and 2, calculated by the MoM and DGTD
method for different parameters of coaxial waveguides. Figure 11 is made for the
same fillings of waveguides: εr1 = εr2 = 2.25, but with different outer radii: D1/2 =
3.49 mm and D2/2 = 6.52 mm, while Figure 12 is performed for different fillings: εr1 =
4 and εr2 = 1.78, but with the same outer radii D1/2 = D2/2 = 5.3 mm. Both cases result
in characteristic impedances of waveguides Zc1 = 50 Ω and Zc2 = 75 Ω. Comparison of
the MoM and DGTD results again shows very good agreement between both simu-
lated results, which validates the developed approach to modeling coupling problems
for coaxial waveguide ports with different characteristic impedances.

5. Application of waveguide port approach

The obtained approach has been applied to practical EMC problems for microwave
antennas fed by coaxial waveguides. Such waveguides are the most commonly used to

Figure 11.
Transmission coefficient between the waveguide ports of the antenna array for the same permittivities εr1 = εr2 =
2.25, but different outer radii: D1/2 = 3.49 mm, D2/2 = 6.52 mm.

Figure 12.
Transmission coefficient between the waveguide ports of the antenna array for the same outer radii D1/2 = D2/2 =
5.3 mm, but different permittivities: εr1 = 4 and εr2 = 1.78.
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excite microwave antennas and electronic devices. This excitation usually uses micro-
wave coaxial connectors, such as BNC and SMA.

5.1 Modeling of two branches feeding large printed UWB antenna

First, based on the measurement data [28], a printed ultra-wideband (UWB)
antenna is considered. Figure 13 shows a schematic view of a large printed UWB
antenna with a two-branch-feed, the bottom of which is connected to the core of a
50 Ω SMA connector with waveguide excitation, the covering of which is connected to
a metal plate serving as a reflector. The bottom end of the connector is accepted as a
waveguide port, and the input impedance of the UWB antenna at the waveguide port
is measured and simulated.

The model of a printed UWB antenna is a square metal patch with a length La = 40
mm and a width Wa = 40 mm, printed on a dielectric substrate with a length Lb = 43
mm, a width Wb = 47.5 mm, a thickness t = 1.5 mm and material parameters εrd = 4.4
and tanδd = 0.02. The antenna is connected to a two-branch-feeding strip with a total
width t1 = 15 mm, a distance between the branches t2 = 11 mm, and a height of the
branches h1 = 3.5 mm. The UWB antenna is placed at a height h2 = 3 mm above a
metallic plate of a length L = 275 mm and a widthW = 207 mm and is connected to the
SMA connector. The model of the SMA connector is represented by a coaxial wave-
guide with an outer radius D/2 = 2.125 mm, inner radius d/2 = 0.635 mm, and a length
Lcon = 6.8 mm, filled with a polyethylene dielectric with relative permittivity εr = 2.24
and loss tangent tan δ = 0.005.

Figure 14 shows a comparison of simulated input impedances of a printed UWB
antenna at the waveguide port with measurement results [28]. Comparison of the
simulated results with measurement data shows a good agreement between them in a
wide frequency range from 1 to 10 GHz. This validates the developed approach to
modeling the composite antenna geometries fed by coaxial waveguides with dielectric
filling.

5.2 Coupling problem between GPS and SDARS antennas

In conclusion, based on the measurement data [28], the coupling between the GPS
and SDARS patch antennas was analyzed in the frequency range from 1 GHz to 3 GHz.
Figure 15 shows the measurement setup (a) and its schematic view (b) for studying

Figure 13.
Schematic view of a large printed UWB antenna with two branch feed connected to a coaxial waveguide port.
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the coupling between active GPS and passive SDARS antennas, separated by a dis-
tance of d = 4 cm. Both antennas are fed by 50 Ohm coaxial lines with standard SMA
connectors with parameters described in Section 5.1.

The parameters of the setup are the following. The SDARS antenna is a square
metallic patch of 32 mm � 32 mm size with two opposite cut corners, printed on a
dielectric substrate with dimensions 34 mm � 34 mm � 3.25 mm and εr = 4.1. The
GPS antenna is constructed by a square metallic patch of 21 mm � 21 mm size with
truncated corners, printed on a 25 mm� 25 mm� 4 mm dielectric substrate with εr1 =
20.34. Both patch antennas are mounted on a 190 mm � 145 mm metal plate.

Figure 16 shows a comparison of the transmission coefficient between active GPS
and passive SDARS patch antennas, obtained by the developed MoM approach and
measurements. A pretty good agreement between the simulated results and
measured data in the frequency range of 1–3 GHz is observed. This comparison
validates the developed waveguide port approach with measurements to model
coupling problems between different composite geometry antennas with coaxial
waveguide ports.

Figure 14.
Comparison of the simulated and measured input impedances of a printed UWB antenna.

Figure 15.
Measurement setup (a) and its schematic view (b) for the coupled GPS and SDARS patch antennas.
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6. Conclusion

The MoM-based waveguide port approach was developed to model waveguide
port excitation problems on arbitrary conducting and composite geometries. The
developed approach was validated for modeling radiation and coupling problems for
coaxial ports by comparing the simulated results with those obtained by other
approaches and measurements. The approach has been applied to practical EMC
problems for microwave antennas fed by coaxial connectors. A good agreement
between the simulated and measured results has been demonstrated. The efficiency of
the developed approach for solving various complex problems with waveguide exci-
tation has been verified.
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