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Abstract

Modern agriculture has an immense problem in the depletion of agricultural 
productivity owing to a variety of biotic and abiotic stresses. Agriculture’s sustain-
ability and safety are dependent on ecologically friendly practices. Plant rhizobia 
have been proven to have an important role in disease control, as well as promoting 
plant growth, productivity, and biomass. Rhizobacteria are soil bacteria that live on 
the root surface and either directly or indirectly contribute to plant development. 
Rhizobia are used to induce mediated immune resistance through the manufacture of 
lytic enzymes, antibiotics, phytoalexins, phytohormone, metabolites. It supports the 
growth of plants through nitrogen fixation, nutrient enrichment, phosphate solubi-
lization and phytohormone synthesis. In addition, it supports plants during different 
stresses such as temperature, osmotic, heavy metal and oxidative stress. Plant growth-
promoting rhizobacteria have the ability to control heavy metal pollution of soils as 
well as enhancing plant growth in these soils. Efficient bioremediation is possible by 
using rhizobacterial inoculants, still, the distribution and functioning of microbes in 
the rhizosphere need to be fully explored. This review focuses on the effectiveness, 
biomonitoring processes and function in promoting plant development. Rhizobia 
application can be considered an alternative method for the improvement of biodiver-
sity, agriculture, and the environment.

Keywords: rhizobia, biocontrol, antibiotic, plant growth promotion, heavy metal, 
bioremediation
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1. Introduction

The productivity of crops is considerably impacted by nitrogen and phosphorous 
deficiencies, which are important for regulating the growth and development of crop 
plants [1]. To address this problem, it is important to carry out effective nitrogen 
management for sustainable agriculture. One of the interesting methods is to involve 
the use of microorganisms biologically fixing nitrogen which is utilized by the plant 
directly and is least susceptible to leaching and volatilization. Legumes establish a 
symbiotic interaction with the soil bacteria, termed Rhizobia, to fix atmospheric 
nitrogen. This helps in improving soil fertility, improving plant growth and prevents 
the necessity to use chemical fertilizers [2]. Besides this, agricultural productivity is 
significantly affected by the changing physical and biological properties of the soil 
[3]. In the past few years, the word “plant microsymbionts” has gained significant 
interest as plant microsymbionts directly affect the plant’s performance and pro-
ductivity. The plant microbiome comprises the complex adaptive gene pool, which 
originates from prokaryotic and eukaryotic organisms and even viruses, associated 
with the host’s ecosystem [4]. Also, it has been well established that apart from 
changes in morphology, Bacteroides exhibit tremendous transcriptomic shifts and 
changes in biochemical processes especially in contrast to free-living bacteria [5]. 
There are various genetic and molecular pathways that govern the symbiotic com-
patibility, involving a wide variety of host and bacterial genes/signals with distinct 
adjuvants [6]. Consequently, understanding of the biological and molecular basis of 
symbiotic compatibility is essential in the development of tools for genetic modifica-
tion of the host and/or bacteria to increase the efficiency of nitrogen fixation and to 
use it as a biocontrol agent. Here, in this review, we will address our latest summary 
of the microbial interactions, rhizobial efficacy, mechanisms as biocontrol, role in 
plant growth promotion, stress resistance and triggered immunity (ISR) against 
other microbes (pathogens). In fact, an insight into the genomes and recognition of 
candidate genes responsible for antibiotics, ISR and other metabolites from microbes 
is now possible. But the full range of molecular moieties involved in microbial 
interaction at an ecological scale deserves further study. Eventually, a definite and real 
improvement in the long term lies with the use of advanced analytical tools and their 
unification with classical experimental techniques to comprehend and then exploit 
soil–plant-microbe associations. Overall, it can help to improve biodiversity, agricul-
ture and environmental studies further.

2. Microbial interactions

An existence of unseen host-microbial interaction has predominance from 
prehistoric times. While microbes are of minute size, they are available in nature in an 
astonishing majority, interacting directly or indirectly at different hierarchical levels 
of life. Almost all of these microorganisms are incredibly small, widely recognized 
by Archaea and Bacteria, although some microscopic forms include handful of fungi 
and even most protists. From an ecological standpoint, microorganisms are very often 
found in the soils as complex microbial population groups and have been investigated 
for several ties of microbiota-host interactions such as mutualists, endosymbionts, 
antagonists, parasites, and pathogens (Figure 1) [7].

Microbial community dynamic trends in the food chains look likely to be beneficial 
(positive), harmful (negative) or even sometimes neutral, with very little or no effect 
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on their symbiotic associates [8]. Via physiochemical shifts, signaling mechanism-
quorum sensing system (chemotaxis), cell transduction signaling through secondary 
metabolites, siderophores (used for iron acquisition) and gene expression microbial 
processes always have shown substantial impact on ecological parameters, resulting 
in established suitable alleles in diverse habitats [9]. Rapid and altered microorganism 
genetic variation corresponds both to biotic and abiotic sources of stress. Furthermore, 
atmospheric Nitrogen fixing microbial interaction and AMF symbiotic relationship 
activates a unique signaling process-CSSP (Common Symbiosis Signaling Pathway) 
with calcium fluctuations in nucleus [10]. Many such strategies lead to an expansive 
population of microorganisms constantly getting established, culminating in patho-
genic or beneficial effects on host plant species.

While many others have shown plants are able to select microbiota from all 
of diverse plant exudates including certain amino acids, carbohydrates and other 
biomolecules [11] which could also vary depending upon the plant itself, its stage of 
development and on biotic or abiotic conditions. Flavonoids, for example, are needed 
for talks between Legume-Rhizobia while AMF (mycorrhizal arbuscular fungi) 
rely solely on Strigolactone signaling [12]. In addition, the position of bacterial iron 
acquisition chelators that enforce a restricted supply of iron in the rhizospheric plane 
for pathogenic fungi constrains pathogen proliferation and occurrence. Consequently, 
synergetic microbial populations in the root micro-sites have a critical role to play in 
cloaking plants from disease deterioration, environmental factors and also ramping 
up nutrient uptake [13]. It has been well established that plant-associated microor-
ganisms, particularly endophytic and rhizospheric microorganisms, can stimulate 
plant growth. A typical specified example is that of biotrophic symbioses between 
rhizobium and legume, such bacteria boost the growth of plant species by fastening 
atmospheric N2, supplying of essential nutrients, enhance sequestration of miner-
als, produce phyto-hormones and also act as potential biocontrol against pathogens. 
Preliminary experiments on some endophytic and pathogen microbe genomes 
revealed pathogen degrade and displacement of host (host invasion), whereas the 
endophytic-mutualists express genes that aid in stress amelioration encoding proteins 
for nitrogen fixation and RubisCO [14]. During genetic interchange in a rhizobial 
symbiotic relationship, the root cortical cells are populated, making a distinction into 
nitrogen fixing bacteroids. Studies also show rhizobacter colonization into the root 
systems of non-leguminous plant species as such can be used as biocontrol in plant 
species other than legumes. Other popular, well-known, bacterial-based biocontrol 
method is Agrobacterium to prevent infection with Agrobacterium tumefaciens.In fact, 

Figure 1. 
Types of microbial interactions found in nature.
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myriad microorganisms (in particular belonging to genera Bacillus, Pseudomonas and 
Trichoderma) generate few chemicals against plant pathogenic fungi [8]. Bacterial 
isolates broadly find their application against plant pathogenic bacteria and fungi, 
whereas fungi are taken as biocontrols for pathogenic protozoans, pathogenic bac-
teria as well as pathogenic fungi. Juxtaposition between plants and several types of 
microbes has also been known to help mitigate many toxic metal build-up in plants 
[15]. While a general mechanism affecting mostly saprotrophs involves enhancement 
of microbial activity, selective different categories of symbionts can be stimulated in 
root microsites of plants. On the other hand, disease development by saproptrophs 
or biotrophs present in root micro-sites takes place only by developing antagonistic 
symbioses between pathogens and susceptible host plant roots. Importantly, the 
elimination of disease can sometimes be addressed through manipulating microbio-
logical or physio-chemical surroundings mostly by classical practices- like use of soil 
refinements, agronomic rotational practices, fumigant use or even soil solarisation. A 
voluminous literature shows that interactive bacteria both symbiotic and pathogenic 
develop common signaling molecules to promote their host cell invasion through 
predominant substances such as conserved PAMP/MAMPs (Microbe-Associated 
Molecular Patterns) and protein effectors [16]. Organisms have developed recogniz-
ing mechanisms which differentiate between pathogens and symbionts and react in 
different ways to them, but this distinction often is not efficient; as a consequence, 
recognizing sensitivity also appears to occur both on pathogenic and symbiotic inter-
action [17, 18] at earlier stages. Thus, evidently microbial associations drive a complex 
sequence of interdependent metabolisms. In this paradigm of unexpected symbiotic 
partnership only host species utilize chemical synthesis capacities of symbiotic 
organisms to inhibit the development of certain environmental major competitors in 
order to sustain themselves [19]. In modern days, the philosophy of regulation of soil-
borne diseases through the use of agro-chemicals such as pesticides and fungicides is 
now being modified through biological management [20]. Currently with the aid of 
molecular know-how, molecular pathways and processes involved in the interaction 
of microbes have been immensely explored.

3. Pathogen control mechanisms

Phytopathogens are those organisms which have the potential to adversely affect 
growth, development as well as the physiological activities of the crop. Any deviation 
in the environment which favors the proliferation of these phytopathogens result 
in a rapid outbreak of the diseases, leading to the crop destruction. Thus, reducing 
the yield and causing considerable loss of productivity. To prevent the development 
of disease it is necessary to control the pathogen mostly when their level is low. The 
organisms involved in biocontrol process are called as biocontrol agents and most of 
the biocontrol agents such as bacteria, fungi, algae, and nematodes which are found 
in root zone i.e., rhizosphere could influence various properties of soil and plants 
and thus act as defense mechanism against attack by pathogens [21]. It has been 
reported that there are some beneficial bacteria which can bring some changes in the 
rhizosphere as well as in the plants, leading to the enhancement in the plant growth, 
development and productivity and as such protect the plant from outbreak of vari-
ous diseases [22]. Rhizobium being one of the categories of microorganisms which 
comprises of bacteria which can develop the symbiotic relationship with legumi-
nous plants. Thus, are regarded as important nitrogen fixing organisms which play 
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significant role in the maintenance of soil fertility [23]. However, many species of rhi-
zobia are also reported to reduce the development of various disease-causing fungi, 
thereby increasing the yield of legume crops [24]. Several rhizobial strains such as 
Rhizobium leguminosarum, Sinorhizobiummeliloti and Bradyrhizobium japonicum have 
the ability to suppress soil-borne pathogens such as Rhizoctonia solani, Pythium spp., 
Fusarium spp., and Macrophominaphaseolina in both legumes and non-legumes thus 
can be used as biocontrol against various soil-borne diseases [25]. Godebo et al. [26] 
suggested that rhizobium species can be used as biocontrol agents, since it inhibited 
the growth of aphanomyces in vitro in pea. Rhizobia in combination with Tricoderma 
spp. can act as potential biocontrol agent [27]. Colonization behavior of Sinorhizobium 
meliloti in the alfalfa rhizosphere reported to be useful for biocontrol. The application 
of Pseudomonas maltophilia in combination with Mesorhizobium and PSB was reported 
to be more beneficial as it showed the reduction in root rot incidence [28]. The study 
above shows that significant reports have been presented which favors the use of 
rhizobia as biocontrol agent against soil-borne pathogens, apart from being respon-
sible for biological nitrogen fixation, thus acting as a befitting alternate measure over 
chemical treatments to control the spread of various plant diseases. Rhizobium is an 
effective biocontrol agent which helps in bringing down the growth of phytopatho-
gens by implementing various mechanisms which include phytohormone production, 
siderophore production, production of antibiotics, HCN production, production of 
lytic enzymes, metabolite production and phytoalexin production and induction of 
systemic resistance [29].

3.1 Lytic enzyme production

Rhizobia produces several lytic enzymes which are responsible for degrading the 
cell wall of pathogens and as such are considered as an efficient source for biocontrol. 
Lytic enzymes produced by the rhizobia for biocontrol involves chitinases, cellulases, 
β-1,3-glucanase β-1,4-glucanase, β-1,6-glucanase, proteases, pectinase and amylases 
[30]. These enzymes are known to cause lysis of the fungal and bacterial cell walls 
and thus helps in controlling the population of plant pathogens [31]. Chitinase is 
a lytic enzyme which causes the lysis of pathogenic fungal cell wall through the 
disintegration of chitin in the cell wall of fungi and bacteria. This process involves 
the breakdown of glycosidic bond in chitin thus, reducing the chitin polymer into 
monomer. Endochitinase cleaves chitin randomly at internal points within the poly-
mer of chitin and releases low molecular weight multimers and dimers. Exochitinase 
causes hydrolysis of chitin and releases di-acetylchitobiose with no monosaccharide 
or oligosaccharides formed. Protease is another lytic enzyme which prevents the 
protein of pathogen to effect plant cells as protease have the capacity to cause the 
breakdown of proteins of phytopathogens into smaller polypeptides or single amino 
acids. Some of the protease also involved in inactivation of extracellular enzymes of 
phytopathogenic fungi. Cellulases is another enzyme which causes the decomposition 
of cellulose. This reaction involves the hydrolysis of the 1, 4-β-D-glucosidic linkages 
in cellulose. The degradation of cellulose involves conversion of the cellulose into 
β-glucose which occurs by the combined action of important cellulolytic enzymes like 
cellulose / endoglucanases, exo-cellobiohydrolase/exo-glucanases and β-glucosidases. 
Cellulose is thereby converted into β-glucose by the synergetic act of all these cel-
lulolytic enzymes. Glucanase are enzymes which causes hydrolysis of polysaccharide 
made of glucose subunits. This process involves two possible mechanisms viz., 
cleaving the glucose residues from the non-reducing end in sequence and breaking 
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the linkages along the polysaccharide chain at random points and smaller oligosac-
charides are released [32]. Among all these enzymes, chitinase are considered to be 
the most important ones as it acts as prime constituent of biocontrol and protect the 
plant against phytopathogens. It has been reported that rhizobial isolates producing 
chitinase results in inhibition of pathogenic microbes [24]. Damping-off of fava bean 
(Vicia faba) was reduced when rhizobium spp. capable of producing chitinase was 
applied as seed treatment either separately or along with mycorrhizal fungi [24]. 
Rhizobium strains isolated from Sesbania sesban has been reported to be produce 
chitinase. Rhizobium sp. Strain RS12, which have the ability to produce chitinase 
controlled the diseases of chickpea caused by F. oxysporum, S. sclerotiorum and M. 
phaseolina by reducing the growth and development of mycelia [33]. Plant diseases 
caused by several phytopathogens like A. niger, F. solani, F. oxysporium, B. cinereaand 
R. solani were reported to be controlled by chitinase from rhizobia, thus the latter 
was regarded as efficient biocontrol agent (34). Ability of rhizobia to produce lytic 
enzymes such as chitinase, β-1, 3 glucanase, protease, and lipase which bring about 
the lysis of pathogenic fungal and bacterial cell walls was also reported in various 
plants [3]. In fava (V. faba) bean infection caused by fungal mycelia of F. solani was 
reduced significantly by chitinase, protease and lipase [34].

3.1.1 Phytohormone production

Phytohormones or plant hormones are the organic compounds that cause the 
stimulation of plant growth and development at lower concentrations. They can be 
produced either naturally by plants in response to some specific stimuli or can be 
synthesized artificially and utilized for regulating the growth and development of 
plants [35]. Apart from regulating growth and development, these phytohormones 
also play an important role in biocontrol responses as they are involved in several 
synergetic processes between various plants and organisms. Therefore, these plant 
hormones not only helps in stimulation of plant growth, development, improvement 
in nutrient uptake, but also act as a shield against various biotic and abiotic stresses, 
and as such protection of plants from different phytopathogens [36]. Phytohormones 
include indole-3-acetic (IAA) acid (auxin), cytokinins, gibberellins and abscisic acid. 
Each of the plant hormones or plant growth regulators possesses specific functions.

a. Auxin: This is the phytohormone which is considered as an important hormone 
that helps in plant protection mostly in the form of indole acetic acid (IAA). It 
has been suggested that many rhizobia spp. can secrete plant hormones, such as 
auxin via indole acetic acid formation [37–41]. Tryptophan has been considered 
as the major precursor of IAA. However, rhizobium spp. can synthesize IAA 
even if the tryptophan is not present [42]. Soil-beneficial bacteria have the ability 
to synthesize IAA and are involved in many phyto-stimulations that could be 
beneficial in relation to the biocontrol. IAA is also reported to loosen the root 
walls to increase the secretion of various beneficial substance from roots, which 
can improve the bacterial growth in root zone [22]. Rhizobia producing IAA are 
reported to directly affect the growth of phytopathogens (44). Rhizobial IAA is 
able to affect pathogenesis as being involved in various physiological processes 
of plant like cell division, extension, rate of xylem development, formation of 
adventitious root and various pigments, photosynthesis, etc. Therefore, can act as 
an effector molecule in plant microbial interaction. More than 80% of nitrogen-
fixing bacteria have reportedly resulted in the production of growth substances 
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like indole acetic acid [43]. These substances enhance plant defense mechanism 
against various pathogens and improves the plant growth by increasing the total 
phenols, calcium content and polyphenol oxidase activity [44]. Rhizobial IAA 
was reported to have Phyto stimulation activity which resulted in suppression 
of more than 84% fungus mycelial growth of S. rolfsii because of the synergetic 
relation between in vitro bacterial IAA production and inhibition of S. rolfsii 
mycelial [45]. Treatment of nodules of vetch roots with R. leguminosarum bv. 
Viciae resulted in increase of IAA production by about 60 folds [46]. Application 
of Pseudomonas in combination with Rhizobium galegae causes increase in IAA 
production that results in increasing the number of nodules, nitrogen content, 
growth of shoot and root. However, biosynthesis of IAA was influenced by both 
environmental stress factors (acidic pH, osmatic stress, matrix stress and carbon 
limitation) as well as by genetic factors (auxin biosynthesis genes and the mode 
of expression. The bacterial strain Mesorhizobium loti MP6 produces indole 
acetic acid (IAA) under normal growth conditions inducing curling of root hair, 
inhibition of Sclerotiniasclerotiorum and improves the growth of Indian mustard 
(Brassica campestris) [29].

b. Gibberellins: Gibberellins are plant hormones (GA1-GA89) that regulates 
various plant developmental processes having significant function in stem 
elongation and leaf expansion. Gibberellins are involved in many aspects of 
plant physiology like, development of seedless fruits, flower and fruit matura-
tion, breaking of seed dormancy, and sex expression. It has been suggested that 
rhizobium also have ability to synthesis gibberellins. Gibberellic acid possesses 
the ability of reducing the levels of reactive oxygen species (ROS) which results 
in improving the activity of antioxidant enzyme which further causes the 
progress in growth under adverse conditions [47]. Also, gibberellic acid applied 
exogenously was able to reduce effect of various stress like salt, oxidative and 
heat stress, on growth and germination in Arabidopsis thaliana, resulting in 
increased production of salicylic acid, which in turn increased the activity of 
isochorismate synthase 1. Rhizobium strains are also reported to produce cyto-
kinins, which are involved in stimulation of cell division, development of root 
and formation of root hair. It was established that microbial cytokinins have the 
potential to act as biocontrol agents and can be used as a potent source against 
plant defense mechanism [48].

c. Abscisic acid: Abscisic acid is a naturally occurring phytohormone. It is a 
sesquiterpenoid which is being partly produced in the chloroplasts of plants 
and the biosynthesis occurs in the leaves. Abscisic acid is synthesized mostly 
during the stress conditions like moisture deficiency and low temperatures, 
heat and salinity. It is reported that rhizobium sp. can produce abscisic acid 
and stimulate various physiological processes of plants such as stomatal clo-
sure, inhibits the shoot growth, storage of protein in seeds during dormancy 
and is involved in causing proteinase inhibition by gene transcription, thus 
offers protection against pathogens.

d. 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase: Some of the 
rhizobia species like α and β rhizobia have the ability to produce enzyme 
ACC deaminase and the gene responsible for its production is acdSgene. ACC 
deaminase leads to the conversion of 1-aminocyclopropane-1-carboxylic acid 
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(ACC-precursor of ethylene) into α-ketobutyrate and ammonia. It has been 
reported that when rhizobia producing ACC deaminase are inoculated, the 
ethylene levels in the plant are reduced, resulting in increased nodulation, longer 
roots as well as improves rhizobial activity and thereby helps in bringing down 
various stress levels and also protects the plant from various pathogens (Table 
1). The strains, which are reported to produce ACC deaminase involve R. legumi-
nosarum. Viciae, Rhizobium hedysari, Rhizobium japonicum, Rhizobium gallicum, 
B. japonicum, Bradyrhizobium elkani, M. loti and S. meliloti [59].

3.1.2 Antibiotics

Biologicals are an effective way of combating pathogens in plants [60]. Antibiotics 
and other antipathogenic compounds may be secreted by beneficial rhizobacteria. 
Antibiotics are among the most important pathways for biocontrol [61]. Pathogens 
also acquire antibiotic resistance and other biological control mechanisms to pre-
vent complete long-term control. A systematic strategy of numerous monitoring 
mechanisms is definitely safer than undue reliance on one solution while confront-
ing pathogens. Pathogen-antagonistic bacteria can therefore adapt their mode of 

Rhizobium ssp. Activity Reference

Mesorhizobium cicero IAA production [49]

Rhizobium leguminosarum IAA production [50]

R. leguminosarum Cytokinin [51]

Mesorhizobium sp. IAA production [52]

Bradyrhizobium sp. IAA production [40]

Rhizobium sp.(lentil) IAA production [39]

Rhizobium phaseoli IAA production [53]

Bradyrhizobium sp. IAA production [43]

Rhizobium sp. IAA production [54]

Rhizobium sp. (pea) IAA production [55]

R. leguminosarum IAA production [48]

Mesorhizobiumloti MP6 IAA production [29]

ACC deaminase

R. japonicum, B. elkani, M. loti, R. 
leguminosarum, Sinorhizobium spp.

Produce high level of ACC deaminase [3]

R. leguminosarumbv. Trifolii SN10 Produces indole acetic acid and ACC 

deaminase which enhances rice growth

[56]

Lytic acid production

Rhizobium strain Produce enzyme: chitinases, b-1,3 glucanases, 

proteases and lipases

[3, 57]

Rhizobium spp. Chitinases [24, 58]

Rhizobium sp. strain RS12 Chitinases [33]

Table 1. 
Phytohormone production.
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operation in the long-term to combat pathogens. In order to inhibit pathogens, PGPR 
produces antibiotics, such as lipopeptides, polyketides, and antifungal metabolites 
[62]. PGPR generates antibiotics that prohibit “saprophytic pathogens” from develop-
ing in the root zone; Combining strains that strengthen resistance to other antibiotics 
and biocontrol strains that modulate one or more antibiotics [61]. Rhizobia produces 
(TFX) tridolitoxin, an antibiotic narrow-spectrum peptide, and was found respon-
sible for changes in microbial diversity in bean plant rhizosphere. Trifolitoxin (TFX) 
antibiotic by R. Leguminosarumbv. Trifolii T24 was documented for disease control. 
B. Japonicum produces rhizobiotoxin which protects Soya from M. Phaseolina [63]. R. 
Leguminosarum produces bacteriocins which have different assumed size characteris-
tics (small, medium or large). Trifolii and B. Japonicum secrete antibiotics that could 
inhibit several phytopathogens have been documented [3].

3.1.3 Phytoalexins

Plants exist in dynamic ecosystems which are subject to frequent changes. They 
survive on a host of chemicals called secondary metabolites [64], which are essen-
tial for regulating secondary metabolism. Plants have a normal immune system to 
withstand biotic stress which can be activated by different agents. The plants have a 
unique potential condition called “priming” which is triggered in the plant before the 
pathogen challenge. The plants defensive mechanism against biotic stress involves the 
agglomeration of molecules (phyto-anticipins), which are converted to phytoalexins 
[65]. Phytoalexins are antimicrobial compounds generated by plants or some organ-
isms as a response of the biotic and abiotic factors. These are “low molecular weight, 
anti-microbial” compounds synthesized after micro-organism or abiotic exposure in 
plants. Furthermore, elucidating the biosynthesis of different phytoalexins allowed 
the use of molecular biology methods to investigate genes encoding enzymes involved 
in their synthesis. This has led to new technologies to improve plant resistance. 
Phytoalexins show enormous diversity in various chemical groups, such as terpenoids, 
phenolics, steroid glycoalkaloids, compounds containing sulfur and indoles [66].

3.1.4 Induced systemic resistance

In addition to its role in N fixation, rhizobium serves as a tool for biocontrol of 
plant pathogens by triggering systemic resistance in plants. This is referred to as 
Induced Systemic Resistance [67]. The latter prepares the plant for defense against 
various phytopathogens [68]. The mechanism by which a non-exposed part of a 
plant imparts resistance to pathogenic microbes etc. by earlier exposure with the 
former is termed as induced resistance, thus it is triggered by an inducer that can be 
a biological or chemical agent. This induced resistance is not only activated at the site 
of pathogen attack but also at the parts that are very far from the site of induction so 
called induced systemic resistance (ISR) (Figure 2) and this ISR provides resistance 
to broad spectrum pathogens. Systemic resistance provided by ISR is regulated by 
signaling pathways in which different hormones are involved [69].

Rhizobial species inducing systemic resistance are Pseudomonas, Bacillus, 
Trichoderma and Mycorrhiza. Stringlis et al. [70] observed that these rhizobia are 
involved in the biosynthesis of antibiotics, flagella, siderophores and other volatile 
compounds which in turn stimulate microbe associated molecular pattern triggered 
immunity (MTI). A signaling pathway is generated in response to the perception 
of any of the above-mentioned substances. This is followed by another signaling 
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pathway resulting in a systemic defense response [71]. Pattern-recognition receptors 
(PRRs) serve as sensors that have been evolved to differentiate and recognize bacte-
rial and fungal products called pathogen associated molecular patterns (PAMPS). 
Moreover, in case of the damage/invasion caused by the pathogen attack an endog-
enous signal is produced. The ISR imitation in plants requires microbes that can be 
beneficial as well as able to effectively colonize the plants root system [72]. Recently 
microbial aspects around the root micro-sites harboring bacteria and fungi slowly 
gained interest because of their potential to trigger resistance (induced systemic 
resistance ISR in case of bacteria/systemic resistance in case of other microbes) 
in plants as a measure of biocontrol [17]. For instance, 22 kDa xylanase isolate of 
fungal endophyte Trichoderma when introduced into the plant cells evokes the plant’s 
defensive response including potassium, hydrogen ions, calcium ion movements, PR 
protein synthesis, ethylene formation, glycosylation of phytosterols and fatty acid 
acylation [17]. Among the prominent changes taking place during ISR are:

1. Strength and stiffness in an epidermal and cortical plant cell wall.

2. Relocation of recently created barriers / blocks of impermeable lignin, callose 
and phenolic compounds away from an affected/entry site.

Plant responds to a number of biochemical signals induced by soil and  
plant-associated microbes. The strength and stability of its cross-talk signal play 
key role in determining the quality of resistance against pathogens. The interac-
tions with these microbes can be in the form of different relationship possibilities 

Figure 2. 
Graphical representation of biologically induced disease resistance generated by beneficial microbes (ISR). It 
involves transport of long-distance signals in form of Jasmonic acid- salicylic acid (J/A & SA) and systemically 
circulate an improved defensive potential against a broad-spectrum pathogen in other plant parts and helps in 
plant growth promotion (PGP) as well.
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(symbiosis, mutualism competition, predation, commensalism, etc. and host. At 
the initial stage, hypersensitive response gets active, a mechanism used by plants 
to prevent the spread of local infection by microbial pathogens [73]. While as for 
a positive mutual association both the host and the microbe must have to respond 
to the signals equally so that there is mutual benefit for both. In the association 
between the rhizobium and mycorrhiza, it has been studied that the host secretes 
strigolactones and flavonoids. Strigolactones are a class of plant hormones which 
are responsible for stimulation of branching and growth of mycorrhizal fungi. 
These strigolactones and flavonoids are also responsible for activation and produc-
tion of symbiosis (sym) and Nodulaton (Nod) factors by microbes. The manipu-
lated entry of rhizobium systematically triggers the whole downstream molecular 
defense system [67]. Which in turn builds a successful symbiotic relationship by 
activating common signaling pathways. By modifying the transcriptional program-
ing many free-living plant growths promoting rhizobacteria (PGPR) positively 
respond to the root exudates that are involved in chemotaxis, energy metabolism 
etc. [74]. The mode of action of ISR is priming for enhanced defense, it does not 
cause direct activation of systemic resistance. Elevated transcript levels of various 
transcription factors were found in Arabidopsiseg. AP2/ERF were highly expressed. 
Among these several members are involved in regulation of jasmonic acid (JA) and 
ethylene (ET) defensive pathways. ISR by soilborne microbes is mostly regulated 
by JA/ET pathway. In the rhizosphere ISR is responsible for microbial antagonism, 
any host pathogen interaction enriches the microbiome and thus provides protec-
tion against diseases. The production of elicitors by beneficial microbes is also 
required in order to result in the onset of systemic immunity [69] so that there is 
a balance between the costs and benefits of mutualism. Plant-growth-promoting 
rhizobacteria (PGPR) were successful in managing complex diseases such as 
anthracnose (Colletotrichum spp.), angular leaf spot and bacterial wilt (Erwinia 
tracheiphila). Oxidative changes were observed in soyabean roots after inocula-
tion with Bradyrhizobium japonicum [75]. With advancement of next generation 
sequencing technologies, it has been very easy to study the vast microbial diversity 
in the rhizosphere. Earlier studies have shown that there are different subsets 
of diversity in soil bulk, thus type of soil is an important factor for determining 
rhizosphere microbial community.

4. Mechanism in plant growth promotion

Modern agriculture is experiencing a number of challenges viz., poor soil fertility, 
serious pathogen and pest attacks, climate changes. Agricultural production must 
be sustainable and at the same time eco-friendly. This could be achieved by using 
environmentally sound approaches such as use of bio-fertilizers, bio-pesticides 
and by returning the crop residues to the soil thereby increasing the organic matter 
content of the soil. Application of crop residues to the soil resulted in increased yields 
compared to control [76]. Microbial inoculants which have been used for centuries, 
is a safer and relatively cheaper tool for promoting plant growth and improving 
soil health properties by different mechanisms [22]. Nitrogen fixing rhizobium 
bacteria live in association with legumes, infect them and form nodules in its roots. 
In case of non-legume crops they interact asymbiotically [77]. They are found in the 
rhizosphere to make use of the nutrients as the latter has plentiful nutrients oozed 
from roots of plants. They either have a direct or indirect control over plant growth, 
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by synthesizing phytohormones, control pathogen infestation by influencing the 
production of several enzymes like cellulase, protease, lipase and other such produc-
tions thereby inducing whole plant resistance against pests or by soil nutrient enrich-
ment through their nitrogen fixation and phosphate solubilizing ability. Microbial 
inoculants have multiple beneficial effects, particularly as plant growth promoters 
(PGP). Not only this but PGPR also help in combating a variety of abiotic stresses like 
temperature stress, salinity as well as drought stress, heavy metal toxicity and other 
types of abiotic stresses [3]. According to their closeness and interaction with the 
plant roots Rhizospheric bacteria have been classified as: (1) rhizosphere occupying 
bacteria (2) bacteria’s forming colonies at the surface of roots (3) bacteria’s living 
inside the roots (endophytes); and (4) bacteria’s residing in the cells of root nodules. 
Bacteria’s that belong to these groups are known as plant growth promoting rhizobac-
teria (PGPR) [78]. The bacteria belonging to 1 to 3 categories as extracellular PGPR 
(ePGPR) while the 4th category was named as intracellular PGPR (iPGPR). The ePGR 
includes following genera: Bacillus, Pseudomonas, Erwinia, Caulobacter, Serratia, 
Arthrobacter, Micrococcus, Flavobacterium, Chromobacterium, Agrobacterium, and 
Hyphomicrobium whereas Rhizobium, Bradyrhizobium, Sinorhizobium, Azorhizobium, 
Mesorhizobium and Allorhizobium belong to iPGR category. To strengthen the use of 
soil rhizobia for the attainment of sustainable and eco-friendly production methods 
a basic understanding of their functioning and means by which they facilitate plant 
growth is needed.

4.1 Plant growth promotion by direct mechanisms

4.1.1 Nutrient enrichment by Nitrogen fixation

Nitrogen is a macronutrient required by the plants for synthesizing proteins, 
nucleic acids and enzymes. Plants synthesize their food with the help of chlorophyll 
and nitrogen forms an essential component of chlorophyll. Despite the fact that 
the atmospheric air comprises of about 78% of nitrogen N, this gas is not available 
for use by the plants directly. Nitrogen application to crops has led to an enormous 
increase in food production which has eventually resulted in increased human popu-
lation. Haber-Bosch process being the source of industrial nitrogen fertilizers, has 
been regarded as the primary cause of explosive growth in human population [79]. 
Currently, large amounts of synthetic chemical fertilizers are being used in agriculture 
and these fertilizers have been used beyond their limits, moreover they are expensive 
and polluting. Application of chemical fertilizers liberates reactive nitrogen into 
the atmosphere which leads to emission of green-house gases and at the same time 
eutrophication of water bodies. The detrimental effects of fertilizer use become much 
more pronounced when these are applied injudiciously. The economic and most 
importantly environmental concerns make the use safer and relatively cheaper alter-
natives necessary. Biological nitrogen fixation, whether symbiotic or non-symbiotic 
is a potential alternative promoting plant growth and hence increasing production 
[80]. Plant growth promoting-rhizobia are able to perform biological nitrogen fixa-
tion (BNF) and thus help plants in nitrogen assimilation. They live in soil and after 
producing specialized structures (nodules) in legumes by infecting their roots, they fix 
the atmospheric nitrogen (N2) and convert the same into a more readily useable form 
i.e., ammonia (NH3) so that the plants can utilize it for their growth. These rhizobia 
in turn get organic acids which serves as a source of carbon and energy. Two classes 
of genes: 1. Nodulation (nod) genes and 2. nitrogen fixation (nif) genes are needed 
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for the establishment of a good association between rhizobia and plants. Bacterial 
genes present in plasmids, code for Nod and Nif proteins [81]. Mainly three nod genes 
namely nodC, nodB and nodA are involved in nitrogen fixation. In addition to this, 
other nod genes viz., nod, nol or noe have been found in some rhizobial species [82]. 
Nodulation genes code for the enzymes involved in production of nodulation factors 
(nod) [77]. The roots of leguminous plants produce flavonoids in the rootzone, these 
compounds stimulate the expression of nod genes in the bacteria. Their expression in 
turn produces the Nod factor, which is a lipochito-ologosachharidic nodulation signal. 
This signal triggers mitosis and nodule formation [83]. Nitrogen fixation genes include 
genes for nitrogenase. Nitrogenase forms the most important part of BNF. The enzyme 
has 2 components: a. dinitrogenase reductase and b. dinitrogenase. The former gives 
electrons to the later which reduces N2 to NH3. BNF involves different clusters of genes 
for nitrogen fixation and nodule formation in leguminous plants (Table 2) [77].

4.1.2 Phosphate solubilization

Phosphorus is another macronutrient essential for proper development of plants. 
Its deficiency can adversely affect plant growth. After nitrogen phosphorous is the 
most limiting nutrient for plant growth [84]. Phosphorus forms an integral part 

Function of the gene Gene

Nodulation genes

nodA Acyltransferase

nodB Chitooligosaccharide deacetylase

NodC N-acetylglucosaminyltransferase

Nod Transcriptional regulator of common nod genes

nodIJ Nod factors transport

nodPQ synthesis of Nod factors substituents

nodX Synthesis of Nod factors substituents

nofEF Synthesis of Nod factors substituents

Other nod genes Several functions in synthesis of Nod factors

nol genes Several Functions in synthesis of Nod factors substituents and secretion

NOE genes Synthesis of Nod factors substituents

Nitrogen fixing genes

nifHDK Nitrogenase

NifA Transcriptional regulator

nifBEN Biosynthesis of the Fe-Mo cofactor

fixABCX Electron transport chain to nitrogenase

fixNOPQ Cytochrome oxidase

fixLJ Transcriptional regulators

fixK Transcriptional regulators

fixGHIS Copper uptake and metabolism

fdxN Ferredoxin

Table 2. 
Genes involved in nitrogen fixation.
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of DNA and RNA, enzymes and phospholipids. Besides this, important processes 
like photosynthesis, formation of roots, flowers, ability of plants to cope up with 
diseases depend on the optimal levels of phosphorus [85, 86]. Although the soils 
are naturally rich in phosphorous reserves but the amount that is available to plants 
for their use is only a small fraction of the original amount present. This is because 
phosphorus is predominantly present in insoluble forms in soil and plants can only 
make use of phosphorus in soluble form i.e., the monobasic (H2PO4 -) and dibasic 
forms (H2PO4 2−). Phosphorus availability is governed by various factors such as pH 
of soil, soil temperature, amount of organic matter present in the soil, root system 
and most importantly soil microorganisms. The latter has a critical role in increasing 
P availability to plants. Soil P concentration ranges between 0.01-3 mg P L−1 which is 
very small compared to the amount that plants need for normal growth. Therefore, 
to make sure that the plants are not devoid of P, remaining amount is compensated 
by soil rhizobia using their phosphate solubilizing property. These rhizobia are 
referred to as phosphate solubilizing microbes (PSMs), having the ability to hydrolyze 
insoluble phosphorus in soil into readily soluble form. They develop a network in 
the rhizosphere around the plant roots, allowing them to absorb P from a broader 
area. The use of PSMs is an environmentally safe and cheap method to reduce the 
insufficiency of phosphorous and promote its absorption and assimilation by plants. 
PSMs are able to convert the insoluble phosphorus into soluble form by lowering the 
pH, chelating cations and mineralization [84]. Application of phosphate solubiliz-
ing bacteria belonging to following genera: Achromobacter, Agrobacterium, Bacillus, 
Pseudomonas, Erwinia, Flavobacterium, Microbacterium and Rhizobium has resulted in 
increased phosphorus uptake and eventually higher yields.

4.1.3 Potassium solubilization

A diverse range of soil microorganisms such as saprophytic bacteria, fungi, and 
actinomycetes show potential to solubilize potassium effectively converting soil 
K to plant-available forms [87–90]. Among these, solubilizing bacteria (KSB) can 
dissolve K-rich materials and convert insoluble K to soluble forms that plants can 
absorb. Although some KSB can work anaerobically, the majority of these are aerobic. 
The potassium solubilizing rhizobacteria (KSR) use a number of ways to make the 
K available to plants. Mechanisms such as Acidolysis, chelation, exchange reactions, 
complexolysis, and the production of organic acids are few well known alternatives. 
The acidolysis (organic and inorganic acids, as well as the synthesis of protons) is 
the main mechanism of K mineral solubilization [87, 91–95]. Formation of organic 
acids by KSB that are useful in releasing K from K-bearing minerals include oxalic 
acid, tartaric acids, gluconic acid, 2-ketogluconic acid, citric acid, malic acid, suc-
cinic acid, lactic acid, propionic acid, glycolic acid, malonic acid and fumaric acid 
[96–103]. Tartaric acid, citric acid, succinic acid, ketogluconic acid, and oxalic acid 
are the most effective acids secreted by KSB among the several organic acids involved 
in the solubilization of insoluble K. Acidothiobacillus ferrooxidans, Paenibacillus spp., 
Bacillus mucilaginosus, Bacillus edaphicus, and Bacillus circulans are among the bacteria 
that can solubilize K minerals such as biotite, feldspar, illite, muscovite, orthoclase, 
and mica [96, 104]. It has been observed that B. mucilaginosus, B. circulanscan, B. 
edaphicus, Burkholderia, A. ferrooxidans, Arthrobacter sp., Enterobacter hormaechei, 
Paenibacillus mucilaginosus, Paenibacillus frequentans, Cladosporium, Aminobacter, 
Sphingomonas, Burkholderia, and Paenibacillus glucanolyticus solubilize K from silicate 
rocks. Further, B. mucilaginosus, B. edaphicus, and B. circulanscan have been identified 
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as excellent K solubilizers in soil bacterial populations [88, 89]. Furthermore, micro-
bial degradation of organic materials produces ammonia and hydrogen sulphide, both 
of which can be oxidized in the soil to make powerful acids like nitric acid (HNO3) 
and sulfuric acid (H2SO4). Consequently, K+, Mg2+, Ca2+, and Mn2+ are displaced 
from the cation-exchange complex in soil by hydrogen ions [105]. Organic acids pro-
duced by KSB can liberate K ions from the K mineral via complexing agent Si4+, Al3+, 
Fe2+, and Ca2+ ions (chelating) linked with K minerals, additional to decreasing soil 
pH [106, 107]. In addition, accumulation of diverse extracellular polymers (mainly 
proteins and polysaccharides) has also been linked to the release of K from K-bearing 
minerals [99, 103, 108]. Such substances act as adhesive structures to the surface of 
minerals or rocks. Fresh microbial EPS (exopolysaccharides) solution, for example, 
accelerates the dissolution rate of feldspars by forming complexes with framework 
ions in solution (Welch and Vandevivere 1994). Other PGPRs (for example, IAA-
producing bacteria) may also play a role in delivering K to plants via boosting root 
exudates [109].

Under greenhouse and field circumstances, studies have demonstrated that inoculating 
seeds and seedlings of many plants with KSB improves germination percentage, seedling 
vigor, plant development, yield, and K uptake [87, 88, 110–115]. Several studies show that 
KSB inoculation improves the growth of a variety of crops [101, 103, 112, 116–125]. Overall, 
studies indicate application of KSB as bio-fertilizers for agriculture development can reduce 
the usage of agrochemicals while also promoting sustainable crop production

4.1.4 ACC deaminase production

The infection caused in the roots by rhizobium bacteria during nodule formation 
results in stress conditions. Consequently ethylene, a stress regulating hormone, 
inhibits the infection put forth by the bacteria, besides restricting nodulation and 
root growth [126]. Specific genes are involved in the interaction mechanisms of 
Rhizopheric bacteria with the plants by means of which they influence their growth. 
One of these genes encoding for the enzyme ACC deaminase, is involved in cleaving 
ACC, the precursor of ethylene biosynthesis produced by plants. ACC deaminase 
degrades ACC into ammonium and ketobutyrate and prevents ethylene biosynthesis 
[127]. Under limited ethylene concentration, rhizobial colonization of the roots is 
enhanced which result in the formation of a greater number of nodules on the host 
plant. Horizontal Gene transfer allows the spread of acdS within the species [128]. 
However, the genetic analysis carried out by Nascimento et al. [129] revealed that 
acdS are inherited vertically during evolution. Glick, [22], confirmed that the bacteria 
which produce IAA synthesize high level of ACC deaminase which inhibits ethylene 
biosynthesis and promote plant growth, root nodulation and increase uptake of miner-
als from the soil. Rhizobial strains including R.leguminosarum, R. hedysari, R. gallicum, 
B. elkani and S. meliloti have been reported to synthesize ACC deaminase [3].

4.2 Plant growth promotion by indirect promotions

4.2.1 Salt stress and osmotic stress

Plant growth improvement has been of great concern since the beginning of 
agriculture. There are various abiotic factors including temperature, pH, heavy metal 
toxicity, salt stress which obstruct plant growth and crop productivity [130]. Among 
them salinity stress is a real hazard for plant growth and production. Under saline 



Sustainable Crop Production - Recent Advances

16

conditions plants uptake high amounts of salt which interferes with their physiologi-
cal and metabolic processes which hampers their growth and makes their survival 
difficult. Reclamation of saline soils by conventional methods i.e., adding soil amend-
ments like gypsum, calcium etc. do not help to overcome salinity stress completely, 
moreover they adversely affect the ecosystem. Therefore, for the enhancement of 
plant growth and productivity, development of sustainable and safer methods is of 
utmost importance [131]. Large number of microbes belonging to different genera 
of salt tolerant plant growth promoting rhizobacteria (ST-PGPR), present in the 
soil are able to tolerate salinity stress as well as promote plant growth [132]. These 
rhizobacteria (ST-PGPR) include genera Pseudomonas, Enterobacter, Agrobacterium, 
Streptomyces, Bacillus, Klebiella and Ochromobacter [133, 134]. Salt-tolerant rhizobium 
isolated from legumes growing in sand dune sand tree legume [135] were able to 
tolerate upto 2.5–3% of NaCl concentration. In 2018, Zhang et al. [136] isolated 305 
bacterial strains and found that 162 out of 305 could grow in NaCl concentration of 
150 g/l. For boosting nitrogen fixation and productivity in high salt containing soils 
co-inoculation of legumes with salt tolerant rhizobial bacteria is a sustainable solu-
tion. Under non saline and saline condition silicon was found to enhance growth and 
nitrogen fixation in leguminous plants [137].

4.2.2 Temperature stress

Worldwide climate change had led to an increase in temperature, which adversely 
effects plant growth and development. Elevated temperatures result in decreased 
rate of photosynthesis, negatively influence plant water relations, flower and fruit 
development. Soil rhizobia indirectly help plants to combat heat stress. Most rhizobia 
prefer an optimum temperature range of 25–30°C for their growth, however, during 
their life cycle they experience a temperature out of this range. The growth promo-
tion effect of different PGPR strains in plants was attributed to their nitrogen fixing 
ability but these effects were noticed prior to the beginning of nitrogen fixation [138]. 
This shows that the favorable effects of rhizobium in alleviating temperature stress 
does not depend on nitrogen status. It is due to stimulation of genes to express under 
high temperature stress conditions. The expression of these genes is regulated by 
heat stress transcription factors (Hsfs) [139]. HSPs are a family of proteins that are 
induced by a sudden temperature rise, they include chaperones and proteases, which 
confer high temperature tolerance to bacteria and thus contribute to the tolerance 
mechanism [140]. A microarray study conducted in Sinorhizobiummeliloti showed 
that 169 genes, which included the genes coding for HSPs and chaperones, were up 
regulated under high temperature conditions. Chaperones, like DnaK–DnaJ and 
GroEL–GroES, form an important component of the heat shock response. After heat 
shock, the hydrophobic domains of proteins are exposed, and they get denatured. 
These chaperons help the denatured proteins to get back to their original conforma-
tion [141]. The increased expression of chaperone genes was induced in heat tolerant 
strains compared to the strains of the same species that were sensitive to heat. Under 
high temperature stress HSPs increase the stability of cell membrane, thereby confer-
ring heat tolerance to both, rhizobacteria as well as the plant under stress. Breeding of 
heat tolerant or development of transgenic heat tolerant cultivars is a laborious and 
less economic method. Hence, the application of rhizobacterial inoculants to plants 
under temperature stress should be preferred as it is relatively cheaper and less time 
consuming. Various physiological and biochemical changes in plants, are induced by 
low temperature resulting in poor plant growth and low crop survival rates [142]. 



17

DOI: http://dx.doi.org/10.5772/intechopen.102657
Potential Applications of Rhizobacteria as Eco-Friendly Biological Control, Plant Growth…

Rigidification of membranes due to the decreased fluidity of cell membrane is one of 
these changes that plants experience when exposed to chilling stress [143]. Response 
to cold shock results in the synthesis of cold shock proteins (CSPs). Rhizobia strains 
isolated from the wild relative of chickpea at low temperatures (9–15°C), successfully 
nodulated chickpea, indicating that it could serve as a potential microbial inoculant 
under low temperature conditions to maintain the normal functioning of plants. 
Symbiotic association of rhizobium with alfalfa enhances its tolerance to low temper-
ature by regulating important physiological and metabolic processes. The oxidative 
enzymes were more active in AN (active nodules) and IN (inactive nodules) groups, 
providing higher cold tolerance to these plants [144].

4.2.3 Oxidative stress

Plants, in response to various kinds of environmental stresses such as biotic and 
abiotic stress produce reactive oxygen species (ROS). Examples of ROS are singlet 
oxygen (1O2), superoxide anion (O2−), hydrogen peroxide (H2O2) and hydroxyl radical 
(OH-). Accumulation of reactive oxygen species (ROS) as a result environmental 
stress is detrimental for plant growth as they modify the primary cell constituents like 
DNA, lipids, proteins etc. [145]. PGPR reduce the deleterious effects of ROS by pro-
ducing antioxidant enzymes [146, 147] which include peroxidase (POD), superoxide 
dismutase (SOD), catalase (CAT), nitrate reductase (NR) and glutathione reductase 
(GR) and thus help in maintaining plant growth and crop productivity [148]. Based 
on the results of Shen et al. [149] it could be concluded that due to the activation of 
antioxidant machinery by the rhizobium inoculants, their use is the most effective 
way for enhancing plant growth and mitigating stress induced by ROS.

4.2.4 Metal stress

Heavy metals occur naturally in soils; however, their increased quantity is undesir-
able and has become a global concern over the time [150]. Anthropogenic activities like 
atmospheric pollution, industrial waste disposal, mining, and other practices predomi-
nantly contribute to heavy metal toxicity [151]. Heavy metal toxicity leads to inhibition 
of chlorophyll biosynthesis and proteins required for proper growth of plants and their 
normal functioning. Plant growth promoting rhizobacteria have the ability to control 
heavy metal pollution of soils as well as enhancing plant growth in these soils [152]. 
Bacteria’s producing siderophores promote plant growth besides enhancing their nutrient 
uptake potential under heavy metal stress conditions. Rhizobacteria have been found to 
release metal-chelating substances (siderophores) in rhizosphere by means of which they 
affect the bioavailability of toxic heavy metals and their uptake by plants significantly. 
They transform these compounds into a less toxic form and promote their precipitation, 
absorption or adsorption. Plant associated rhizobia can be used for bioremediation, 
as they enhance the phytoextraction and phytostablization potential of plants [153]. 
By phytoextraction, plants carry the contaminants from the soil with the help of their 
roots and eventually collect these contaminants in the aboveground parts of the plant 
[154]. Phyto-stablization on the other hand, immobilizes the soil contaminants. The 
contaminants either get adsorbed on the root surface or absorbed by the roots or they 
are transformed into less soluble compounds. Phytoremediation has been accelerated by 
the application of rhizobacterial species such as Bacillus, Pseudomonas, Azotobacter [155]. 
Thus, efficient bioremediation is possible by using rhizobacterial inoculants, still distribu-
tion and functioning of microbes in rhizosphere needs to be fully explored.
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5. Conclusion and future prospective

Rhizobia have enormous potential in terms of innovative and more sustainable crop 
management approaches; yet, we only comprehend a small portion of this potential. 
The effectiveness of strains of rhizobia documented in this chapter emphasizes the 
unique qualities of plant growth induction, defense pathways, and the resilience 
spectrum available against different environmental stresses on a wide range of agri-
cultural crops. Although it is the most investigated bacteria which finds its application 
in agriculture practices but only few strains are widely known for their efficiency 
and effective application in disease management, nutrient uptake and signaling 
compounds they produce. These are often used for promoting plant development, 
particularly in challenging situations like heat and drought, which are becoming more 
common as climate change proceeds. The discovery of such possible rhizobia strains, 
as well as the development of a viable technology for use by agricultural producers, are 
still in their early stages. Thus, we conclude that a definite and real improvement in 
the long term lies with the use of advanced analytical tools and their unification with 
classical experimental techniques to comprehend and then further exploit soil–plant-
microbe associations for ecofriendly and enhanced crop production. The identification 
of such promising rhizobia strains would allow for the extension of this study area, as 
well as improved agricultural sustainability.
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