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Chapter

An Efficient Region Merging
Algorithm in Raster Space
Borut Žalik, David Podgorelec, Niko Lukač,

Krista Rizman Žalik and Domen Mongus

Abstract

This work introduces a new region merging algorithm operating in raster space
represented by a 4-connected graph. Necessary definitions are introduced first to
derive a new merging function formally. An implementation is described after that,
which consists of two steps: a determination of the shared trails of the input cycles, and
construction of the resulting merged region. The cycles defining the regions are
represented by the Freeman crack chain code in four directions. The algorithm works in
linear time O nð Þ, where n is the number of total graph vertices, i.e. pixels. However, the
expected time complexity for onemerging operation performed by the algorithm isO 1ð Þ.

Keywords: computer science, algorithms, 4-connected graph, merging function,
chain code

1. Introduction

Region merging is one of the most commonly performed tasks in image processing
that enables Object-Based Image Analysis (OBIA). Early approaches to OBIA
performed image segmentation by the classical split and merge approach. Here, a
meaningful partition was defined by applying a split process to define a set of ele-
mentary (homogeneous) regions that are then merged under certain conditions [1].
The latter may be based on geometric attributes like area, texture attributes like
statistical moments of intensity distribution, shape attributes like shape factors, or any
of their combinations [2–4]. On the other hand, more recent approaches to OBIA
focus on hierarchical image segmentations that are based on scale-space representa-
tion, i.e. a set of image segmentations at different detail levels, in which the segmen-
tation at finer levels are nested with respect to those at coarser levels [1, 5]. Some
popular examples of such hierarchies include max-tree [6], α-tree [7, 8], and water-
shed hierarchies [9]. Unfortunately, hierarchical segmentation results in a huge num-
ber of nested partitions, which have to be merged efficiently. The region merging
becomes in this way one of the most critical parts of the segmentation process.

Region merging can be considered from different theoretical aspects. A set merg-
ing problem, which has a long history in computing, is the first of them. Hopcroft and
Ullman [10] proposed two algorithms based on quadtrees, both working in O n log nð Þ
time, where n is the number of elements in the sets. In the first algorithm, the elements
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can be placed only in the leaves, while, in the second algorithm, the elements can exist
in any of the tree vertices. Another tree-based algorithm was proposed by Tarjan [11]
with the time complexity of O m α m, nð Þð Þ, where α m, nð Þ is related with the inverse
Ackermann function, while m and n correspond to the numbers of elements in both
sets. His algorithm was also used by Najman et al. [9] for hierarchical watershed cuts.
Tarjan and van Leeuwen [12] performed the worst-case analysis of the algorithms and
concluded that the linear-time set-merging algorithm remains an open problem.
Cormen et al. [13] also considered merging of the disjoint sets using either linked lists
or trees. Another solution for merging regions was introduced by Horowitz and
Pavlidis [14]. This method is also based on quadtrees, with, as pointed out by Brun and
Domenger, considerable limitations [15]. They recognised that the regions differ
importantly from the classical understanding of the sets. Namely, the elements of the
regions also have spatial attributes (i.e. raster coordinates), and, therefore, it is possible
to determine the border of the regions uniquely. Brun and Domenger developed a
method by placing the image in the Khalimsky plane [16]. The region is considered as a
set of topological maps which are mapped in the Euclidean plane. Another approach is
based on the theory of geometric and solid modelling [17, 18], where merging is
considered as a special case of the Boolean union. The so-called regularised Boolean
operations were introduced to preserve the dimension homogeneity of the resulting
object [19]. The solution is, typically, found in two steps. First, the intersection points
between the involved geometric objects are determined, and second, the resulting
shape is determined by the so-called walkabout. In 2D, the first part is solved in the
expected time O nþmð Þ log nþmð Þ þ Ið Þ, where n and m are the number of vertices
determining the input polygons, and I is the number of actual intersections [20]. If the
proper data structure is used, the second step is realised in linear time. Such data
structures have been proposed by Grainer and Horman [21], Vatti [22], and Liu et al.
[23]. Rivero and Feito [24] proposed an approach for Boolean operations on polygons
based on the theory of simplices. Their idea was later improved in ref. [25]. Very
recently, an algorithm for Boolean operations for rasterised shapes was presented in
ref. [26]. A space-filling curve was applied for the determination of the intersected
pixels, while the walkabout was performed with a Greiner and Horman-like data
structure. The proposed geometric approaches, however, cannot be applied in the
OBIA, as they are based on the theory of regularised Boolean operations, which pre-
serves the dimensional homogeneity of the resulting objects strictly. Consequently, this
approach cannot handle all possible cases which may appear during region growth.

In this chapter, a new solution is proposed for a general region merging problem
suitable for hierarchical OBIA. The main contributions are a theoretical derivation of
the merging function in the raster space, represented by a 4-connected graph, and a
proposal of an efficient implementation based on chain codes that ensure compact
region representation.

The chapter is structured in five sections. Section 2 introduces the problem and
formalises it. Brief implementation hints are given in Section 3. Section 4 presents
empirical results, while Section 5 concludes the chapter.

2. Definitions

The key terms, needed to present the problem and to derive its formal solution, are
defined in this section. Among other concepts, the region, raster space, and region
merging are defined, which appeared in the title of this chapter.
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Directed graph. G ¼ V,Eð Þ defined by a vertex set V ¼ vif g and an edge set E ¼

ei, j
� �

is a directed graph if E is given by ordered pairs (directed edges) of vertices

ei, j ¼ vi, v j

� �

.
Raster space. Let G ¼ V,Eð Þ be a directed graph. If V is determined by regularly

spaced vertices vi ¼ xi, yi
� �

with integer coordinates xi ∈ 0,X½ � and yi ∈ 0,Y½ �, and E

imposes 4-connectivity on them, then G defines the raster space. In other words, for
each pair of adjacent vertices vi, v j linked by edge ei, j ∈E, there exists either relation

ei, j ! x j, y j

� �

¼ xi � 1, yi
� �

or ei, j ! x j, y j

� �

¼ xi, yi � 1
� �

. Each vertex can also be

linked to itself, thus, ∀vi ∈V ! ei,i ∈E.
Intuitively, a region is a group of connected raster cells (grid cells or pixels). It may

be represented either as a collection of the pixels themselves or by its boundary. This
second possibility is used in this work. It is based on the concepts of trail and cycle
which must, therefore, be introduced first.

Trail. Trail ti0,iL ¼ vi0 , vi1 , … , viLh i in G with length L is a sequence of adjacent
vertices where for each pair vil , vilþ1 ∈ ti0,iL ! eil,ilþ1 ∈E. Trails ti0,iL and t j0, jK are

connected if they share at least one subtrail, i.e. if a set of subtrails T ¼ ti0,iL ∩ t j0, jK 6¼ Ø.

Figure 1 shows two cases of connected trails. Trails t0,6 and t7,8 are connected
through subtrail t4,4 ¼ v4, v4h i in Figure 1a, while trails t0,6 and t9,7 in Figure 1b share
two subtrails, namely T ¼ t0,6 ∩ t9,7 ¼ t1,1, t3,5f g, where t1,1 ¼ v1, v1h i and t3,5 ¼
v3, v4, v5h i. The shared subtrails will be hereinafter referred to as the intersection trails.

Trail ti0,iL can be split into two trails ti0,il and tilþ1,iL at any vil ∈ ti0,iL. ti0,iL is, therefore,
a concatenation of ti0,il and tilþ1,iL as formally shown in Eq. (1):

ti0,iL ¼ ti0,il
_tilþ1,iL : (1)

Cycle. Trail ti0,iL ¼ vi0 , vi1 , … , viLþ1
� 	

is cycle ci0,iL ¼ vi0 , vi1 , … , viLh i, if i0 ¼ iLþ1. As
each vertex can be linked to itself, the smallest cycle ci0,i0 ¼ vi0h i is defined by trail
ti0,i0 ¼ vi0 , vi0h i. Contrary to the traditional definition of cycle, we do require that all
vertices, except the end vertices, are distinct in ci0,iL. Any cycle can, because of this, be
composed of more than one cycle, where intermediate vertices are contained more
than once.

Figure 1.
Connected trails: (a) t0,6 ¼ v0, v1, v2, v3, v4, v5, v6

� 	

, t7,8 ¼ v7, v4, v8
� 	

, (b) t0,6 ¼ v0, v1, v2, v3, v4, v5, v6
� 	

,

t9,7 ¼ v9, v1, v8, v3, v4, v5, v7
� 	

.
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Figure 2 shows examples of two cycles. The one in Figure 2a contains each vertex
exactly once, while vertices v2, v3, and v4 are contained twice in the cycle in Figure 2b.
Note that any cycle can be rotated by any number of vertices 0< l≤L, i.e. ci0,iL ¼

vi0 , vi1 , … , viLh i ¼ vil , vilþ1 , … , viL , vi0 , vi1 , … , vil�1
� 	

¼ cil,il�1 . Its decomposition can then
be described as concatenation from Eq. (2):

ci0,iL ¼ til,ik
_tikþ1,lL�1 : (2)

As shown in Figure 3, any subtrail til,ik ⊆ ci0,iL , 0≤ l, k≤L, can be removed from
cycle ci0,iL according to Eq.(3). The obtained result is also a subtrail.

tikþ1,il�1 ¼ ci0,iLntil,ik : (3)

Let ci0,i3 ¼ vi0 , vi1 , vi2 , vi3
� 	

be an elementary clockwise oriented cycle, where vi0 ¼

xi, yi
� �

, vi1 ¼ xi, yi þ 1
� �

, vi2 ¼ xi þ 1, yi þ 1
� �

, and vi3 ¼ xi þ 1, yi
� �

. This elementary

cycle defines a grid cell, with its interior on the right side of each edge eil,ilþ1 ¼

vil , vilþ1
� �

, 0≤ l≤ 3 as shown in Figure 4.
Region. The region R is either a grid cell defined by an elementary clockwise

oriented cycle or a group of grid cells bounded by the resulting cycle(s) of the region
merging function (defined soon after this definition). For simplicity, a region will be
equated with its boundary in the continuation, i.e. Rwill be treated as a cycle or a set
of cycles.

Figure 5 shows the result of merging two elementary cycles ci0,iL and c j0, jK
L ¼ K ¼ 3ð Þ, which share either an edge (Figure 5a) or a vertex (Figure 5b). It
indicates that the resulting merged region is defined by a concatenation of both

Figure 2.
Cycles: (a) c0,7 ¼ v0, v1, v2, v3, v4, v5, v6, v7

� 	

, (b) c0,10 ¼ hv0, v1, v2, v3, v4, v5, v6, v7, v4, v3, v8, v9, v2, v10i.

Figure 3.
Removing trail til,ik (on the right) from cycle ci0 ,iL results in subtrail tikþ1 ,il�1 (on the left).
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elementary cycles without their intersection ci0,iL ∩ c j0, jK . Note, however, that ci0,iL and

c j0, jK are both oriented in the clockwise direction, and, therefore, the orientation of the

shared edges is opposite. To make them equal and, thus, to make their intersection

non-empty, the orientation changing operation is defined here, such that ci0,iL
 

 ¼

viL , viL�1 , … , vi0h i. Figure 6 shows an example of merging two non-elementary cycles
which still share a single, but longer intersection trail. A similar conclusion as above
may be made. The region merging function may be formally defined now.

Region merging function. Two cycles ci0,iL and c j0, jK , which share a single intersec-

tion trail til,ik can bemerged into a region R by a merging functionM defined by Eq. (4):

M ci0,iL , c j0, jK , til,ik
� �

¼ ci0,iLn ci0,iL ∩ c j0, jK
 



� �� �
_

vil
� 	

_

c j0, jKn c j0, jK ∩ ci0,iL
 



� �� �
_

vik
� 	

¼

¼ ci0,iLntil,ik
� �

_

vil
� 	

_

c j0, jKnt jn, jm
� �

_

vik
� 	

¼

¼ tikþ1,il�1
_ vil
� 	

_

t jmþ1, jn�1
_ vik
� 	

¼

¼ tikþ1,il�1
_ v jm

� 	
_

t jmþ1, jn�1
_ v jn

� 	

:

(4)

Figure 4.
Elementary cycle ci0,i3 enclosing a grid cell.

Figure 5.
Merging two elementary cycles with a shared edge (a) and vertex (b); the resulting cycles are in violet.
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In a general case, where the intersection of the input cycles consists of more trails,
the merged region R is defined by Eq. (5):

R ¼ ⋂
t
hð Þ
il ,ik

∈Ti

M ci0,iL , c j0, jK :t
hð Þ
il,ik

� �

: (5)

Eq. (4) is thus applied when ∣Ti∣ ¼ ∣T j∣ ¼ 1, where Ti ¼ tik,il
� �

¼ ci0,iL ∩ c j0, jK
 

 and

T j ¼ t jm, jn
� �

¼ c j0, jK ∩ ci0,iL
 

. On the other hand ∣Ti∣ ¼ ∣T j∣> 1 implies utilisation of

Figure 6.
Merging of two non-elementary cycles whose intersection trail is a longer sequence of edges.

Figure 7.
Applying Eq. (5) to merge two cycles whose intersection consists of two intersection trails, i.e. ∣Ti∣ ¼ 2.
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Eq. (5) and each intersection trail then results in a new cycle. ∣Ti∣ cycles are, therefore,
constructed, and the resulting region is described by the intersection of these cycles.
Note that h, such that 0≤ h< ∣Ti∣, is an index of the intersection trail in Eq. (5). It is
obvious that Eq. (5) is valid also when ∣Ti∣ ¼ 1.

Figure 7 shows an illustrative example. The set of intersection trails is Ti ¼

ti5,i6 , ti8,i9
� �

. Applying Eq. (4) on the intersection trail ti5,i6 ∈Ti results in Figure 7b.
Similarly, using Eq. (4) on the second intersection trail ti8,i9 ∈Ti gives Figure 7c. The
final result is then obtained as an intersection (Eq. (5)) between cycles from Figure 7b
and c. As seen in Figure 7d, the resulting region R consists of two cycles, which are
exactly the same as ∣Ti∣.

3. Implementation

The concept of chain codes is used to represent regions R⊆G in the presented
method. The chain code, introduced by Freeman [27], consists of a few simple
commands by which navigation through the edges of G is made possible.
Freeman proposed two chain codes known as Freeman chain code in eight (F8) and
four (F4) directions. Other chain codes were discovered by Bribiesca (Vertex Chain
Code, VCC) [28], Sánchez-Cruz and Rodríguez-Dagnino (Three-Orthogonal chain
code, 3OT) [29], Žalik et al. (Unsigned Manhattan Chain Code, UMCC) [30], and
Dunkelberger and Mitchell (Mid-crack Chain Code) [31]. In general, there are two
types of chain codes: those operating on raster pixels and those working with raster
edges. The latter is known as crack-chain codes [32, 33]. F4 is the only chain code which
can be used in both contexts, and its crack interpretation is used in this algorithm.

The F4 alphabet consists of four commands/symbols σi ∈ΣF4, ΣF4 ¼ 0, 1, 2, 3f g,
shown in Figure 8. Let σih i be the sequence of F4 commands. To embed the chain
code in G, the position of the chain code starting vertex v0 is needed, while the
positions of the remaining vertices are determined from the F4 commands according
to Eq. (6):

viþ1 ¼

xi þ 1, yi
� �

, if σi ¼ 0;

xi, yi � 1
� �

, if σi ¼ 1;

xi � 1, yi
� �

, if σi ¼ 2;

xi, yi þ 1
� �

, if σi ¼ 3:

8

>
>
>
<

>
>
>
:

(6)

Figure 8b shows the elementary cycle ci0,i3 determined as vi0 1, 0, 3, 2h i, where

vi0 ¼ xi0 , yi0

� �

are the coordinates of the cycle’s starting vertex.

Figure 8.
F4 chain code symbols (a); the elementary cycle described by F4 chain code symbols (b).
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Any region in G can be represented in this way. For example, regions containing
more cycles are shown in Figure 9, where, for better presentation, the inner cells of
the region are shadowed. According to the definitions from Section 2, a vertex vi ∈R
can be part of two cycles at the same time, or, within each cycle, vi can be passed
twice, too. In the continuation, the cycle corresponding to the outer border of R is
considered as a loop, while cycles representing holes are named rings [19]. The
orientation of the loop is clockwise, while the rings’ is the opposite (Figure 9).

A data structure for representing R is shown schematically in Figure 10. It consists
of an array of starting points and an array of F4 chain code sequences. The loop is
always located at index 0, and k, k≥0, rings follow in an arbitrary order. The
algorithm, which implements Eq. (5), consists of two main steps:

• Determining the intersection trails Ti between cycles of input regions and

• Realising Eq. (5) by performing a walkabout through the edges not in Ti.

Figure 9.
Region with two rings: The rings’ vertices (green, black) can be shared with the loop (red); the vertices within the
loop can be used twice.

Figure 10.
Data structure of region R: Array of starting points (left) of individual cycles and the corresponding sequences of F4
chain codes (right).
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3.1 Determining the intersection trails

Determination of intersection points between edges of regions can be related with
the problem of finding intersections between polygon edges. As the naive implemen-
tation of the latter works with O n2ð Þ time complexity, various approaches were
suggested to reduce it [13, 34–36]. The presented solution exploits the fact that
regions Ri and R j are embedded into common directed graph G, i.e. Ri ∈G∧R j ∈G.
The following data are associated with each vertex vi ∈G:

• two pointers (Pi1 and Pi2) into an array of F4 symbols for region Ri (one or both
pointers can be NULL),

• two pointers (LRi1 and LRi2) pointing to the loop, or to the corresponding ring of
region Ri (similarly as above, one or both pointers can be NULL), and

• the same information for region R j.

Let us consider the example in Figure 11, where the loop’s edges of Ri are plotted in
red, the edges of its ring in black, while edges of region R j are in cyan. The content of
data structures for both regions is given in Table 1. Table 2 shows the information of
some characteristic vertices in G. Vertex va, for example, belongs to Ri, its Pi1 points
to the index 1 in the array of F4 chain codes, and the vertex belongs to the loop
(LRi2 ¼ 0). Vertex v f is met two times by the edges of the Ri loop and, therefore,

two pointers are pointing to the 3rd and 15th positions. Vertex vh is the most

interesting. In this vertex three cycles are met. Pointer Pi1 points to the 7th Ri loop

Figure 11.
Regions Ri (red and black) and R j (cyan) embedded into G, and some characteristic vertices considered in
Table 2.
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position, and Pi2 points to the 3rd position of the first Ri ring. The loop of R j is accessed
by the chain code command stored at position 9 in the F4 array.

Having marked the vertices in G properly, it is easy to determine the intersection
trails. The region with the smallest number of edges is found (let us suppose it is R j),
and all its vertices are visited. The sequence of edges marked with pointers of both
regions is identified as being a part of the intersection trail.

3.2 Performing the walkabout

Those trails which were not labelled as the intersection ones, are united into the
new region by the algorithm, consisting of the following steps:

1.Mark all edges from intersection trails as visited and the remaining edges as not
visited.

2.Find an arbitrary non-visited edge e∈R j. If such edge does not exist, jump to step 9.

Vertex in Figure 11 Pi1 Pi2 LRi1 LRi2 P j1 P j2 LR j1 LR j2

va 1 / 0 / / / / /

vb 2 / 0 / 2 / 0 /

vc 5 / 0 / 1 / 0 /

vd 6 / 0 / 0 / 0 /

ve / / / / 7 / / /

v f 3 15 0 0 / / / /

vg 4 0 0 1 / / / /

vh 7 3 0 1 9 / 0 /

vi 8 / 0 / 8 / 0 /

v j 13 1 0 1 / / / /

(NULL pointers are marked with ’/’)

Table 2.
The content of G at specific vertices marked in Figure 11.

i: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ri 0 (1, 3) F4: 1 0 3 0 1 0 3 0 3 2 3 2 1 2 1 2

i: 0 1 2 3

1 (3, 3) F4: 3 0 1 2

R j i: 0 1 2 3 4 5 6 7 8 9

0 (4, 2) F4: 2 2 1 0 0 0 3 3 2 1

Table 1.
Data structures for regions Ri and R j from Figure 11.
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3.The initial vertex of e is chosen as the starting vertex vs for the walkabout. An
empty queue Q is created.

4.Walk along the edges of R j, mark each passed edge as visited and store passed F4
commands into Q until vs is met, or the vertex with set Ri pointer is reached.

5.If vs is reached, go to step 8, otherwise switch to the edge of region Ri using the
pointer stored at the vertex from G.

6.Walk along the edges of Ri, mark each passed edge as visited and store passed F4
commands into Q until the vs is met or the vertex with R j pointer is detected.

7.If vs is not reached yet, switch to the region R j using the pointer stored at the
considered vertex, and go to step 4, otherwise go to the next step.

8.Store the obtained cycle into the list of cycles LoC and return to step 2.

9.Insert non-visited cycles of input both regions Ri and R j into LoC.

10.Find the loop in LoC; all others cycles in LoC represent rings of the merged
region R.

These steps are highlighted in Algorithm 1. The decision whether the cycle defines
a loop or a ring depends on its orientation. It can be determined by Eq. (7), where
Q ¼ σih i (F4 chain code commands σi are treated as integers for this purpose).

o ¼
X∣Q ∣�1

i¼0

�1 : σi ¼ 0∧σ iþ1ð Þmod ∣ΣF4∣ ¼ ∣ΣF4∣� 1

1 : σi ¼ ∣ΣF4∣� 1∧σ iþ1ð Þmod ∣ΣF4 ∣ ¼ 0

σ iþ1ð Þmod ∣ΣF4∣ � σi : otherwise

8

>
>
<

>
>
:

(7)

The equation evaluates each right turn with �1 and each left turn with 1. The
clockwise oriented cycles result in o ¼ �4, while the counter-clockwise cycles achieve
o ¼ 4.

Algorithm 1 Merging regions Ri and R j.

1: function MERGE(G, Ri, R j)
2: ⊳ function merges regions Ri and R j embedded in graph G

3: Insert(G, Ri, NonVisited) ⊳ insert region into G, mark edges as NonVisited
4: Insert(G, R j, NonVisited)
5: MarkIntersectionEdges(G,Ri,R j) ⊳ intersection edges are marked as Visited
6: e = GetNonVisitedEdge(R j)
7: LoC ¼ f g ⊳ List of Cycles should be empty
8: while Visited(R j, e) = NonVisited do
9: CycleFound = false

10: Q ¼ f g ⊳ clear the queue containing F4 symbols
11: Q ¼AddF4Symbol(Q, R j, e) ⊳ add F4 chain code symbol of e
12: vs = ReturnVertex(R j, e) ⊳ store the starting vertex
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13: MarkVisitedEdge(R j, e) ⊳ mark edge as visited
14: e = NextEdge(R j, e) ⊳ move one edge forward along R j boundary
15: repeat
16: while (Visited(R j, e) = NonVisited) AND
17: (ReturnVertex(R j, e) 6¼ vsÞ do ⊳ walk along edges of R j

18: Q ¼ AddF4Symbol(Q, R j, e) ⊳ add F4 chain code symbol of e
19: MarkVisitedEdge(R j, e) ⊳mark edge as visited
20: e = NextEdge(R j, e) ⊳ move one edge forward along R j boundary
21: end while
22: if ReturnVertex(R j, e) = vs then ⊳ the cycle is formed
23: CycleFound = true
24: else ⊳ otherwise continue the walk on Ri

25: e = ReturnEdgeFromOtherRegion(R j, e) ⊳ get e∈Ri

26: while (Visited(Ri, e) = NonVisited) AND ⊳ walk along Ri edges
27: (ReturnVertex(Ri, e) 6¼ vsÞ do
28: Q ¼ AddF4Symbol(Q, Ri, e)
29: MarkVisitedEdge(Ri, e)
30: e = NextEdge(Ri, e)
31: end while
32: if ReturnVertex(Ri, e) = vs then
33: CycleFound = true
34: else ⊳ jump to the R j boundary again
35: e = ReturnEdgeFromOtherRegion(Ri, e) ⊳ get e∈R j

36: end if
37: end if
38: until CycleFound = true
39: LoC = StoreCycle(vs, Q) ⊳ store constructed cycle
40: e = GetNonVisitedEdge(R j) ⊳ get next non-visited edge
41: end while
42: AddNonVisitedCycles(LoC,Ri) ⊳ add non-visited cycles (holes)
43: AddNonVisitedCycles(LoC,R j)
44: DetermineLoop(LoC) ⊳ among all cycles the loop is found by (Eq. 7)
45: R = ConstructRegion(LoC)
46: return R
47: end function.

4. Analysis of the algorithm

4.1 Time and space complexity estimation

The proposed algorithm consists of three parts: finding the intersection trails,
performing the walkabout, and determination of loop and rings.

Let the four-connected graph G consist of n vertices. Let ki and k j represent the
number of F4 edges defining cycles of Ri and R j, respectively. ki ¼ k j ¼ k may be
assumed without loss of generality. At first, both regions are embedded into G. This is

done in Te kð Þ ¼ T kið Þ þ T k j

� �

¼ 2k time. One of the regions is walked-about and the
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edges of the intersection trails are determined in time Tw kð Þ ¼ k. The first part of the
algorithm is, therefore, executed in T1 kð Þ ¼ Te kð Þ þ Tw kð Þ ¼ 3k time.

During the walkabout, all edges of both regions not being part of the intersection
trail, are visited exactly once. In the worst case, all 2k edges must be visited in time
T2 kð Þ ¼ 2k.

The orientation of the cycles of the merged region is determined in the last step.
This task is also terminated in T3 ¼ 2k time, as the merged region cannot have more
than 2k edges.

The proposed merging algorithm is, therefore, realised in T kð Þ ¼ T1 kð Þ þ T2 kð Þ þ
T3 kð Þ ¼ 3kþ 2kþ 2k ¼ 7k ¼ O kð Þ. k cannot be greater than n, and therefore, one
merging operation is terminated in the worst case in O nð Þ time. However, in the
majority of cases, k< < n. In such, an expected case, one merging operation is
terminated in a constant time O 1ð Þ.

The algorithm needs memory for Gwith n vertices, i.e. SG nð Þ ¼ n. In addition, two
regions need to be stored. In the worst case, both regions require additional SR nð Þ ¼ n
memory space. The algorithm, therefore, works in S nð Þ ¼ 2n ¼ O nð Þ space.

4.2 Experiment

The standard benchmark images shown in Figure 12 have been used in the exper-
iment with different resolutions. A criterion for merging two neighbouring regions
was the colour similarity. By doubling the size of the image in both directions itera-
tively, the number of pixels n is increasing by the power of 4, and the number of
required merging operations follows this exponential growth; actually, the number of
merging operations is n� 1.

Table 3 shows spent CPU time while performing merging from single pixels up to
the entire image. A personal computer with a 3,5 GH Intel® Core™ i5–6600 K pro-
cessor and 32 G bytes of RAM was used in the experiment. The program was
implemented in C++ and compiled with C++ Visual Studio 2019 under the Windows
10 operating system. As can be seen, the actual CPU time spent depends on the colour
characteristics of the images. The image Lenna has large parts of very similar colours
and therefore, the regions grow rapidly which is reflected in the shortest CPU spent
time. The image Peppers exposes a similar characteristic. On the other hand, the
image Baboon consists of very small homogeneous regions, reflecting in longer CPU
time spent.

Figure 12.
Images used in the experiments: (a) Lenna, (b) peppers, and (c) baboon.
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We implemented the set-based version of the merging operation for comparison.
In this case, the region is represented by the STD structure unordered_map. The
obtained results are shown in Table 4. As can be seen, the set-based approach per-
forms considerably slower. In addition, it obviously spends more memory, as images
with the highest resolutions cannot be processed any more.

5. Conclusion

A new region merging algorithm, suitable for hierarchical object-based image
analysis, is proposed in this chapter. The raster space is represented by a 4-connected
graph, and a merging function is derived formally upon it. The implementation
follows the theoretical investigation strictly. The edges forming the border of the
region embedded in the 4-connected graph are represented by the Freeman crack
chain code in four directions. The implementation works in two main steps: a deter-
mination of the common vertices and edges of the regions being merged, and a
walkabout, which realises the theoretically derived merging function. A classification
of the obtained region’s edges to those representing the holes and those defining the
outer border, may be done at the end.

The algorithm’s worst-case time complexity is O nð Þ for one merging operation,
where n is the number of graph vertices. However, as the number of edges defining
the two regions being merged is much smaller than n, the expected time complexity is
actually independent on n, i.e. the expected time complexity of the proposed algo-
rithm is O 1ð Þ.

In addition to the methodical implementation of the region merging procedure, the
proposed chain code-based approach enables efficient extraction of various essential
shape descriptors [3]. The approaches for extracting these descriptors can be divided
roughly into the region- and contour-based approaches, and the latter are known as

Size (pixels) n tL (s) tP sð Þ Size (pixels) n tB sð Þ

64� 64 4096 0.014 0.017 63� 60 3780 0.018

128� 128 16,384 0.081 0.064 125� 120 15,000 0.169

256� 256 65,536 0.715 0.624 250� 240 60,000 1.682

512� 512 262,144 7.885 11.778 500� 480 240,000 20.454

Table 3.
Spent CPU time for images Lenna (L), peppers (P), and baboon (B) at different resolutions.

Size (pixels) tL (s) tP (s) Size (pixels) tB (s)

64� 64 0.683 0.602 63� 60 0.892

128� 128 8.765 8.646 125� 120 13.823

256� 256 219.450 211.762 250� 240 247.323

512� 512 OOMa OOMa 500� 480 OOMa

aOOM denotes out-of-memory.

Table 4.
Spent CPU time with the referenced approach.
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being computationally demanding for traditional hierarchical segmentation and
region growing. Namely, they require the boundary to be extracted after each region
merging operation. Because of this, these are rarely used, e.g. as stopping criteria
during the region growing, or as thresholds for hierarchical cuts. On the other hand,
chain codes by themselves allow for efficient description of shapes.
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Nomenclature

c cycle
CPU central processing unit
e edge
E set of edges
F4 Freeman chain code in four directions
G directed graph
L the number of vertices in a trail or in a cycle
LR pointer to the loop/ring of the region
LoC list of cycles
M merging function
OBIA Object-Based Image Analysis
P pointer to the region
Q queue
R region
ΣF4 alphabet of Freeman’s chain code in four directions
σ F4 symbol
t trail
T set of trails
v vertex
V set of vertices
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