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Chapter

Wingtip Vortices of a Biomimetic
Micro Air Vehicle
Rafael Bardera, Estela Barroso and Juan Carlos Matías

Abstract

Wingtip vortices are generated behind a wing that produces lift. They exhibit a
circular pattern of spinning air that generates an additional drag force, the induced
drag, reducing the aerodynamic performance of an aircraft. Moreover, the wingtip
vortices can pose a hazard to airplane maneuvers, mainly in take-off and landing
operations. This chapter describes a review of the lifting-line vortex theory applied
to a biomimetic Micro Aerial Vehicle (MAV) with Zimmerman planform. There-
fore, the horseshoe vortex model is deeply explained and the estimations of vortex
velocity distribution, lift, and induced drag are obtained with this simple model.
These results are compared with experimental data obtained from wind tunnel
testing by using Particle Image Velocimetry (PIV). Finally, the vorticity maps in the
wake of this MAV are obtained from PIV measurements.

Keywords: tip vortices, biomimetic, micro aerial vehicle, induced drag, vorticity

1. Introduction

The aeronautic industry has developed a growing interest in Unmanned Aerial
Vehicles (UAVs). These vehicles have been designed for multiple missions where the
human factor is not required. Therefore, in dangerous missions, unhealthy environ-
ments, or inaccessible areas, human accidents can be avoided. The UAVs can be
distinguished into different categories according to their performance characteristics.
In this context, the relevant design parameters are weight, manufacturing costs, and
size. Mainly, the manufacturing costs have been the key point for that engineers and
researchers could be focused on developing smaller vehicles in order to perform
unmanned activities. This group of smaller vehicles is known as Micro Aerial Vehicles
(MAVs) [1–3]. Their main features are low aspect ratio (AR) and low range opera-
tion. Research centers and universities have been able to investigate new designs of
MAVs due to their low manufacturing costs and small size. This is the case of
aerodynamic challenges posed in the work of Moschetta [4]. The MAV designs have
taken into account the fixed-wing, coaxial, biplane, and tilt-body concept. Marek [5]
performed experimental tests to determine the aerodynamic coefficients in six dif-
ferent types of platforms. The Zimmerman and elliptical planforms resulted in having
the highest lift coefficient. Hence, Hassannalian and Abdelkefi [6] designed and
manufactured a fixed-wing MAV based on the Zimmerman planform. Also, other
authors designed the Dragonfly MAV using Zimmerman planform [7, 8].

The chapter will begin with a description of the biomimetic Micro Air Vehicle
(MAV) [9, 10], then the horseshoe theory will be explained and applied to the
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studied vehicle. Consequently, the experimental facility, the Particle Image
Velocimetry technique, and the description of the experimental tests will be
defined. Then, the vorticity and several vortex models will be defined and applied
to the experimental data obtained from the Wind Tunnel. At the end of the chapter,
the formulation which relates the axial vorticity and the circulation will be
presented and finally, the lift coefficient will be obtained.

2. Micro air vehicle geometry

The geometry of the studied Micro Air Vehicle (MAV) is based on Zimmerman
planform and Eppler 61 airfoils for the wing configuration and Whitcomb II airfoils
for the fuselage (see Figure 1).

Figure 1.
Biomimetic MAV model (dimensions in mm).

Figure 2.
Zimmerman planform.
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The Zimmerman wing consists of two halves of ellipses connected at one
point of reference which corresponds to 1/4 of the maximum wing root chord
(cr = 200 mm) for one half of the ellipse and 3/4 of the cr for the other half of the
ellipse. Figure 2 shows the planform of the micro air vehicle and their dimensions.
The rest of the geometrical features are shown in Table 1.

3. The horseshoe vortex: Biot-Savart law

In this section, a previous formulation of the wingtip vortex will be presented.
The 3D wings can be modeled by vortex filaments. The horseshoe is the simplest
mathematical model of potential flow to represent the aerodynamics of a wing
aircraft. That consists of the bound vortex (vortex filament of the wing) and the
trailing vortices formed by the semi-infinite filament vortex that represents the
wingtips.

The horseshoe is a 3-D vortex that can be represented with an arbitrary shape
according to the Helmholtz vortex theorems:

• The circulation Γ is constant along the vortex length.

• The vortex has to be extended to �∞, form a closed-loop, or end at a solid
boundary.

In this context, the velocity field of a 3-D vortex by applying the Biot-Savart Law
is defined by the following expression Eq. (1), [11].

V
!

x, y, zð Þ ¼ Γ

4π

ðþ∞

�∞

d l
!
� r

!

r
!
�

�

�

�

�

�

3 (1)

where r
!
is extended from the integration point to the field point and the arc

length element d l
!
points follow the direction of positive circulation.

Parameter Value

Wing tip Chord ct 0.025 m

Wing root Chord cr 0.200 m

Wing taper ratio, λ 0.124

Aspect ratio, AR 2.500

Wingspan, b 0.320 m

Mean aerodynamic chord, CMA 0.141 m

Mean geometry chord, CMG 0.127 m

Wing reference area, S 0.040 m2

Dihedral angle, Dh 10°

Fuselage length, l 0.300 m

Fuselage width, d 0.060 m

Table 1.
MAV features.
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Taking into account the straight vortex of Figure 3, h is defined as the nearest
perpendicular distance from the vortex line and θ is the angle between the radius

vector r
!
and the vortex line (are defined in Eq. (4) and (5)).

r � r
!
�

�

�

�

�

� ¼ h

sinθ
(2)

l ¼ � h

tanθ
(3)

dl ¼ h

sin 2θ
(4)

d l
!
� r

! ¼ dl r sinθð Þ θ̂ (5)

Now, the velocity field can be recalculated as Eq. (6):

V
!

¼ Γ

4πh
θ̂

ðπ

0
sinθ dθ ¼ Γ

2πh
θ̂ (6)

To reproduce the wingtip vortices of the studied MAV, a simple model based on
the superposition of the freestream flow (U

∞
) and a horseshoe vortex is described.

The horseshoe vortex can be defined as the sum of three segments that can be seen
in Figure 4: two free-trailing vortices at each tip of the wing (segment AB and
segment CD) that are connected by a bound vortex spanning the wing (segment
BC). As explained previously, the circulation Γ along the entire vortex line is
constant, and the vortex lines have to extend downstream to infinity (see Figure 3).
This potential solution is not very effective since the local lift to span is constant
over the wingspan and in the real MAV model, the local lift is zero at the tip of the
wings. A scheme of the horseshoe vortex model is defined in Figure 4.

The velocity field downstream of the wing in x = constant planes is similar to the
potential solution generated by a horseshoe vortex except near the vortex axes.
Now, to obtain the vertical velocity distribution of the potential vortex in our MAV,
it is necessary to know the wing chord (c = 0.2 m), wingspan (b = 1.6c), and chord
distance downstream of the trailing edge of the wing (x = 3c). Therefore, the
following two non-dimensional variables (η and ζ) need to be defined (Eq. (7)):

η ¼ x

a
¼ 3:75; ζ ¼ y

a
(7)

where a is the semi-wingspan, a ¼ b
2 (see Figure 2), η and ζ are the non-

dimensional coordinates according to the x-axis and y-axis, respectively.

Figure 3.
Scheme of the straight-vortex.
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Then, the non-dimensional vertical velocity ψ ζð Þ can be defined as Eq. (8):

ψ ηð Þ ¼ w ζð Þ
Γ

4πa

(8)

which presents a different formulation depending on the vortices defined in
each of the segments (see Figure 3):

ψAB ηð Þ ¼ �1

ζ þ 1ð Þ 1þ η
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζ þ 1ð Þ2 þ ηð Þ2
q

2

6

4

3

7

5
(9)

ψCD ηð Þ ¼ 1

ζ � 1ð Þ 1þ η
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζ � 1ð Þ2 þ ηð Þ2
q

2

6

4

3

7

5
(10)

ψBC ηð Þ ¼ �1

η

ηþ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζ þ 1ð Þ2 þ ηð Þ2
q

2

6

4

3

7

5
� η� 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζ � 1ð Þ2 þ ηð Þ2
q

2

6

4

3

7

5

2

6

4

3

7

5
(11)

Finally, the total non-dimensional vertical velocity is defined as the sum of the
three velocities of the vortices (Eq. (12)):

ψ ζð Þ ¼ ψAB ζð Þ þ ψBC ζð Þ þ ψCD ζð Þ (12)

In the following Figure 5, the total non-dimensional vertical velocity distribu-
tion of this MAV is presented only for the section located at 3c downstream of the
trailing edge of the wing and for the angle of attack of 10°.

To obtain a better understanding of the flow behavior of these vortices and how
they interact between them, in Figure 6 the non-dimensional vertical velocity only
of the AB free-trailing vortex region is presented. The blue line shows the velocity
distribution of the AB free-trailing vortex while the dashed red and black lines
correspond to the velocity of the bound vortex (BC in Figure 4) and the CD free-
trailing vortex, respectively. It is clearly noted that both vortices, bound vortex, and
CD free-trailing vortex are not affecting the AB free trailing vortex since their

Figure 4.
Scheme of the horseshoe vortex model.
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velocity values are very small. As a consequence, in that region only the flow
presence from the AB free-trailing vortex itself.

4. The experimental set-up

In this section, the experimental setup will be presented. All experimental tests
were carried out in a Low-Speed Wind Tunnel at the Instituto Nacional de Técnica
Aeroespacial (INTA) in Madrid (Spain). This wind tunnel has a closed circuit with
an elliptical open test section of 6 m2. The DC engine, which is situated at the
opposite side of the test section, works at 420 V, allowing a maximum airflow speed
of 60 m/s with a turbulence intensity lower than 0.5%. Figure 7 shows the
Low-Speed Wind Tunnel of INTA.

Figure 5.
The non-dimensional vertical velocity at 3c downstream of the trailing edge of the MAV wing.

Figure 6.
The non-dimensional vertical velocity at 3c downstream of the trailing edge of the MAV wing.
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The MAV model was tested with a freestream velocity of the wind tunnel of
10 m/s (U

∞
¼ 10 m=s), which results in a Reynolds number of 1.3 � 105 based on

the wing root chord cr ¼ 0:20 mð Þ. This analysis was performed for the cruise
configuration (with an angle of attack equal to 0°). The experimental tests consisted
in obtaining various transversal planes of the flow field at different sections down-
stream of the trailing edge of the wing.

The test experiments were carried out by using a full-scale model made in plastic
material (PLA) by means of additive manufacturing and attached to a wood board
by means of a streamlined support strut (see Figure 8). Only half of the model was
studied due to its symmetry. Moreover, the MAV model and the wood board had to
be painted in black in order to avoid reflections of the laser plane. The CCD camera
was located behind the model (Figure 8), parallel to the flow stream of the wind
tunnel.

The flow field velocity was determined by Particle Image Velocimetry (PIV).
PIV is an advanced experimental technique that has the advantage of measuring the
velocity field in a non-intrusive manner. This technique measures the velocity of
the flow by analyzing flow images pairs [12]. For achieving this, PIV requires tracer
particles that have to be seeded in the airflow. Olive oil was chosen for the

Figure 7.
Components of the low-speed wind tunnel of INTA.

Figure 8.
Experimental setup.
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generation of the tracer particles. A laser sheet has to be generated in order to go
through the tracer particles and illuminate them. Two Neodymium-Yttrium Alu-
minum Garnet (Nd:YAG) lasers and an optical system were used for achieving this.
The two lasers Nd:YAG has a pulse energy of 190 mJ within a time gap of 22 μs. The
location of the tracer particles has to be recorded by a high-resolution camera with
2048 � 2048 pixels equipped with a lens Nikon Nikkor 50 mm 1:1.4D. A cross-
correlation implemented via Fast Fourier Transform (FFT) is carried out over small
image regions in order to obtain the averaged displacement of the tracer particles.
The field of view (FOV) of the camera was 190 � 190 mm2. The flow images are
divided into interrogation window of 32 � 32 pixels. By using the Nyquist Sampling
Criteria, these interrogation windows are overlapped by 50%. Moreover, the peak
of correlation is adjusted to the subpixel accuracy by Gaussian approximation. A
final post-processing task to remove spurious data and fill the empty vectors is
needed. Therefore, a local mean filter based on a neighbor kernel window of 3 � 3
vectors was applied.

5. The vorticity in the wingtip wake

The vorticity is defined as the curl of the flow velocity, by the following
expressions (Eq. (13) and Eq. (14)),

ω
! ¼ ∇� V

!
(13)

ω
! ¼ ∂w

∂y
� ∂v

∂z

� �

i
!
þ ∂u

∂z
� ∂w

∂x

� �

j
!
þ ∂v

∂x
� ∂u

∂y

� �

k
!

(14)

The two-dimensional (2D y-z plane) streamwise vorticity ωx ¼ ξ can be deter-
mined from measured velocities by solving Eq. (15), which depends on the velocity
spatial derivatives, as follows,

ξ ¼ ∂w

∂y
� ∂v

∂z
¼ ∇� V

!� �

∙ i
!

(15)

Figure 9.
Non-dimensional axial vorticity measured by PIV at 1.4 c downstream of the trailing edge of the model
U
∞
¼ 10m=s, cruise : α ¼ β ¼ 0°ð Þ.
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The axial vorticity had to be obtained with central differencing in crossflow

velocities. The non-dimensional form of axial vorticity component ~ξ is given by the
following expression (Eq. (16)):

~ξ ¼
b
2

� 	

∙ ξ
U
∞

(16)

where b is the whole spanwise of the model and U
∞
is the frestream velocity.

Figure 9 shows the non-dimensional axial vorticity after taking PIV measure-
ments in the wake downstream when the vehicle was flying in a cruise condition. It
can be seen that the peak of maximum axial vorticity (red region) takes place at the
wingtip, and from there it starts to decrease.

6. Circulation and vorticity

By analyzing the flow downstream of the aircraft model, this flow can be studied
as the 2D wingtip wake and the vorticity is related to the velocity circulation from
Stokes theorem by the following expression (Eq. (17)), [11].

Γ ¼ ∮ CV
!
� d l

!
¼
ðð

∇� V
!� �

� n! � dA (17)

where C is a closed curve, V
!
is the flow velocity on a small element defined on

the closed curve, and dl is the differential length of that small element. As the plane

streamwise is the 2D-yz plane, we have ω
! ¼ ξ i

!
, and the unit normal vector n

! ¼ i
!
,

then (Eq. (18)),

Γ ¼ ∮ CV
!
� d l

!
¼
ðð

ω
! � n! � dA ¼

ðð

ξ � dA (18)

7. Evolution of the vorticity

The Navier-Stokes equations in vector form for an incompressible flow are
given by,

∇ ∙V
!

¼ 0 (19)

∂V
!

∂t
þ V

!
� ∇V

!
¼ �∇

p

ρ
þ gz

� �

þ ν∇2V
!

(20)

The vorticity equation (Eq. (13)) is obtained by taking the curl of the Navier-
Stokes equation, as follows,

∇� ∇ ∙V
!� �

¼ 0 (21)

∇� ∂V
!

∂t
þ V

!
� ∇

� �

V
!

¼ �∇
p

ρ
þ gz

� �

þ ν∇2V
!

 !

(22)

By calculating each term, where the conservation of vorticity is Eq. (23),
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∇� ∂V
!

∂t

 !

¼ ∂ω
!

∂t
(23)

∇� V
!
� ∇

� �

V
!� �

¼ V
!
� ∇

� �

ω
! � ω

! � ∇
� �

V
!

(24)

∇� �∇
p

ρ
þ gz

� �� �

¼ 0 (25)

∇� ν∇2V
!� �

¼ ν∇2ω
!

(26)

and finally, the vorticity equation is,

∂ω
!

∂t
þ V

!
� ∇

� �

ω
! ¼ ω

! � ∇
� �

V
!
þ ν∇2ω

!
(27)

The law of vorticity evolution is a convective vector diffusion equation given by
the following expression,

Dω
!

Dt
¼ ω

! � ∇
� �

V
!
þ ν∇2ω

!
(28)

The viscous term (ν∇2ω
!
) causes the vortex to diffuse through the fluid flow.

By using index notation, the vorticity equation for 3D flow is given by,

∂ωi

∂t
þ u j

∂ωi

∂x j
¼ ω j

∂ui
∂x j

þ ν
∂
2ωi

∂xk∂xk
(29)

For a 2D flow, the stretching term is absent, and the corresponding equation is,

∂ωi

∂t
þ u j

∂ωi

∂x j
¼ ν

∂
2ωi

∂xk∂xk
(30)

Equivalently, in vector form, for a 2D flow we have the velocity is perpendicular

to the vorticity, so V
!
� ω! ¼ 0 .The velocity is V

!
¼ 0,V,Wð Þ and vorticity ω

! ¼
ωx, 0, 0ð Þ, so that,

ω
! � ∇V

!
¼ 0 (31)

Dω
!

Dt
¼ ∂ω

!

∂t
þ V

!
� ∇

� �

ω
! ¼ ν∇2ω

!
(32)

where the operator D
Dt ¼ ∂

∂t þ V
!
� ∇

� �

is the material derivative and it describes

the evolution along the flow lines.

8. Decay of wingtip vortices

The study of the decay of wingtip vortices under the assumption of 2D flow with
ωy ¼ ωz ¼ 0, velocity Vx ¼ 0 and ∂=∂x ¼ 0, can be performed by the 2D viscous
diffusion of vorticity equation, given by,
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∂ω
!

∂t
¼ ν∇2ω

!
(33)

∂ω
∂t

¼ ν � Δω (34)

Where ω ¼ ωx and Δ is the Laplacian operator.
Assuming axisymmetric flow, in cylindrical coordinates,

∂ω

∂t
¼ ν

r
� ∂
∂r

r
∂ω

∂r

� �

(35)

The initial vorticity for the study of decay point vortex in an unbounded domain
is given by a 2D delta function in the plane yz,

ω x
!
, t ¼ 0

� �

¼ Γ0δ yð Þδ zð Þ (36)

Introducing the dimensionless similarity variable [13],

ϵ ¼ r
ffiffiffiffi

νt
p (37)

and the nondimensional combination ωνt=Γ0 can be expressed as an unknown
function g of the variable ϵ, defined as

ωνt=Γ0 ¼ g ϵð Þ (38)

So that,

ω ¼ Γ0

νt
g ϵð Þ ¼ f tð Þ g ϵð Þ (39)

Calculating the derivatives quantities from the earlier equation,

∂ω

∂t
¼ ∂f tð Þ

∂t
g ϵð Þ þ f tð Þ ∂g ϵð Þ

∂t
¼ �Γ0

νt

1

t
g ϵð Þ þ f tð Þ dg ϵð Þ

dϵ

∂ϵ

∂t
(40)

∂ω

∂t
¼ �f tð Þ 1

t
g ϵð Þ � f tð Þ ϵ

2t

dg ϵð Þ
dϵ

¼ �f tð Þ 1

t
g þ ϵg0=2ð Þ (41)

On the other hand,

∂ω

∂r
¼ f tð Þ ∂g ϵð Þ

∂r
¼ f tð Þ ∂ϵ

∂r

dg ϵð Þ
dϵ

� �

¼ f tð Þ ϵ

r

dg ϵð Þ
dϵ

� �

(42)

∂ω

∂r
¼ f tð Þ ∂g ϵð Þ

∂r
¼ f tð Þ ∂ϵ

∂r

dg ϵð Þ
dϵ

� �

¼ f tð Þ ϵ

r

dg ϵð Þ
dϵ

� �

(43)

∂

∂r
r
∂ω

∂r

� �

¼ ∂ϵ

∂r

d

dϵ
f tð Þ ϵ dg ϵð Þ

dϵ

� �

¼ ϵ

r
f tð Þ d

dϵ
ϵ
dg ϵð Þ
dϵ

� �

(44)

And substituting in (35), the following expression is derived,

2 ϵg0ð Þ0 þ ϵ2g0 þ 2gϵ ¼ 0 (45)
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Where 0 denotes a derivative respect to, and finally, the equation is integrated

g ϵð Þ ¼ A exp
�ϵ2

4

� �

(46)

The condition of the flow circulation is equal to Γ0 at any time, gives,

Γ0 ¼
ð

∞

0

ω2πr dr ¼ 4πAΓ0 (47)

so that A ¼ 1=4π, and the solution of the g ϵð Þ function is,

g ϵð Þ ¼ 1

4π
exp

�r2

4νt

� �

(48)

Finally, the solution of vorticity is given by the axisymmetric Lamb-Osteen
vortex by,

ω ¼ Γ0

4πνt
exp

�r2

4νt

� �

(49)

The swirl velocity is,

Vθ ¼
Γ0

2πr
1� exp

�r2

4νt

� �

(50)

and the circulation is,

Γ ¼ Γ0 1� exp
�r2

4νt

� �

(51)

The swirl velocity can be rewritten as,

Vθ ¼
Γ0

2πr
1� exp �1:2526 r=rc

� 	2
� �� �

(52)

where rc is the core radius, defined as the distance from the vortex center to the
point with the higher swirl velocity, and given by,

rc ¼ 2:24
ffiffiffiffi

νt
p

(53)

9. Analysis of vortex models and experimental data

The velocity components which define a 2-D vortex are typically the swirl
velocity Vθ, the axial velocity Vz and the radial Vr velocity. The last two compo-
nents usually are neglected in many applications as they are very small compared to
swirl velocity, and are defined as follows,

Vθ ¼
Γ

2πr
(54)

Vr ¼ 0 (55)
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Vz ¼ 0 (56)

Several tip vortex models are usually studied, but this chapter is only focused on
some of them, displayed in Figure 10. The first method is the Rankine vortex
model, being the simplest formulation with a finite core. Therefore, the vortex is
divided into two parts: the viscous core and the potential vortex. The viscous core is
rotating as a solid body near the vortex center while the potential vortex remains
away from the vortex center. The velocity in the potential vortex is decreasing
hyperbolically with the radial coordinate [14, 15]. Therefore, the following
expressions represent the swirl velocity distribution Vθ in the tip vortex,

Vθ ~rð Þ ¼ Γ

2πrc

� �

∙~r 0≤~r≤ 1 (57)

Vθ ¼
Γ

2πr
~r> 1 (58)

Where rc is the viscous core radius and ~r ¼ r
rc
is the non-dimensional radial

coordinate.
The second vortex model is the Lamb-Oseen vortex which is a simplified solu-

tion of one-dimensional Navier-Stokes equations for laminar flow which is defined
by the following expression,

Vθ ~rð Þ ¼ Γ

2πr

� �

∙ 1� e�α ~rð Þ2
h i

(59)

where α ¼ 1:2526 is the Oseen parameter.
An alternative tip vortex formulation is given byVatistas in Ref. [15]. This method is

based on a group of desingularized algebraic swirl velocity profiles for vortices which
present continuous distributions of flow quantities. The swirl velocity is defined by,

Vθ ~rð Þ ¼ Γ

2πrc
∙

~r

1þ ~r2n
� 	1=n

(60)

where n is an integer.

Figure 10.
Swirl velocity distribution inside a tip vortex was obtained by several tip vortex models.
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The Scully vortex model is the previous formulation when the integer is n = 1,
and it is defined as,

Vθ ~rð Þ ¼ Γ

2πrc

� �

∙
~r

1þ ~r2
� 	 (61)

when the integer is n = 2, the swirl velocity of the vortex formulation is,

Vθ ~rð Þ ¼ Γ

2πrc

� �

∙
~r
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ~r4
p (62)

It is important to notice that when the integer n ! ∞, the swirl velocity
distribution corresponds to the Rankine method.

Figure 11 shows the flow field velocity in a normal section to the flow located at
3 chords downstream of the MAV model. The 2d vortex can be observed clearly and
the color scale indicates that the velocity is increasing near the center of the vortex.

It is possible to obtain a better visualization of the flow field distribution by
looking at Figure 12. This PIV map is obtained for the angle of attack of 10°. The
plotted streamlines reveal the location of the vortex center (places at Y = Z = 0mm),
the region of the vortex core (yellow region), and the external region (green area).

Extracting the data value of the swirl velocity as measured by the PIV technique
we can obtain Figure 13 when the experimental data are plotted with curves of
theoretical vortex models. The blue scatter dots which its trend is approached by a
6th-degree polynomial (red continue line).

Also, the distributions of the swirl velocity obtained by the theoretical vortex
models as Rankine, Lamb-Oseen, and Scully are represented in Figure 11.

The analysis of this graph shows the wingtip vortex method which presents the
most accurate fit to the MAV is obtained with the tip vortex model of Scully.
Subsequently, there is a deviation between the two approaches (experimental data
and Scully) which depends on the distance from the vortex center. The ratio
between both of them is assessed by the parameter k rð Þ defined as

Figure 11.
Wingtip vortex in the MAV wake at 3c.
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k rð Þ ¼
Vθð Þpolynomial

Vθð ÞScully
(63)

where Vθð Þpolynomial and Vθð ÞScully are the distributions of swirl velocity obtained in

the test experiments and by the theoretical model proposed by Scully, respectively.
Finally, the distribution of experimental swirl velocity is fitted to the Scully

model by the function called Vθð Þexperimental�Scully defined as,

Vθð Þexperimental�Scully ¼ k rð Þ ∙ Vθð ÞScully (64)

10. Lift coefficient

The lift of an airfoil can be determined by the Kutta-Joukowski theorem [11]
relating the velocity and the circulation, as follows,

Figure 12.
Velocity distribution at 3c.

Figure 13.
Experimental data and theoretical vortex models.
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L0 ¼ ρU
∞
Γ (65)

By applying the earlier formulation, the total lift of the wing L can be obtained
from the following expression

L ¼ ρU
∞
Γð Þ ∙ b (66)

where b is the wingspan.
The lift coefficient CL is obtained by dividing the lift by q

∞
Sref ,

CL ¼ ρU
∞
Γð Þ ∙ b

q
∞
Sref

(67)

where q
∞
is the dynamic pressure (q

∞
¼ 1=2ρU2

∞
) and Sref is the reference wing

surface.
Table 2 shows the values of the main parameters obtained from the tip vortex

analysis, including the lift coefficient, CL:

11. Conclusions

Wingtip vortices generated behind an aircraft wing affect the aerodynamic
performance of the aircraft while endangering take-off and landing maneuvers of
the subsequent aircraft.

In this chapter, it is reviewed the theoretical background of the horseshoe vortex
and several vortex models applied to a Biomimetic Micro Air Vehicle (MAV) with
Zimmerman planform. The formulation of the vorticity in the wingtip wake of the
MAV model has been presented as well as the expression which relates the axial
vorticity and the circulation.

All experimental tests have been carried out in the Low-Speed Wind Tunnel of
the Instituto Nacional de Técnica Aeroespacial (INTA) with a full-scale MAV
model. Particle Image Velocimetry has been used to obtain the transversal flow field
at 3 chords downstream of the trailing edge of the MAV model. The swirl velocity
distribution according to the horseshoe vortex model and several vortex models
(Rankine, Lamb-Oseen, Scully, and Vatistas) is plotted. The experimental results
have shown that the Scully vortex has the most similar behavior to the MAV wing

Parameters MAV model

Location x = 3 chords

α °ð Þ 0

β °ð Þ 0

U
∞

m=sð Þ 10

rc (mm) 4.70

Vθmax (m/s) 7.69

Γ(m2=sÞ 0.45

CL 0.72

Table 2.
Results of the tip vortex analysis in the wake of MAV.
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vortex. The distribution of the transversal velocity as well as the axial vorticity for
the section at 3 chords are presented by PIV maps. Finally, the lift coefficient by
using the Kutta-Joukowski theorem is obtained.
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