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Network Slicing for Industrial IoT
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Network: Deep Federated Learning
Approach and Its Implementation
Challenges
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Mohamed Ali Hajjaji, Abdellatif Mtibaa and Mohamed Atri

Abstract

5G networks are envisioned to support heterogeneous Industrial IoT (IIoT) and
Industrial Wireless Sensor Network (IWSN) applications with a multitude Quality of
Service (QoS) requirements. Network slicing is being recognized as a beacon technol-
ogy that enables multi-service IIoT networks. Motivated by the growing computa-
tional capacity of the IIoT and the challenges of meeting QoS, federated reinforcement
learning (RL) has become a propitious technique that gives out data collection and
computation tasks to distributed network agents. This chapter discuss the new feder-
ated learning paradigm and then proposes a Deep Federated RL (DFRL) scheme to
provide a federated network resource management for future IIoT networks. Toward
this goal, the DFRL learns from Multi-Agent local models and provides them the
ability to find optimal action decisions on LoRa parameters that satisfy QoS to IloT
virtual slice. Simulation results prove the effectiveness of the proposed framework
compared to the early tools.

Keywords: federated learning, industrial IoT, network slicing, QoS

1. Introduction

In the last decade, industrial manufacturing such as healthcare, smart grids based
on Cyber-Physical Internet of Thing Systems (CPIoTS) has been widespread [1]. In
this context, IIoT network, which is characterized by the unified network physical
layer, the QoS constraints, the autonomous connection requirements, is considered
one of the key issues. The rapid increase in data amounts with diverse QoS require-
ments [2] brings several challenges in order to meet the complex requirements, as well
as resource and QoS requirements with high data rate and low latency. In fact, the
advanced 5G technology has a significant potential to provide IIoT QoS satisfactory
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[3]. With their architectural approaches which are founded on a unified physical
layer, addressing the diverging performance requirements in terms scalability and
availability still a hot challenges topic. Today’s drastic digital transformations
empowered by emerging technology like Edge Computing, Software Defined Net-
working (SDN), Network Function Virtualization (NFV), and LoRaWAN can bring
smart services for network candidates [4]. Network slicing (NS) is the key solution
that provides smart service’s connectivity with diverse QoS requirements. Using deep
RL at each LoRa agent in the environment. Each agent considered to be a Deep Q-
learning (DQL) brain interacts with the environment to find the best action on their
parameters that brings the best reward. In addition, it introduces the FL approach to
provide better RL based action on each agent, to maximize QoS, and hence through-
put revenue. However, NS provides the network availability as a service following the
slice instances exploiting NFV and SDN [5]. In this context, a Mini Batch GD and
GMM framework is proposed in [7] to provides radio resources for the virtual slice
member. In addition, a LoRa network slicing technique based on Maximum Likeli-
hood Estimation proposed, in [6], to allocate network resources in inter and intra
mode. Meanwhile, recently supervised learning approach-based resource allocation is
also proposed to manage network resources, but due to the training data unavailability
or the high computational training process, are not appropriate for large-scale net-
work and cannot satisfy dynamic slices requirements.

RL technique can improve efficient resource management by interacting with the
environment, in which Q-learning is the widely used. The RL agent learns the association
between taken action and the received feedback in terms of reward. It follows a policy,
which is updated according to the maximized revenue via several action series. There-
fore, high-quality policies building in a centralized network architecture faces a major
challenge, especially when the space of state features is restricted. To deal with these
issues, Federated Learning (FL) has been suggested as a decentralized tool for machine
learning, which is designed to be a global learning system. In this context, the aim of this
work is to propose a deep federated reinforcement learning (DFRL), to equip the slice
member with the required channel resources, by tuning LoRa TP and SF parameters [8].

The leftover of this chapter is organized in six sections. Section 2 presents the related
work of this chapter. In Section 3, we give a brief overview on the Industrial IoT, the
federated learning, and the network slicing. We highlight, in Section 5, the proposed
slicing architecture and the system model. After that, in Section 6, the relation between
wireless sensor network (WSN) and the IIoT is well highlighted. Next, the proposed
slicing resource reservation-based DFRL framework is presented in Section 6. Section 7
evaluates the simulation results. Finally, Section 8 concludes the chapter.

2. Related works

Recently, several articles have investigated the many challenges typical of the
network slicing approach. In particular, in [9] the authors propose an online auction
algorithm to realize a resource allocation framework, capable of guaranteeing the
diversity of services to users and high levels of social welfare. Differently, the work in
[10] deals with a new resource allocation framework to automatically and automati-
cally size the capacity and size of network slices. In this chapter, resource partitioning
is done based on both available network bandwidth and LoRa configurations param-
eters resulting in an optimal trade-off between traffic and network aspects. The
authors of [11] focus on the design and implementation of a dynamic slicing sharing
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system to ensure minimum user throughput requirements. Therefore, it addresses
three sub-issues: admission control, resource allocation, and user abandonment issues.
The contextualization of the placement of VNFs to the network slicing problem is
presented in [12], where, in particular, the topological information of the network is
exploited to provide an appropriate deployment of functions, with regard to different
service classes. Moreover, the placement problem of VNFs has also been addressed in
[13], which considers the function decomposition and the sub-functions sharing, a
profitable heuristic algorithm is proposed based on Linear integer programming for-
mulation of the VNF placement problem. Further, in the work [14], a formulation of
mixed integer linear program is exploited to process the number identification of
VNFs to use, which aims to meet specific service requirements. To solve the placing
VNFs problem in a federated cloud, the coalition formation game is proposed in [14].
Alternatively, a Pareto analysis of the VNF placement problem is the subject of [15]. In
[16], a network partitioning policy is developed to take into account the social well-
being and the supplier profit of the network. Finally, special cases for the VNF
placement problem are discussed and analyzed in [17].

The problem of bandwidth slicing in software-defined networks is studied in [18],
where price spikes are exploited to indicate the presence of traffic spikes and network
congestion. This work provides a time-based price analysis combined with a Stackelberg
game, in which the gain of SP Internet is the gain of income. In a different way, the
work cited in [19] studies the correlation between the network slices size and the
resource pricing strategy. In addition, an algorithm to vary the prices is proposed by the
authors in [19], with the aim of maximizing both the customer profit and the SP.
Although FL has not been used in the field of network slicing research, FL has recently
reached attention and several papers have presented its use, the methods cited in
[20, 21] being prime examples of’'such a branch of literature. In [20], a new aggregation
data scheme for wireless computation is proposed. The strategy exploits the signal
overlay property of the wireless channels. Differently, articles [22, 20] focus on maxi-
mizing the number of devices involved in the aggregation process, also taking into
account the minimization of aggregation error. Thus, it contextualize the FL in an MEC
system and apply the distributed gradient descent method to identify the best compro-
mise between local updates and global aggregations, aiming to minimize the loss func-
tion, in taking into account certain resource constraints. Likewise, the article in [21]
analyzes the MEC environment and presents the application of hybrid filtering on
stacked encoders to predict fluctuation in file popularity in the content caching prob-
lem. Moreover, the article cited [23] modifies the proposed, federated averaging algo-
rithm with the stochastic gradient descent algorithm, to train the data in a distributed
way, thus reducing communication costs. The multitasking learning problem is studied
in the work cited in [24], authors proposed a new Mocha contextual optimization
approach that used in combination with the FL system. The work cited in [25] analyzed
the End-to-end delay in a blockchain framework, in which an FL blockchain structure is
developed to perform a distributed consensus strategy. In order to improve the trans-
mission and computational costs in a hybrid IoT-MEC network, authors in [26] pro-
posed to use the FL powered by the multiple deep reinforcement learning agents. In
addition, ultra-dense scenarios are also considered in [27], where an approach based on
the technique of deep learning of short-term long-term memory is applied to forecast
local network traffic in order to avoid congestion.

This chapter aims to address the problem of network slicing using deep federated RL
at each LoRa agent in the environment. Each agent considered to be a Deep Q-learning
(DQL) brain interacts with the environment to find the best action on their parameters
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that brings the best reward. In addition, it introduces the FL approach to provide better
RL-based action on each agent, to maximize QoS, and hence throughput revenue.

3. Overview on industrial IoT, federated learning and network slicing

The development and evolution of modern information and communication tech-
nologies lead us to the Fourth Industrial Revolution, in which the Industrial Internet of
Things (IIoT) is supposed to be one of the key aspects to realize the industry 4.0. With
an unprecedented increase in the number of Internet of Things (IoT) devices and
emerging applications, a large amount of traffic is created every day. Such an increase
represents a heavy load on the Internet network and also requires significant invest-
ments for the upgrade of the infrastructure. However, with the development of big data
analysis and artificial intelligence (AI) techniques such as deep learning (DL) and
machine learning (ML), the data collected can be effectively exploited for many pur-
poses. From a communication point of view, the last few years have seen the emergence
of Al applications in various fields. For example, ML is used to study efficient antenna
selection in multi-antenna wireless systems [28], DL is used to handle the computa-
tional offload problem in IoT systems with edge computing [29], and Deep reinforce-
ment learning (DRL) is used to optimize resource allocation issues at the edge of the
network, such as traffic classification, edge caching, network security, and data offload
[30]. However, conventional Al models generally require central processing of the data
collected from all users on the network, i.e. users have to upload their own data to a
central server to train the learning model. However, a key concern with central learning
is data privacy, i.e., some users want to keep track of their local data and do not want to
transmit their local data to the central server. Training the learning model centrally
requires a central cloud with extremely powerful compute and storage capabilities.
Meanwhile, recent advancements in computer hardware and the proliferation of smart
devices in our daily lives have shown that every IoT device can be equipped with
reasonable levels of compute and storage, which is closely comparable to a desktop
computer there was. is 10 years old [31]. Therefore, the standard ML model is not easily
applicable to large scale IoT networks and cannot exploit the availability of distributed
computing. This requires a new learning model that leaves training data distributed
across individual IoT devices instead of being centralized.

Motivated by this problem, Google invented the concept of federated learning
(FL) for on-device learning and data privacy preservation [32]. Using the FL
approach, each IoT device can train its model based on locally collected data. Local
data from IoT devices does not need to be sent to the centralized cloud. The central-
ized cloud only needs to collect the updated local training model from individual
users. Due to its characteristics, FL has been adopted in many applications, for exam-
ple FL for improving Google keyboard suggestions [33], FL for healthcare [34], and
FL for smart city detection [35]. To illustrate the concept of FL, an overview of FL in
IoT systems is shown in Figure 1. In general, each IoT device has its own set of data
and the aggregation server can either be located at the edge of the network or in a
virtual cloud in the remote cloud computing system [36]. Each FL model has its own
advantages and disadvantages, depending on various factors. For example, FL with
the server at the edge of the network is suitable for applications requiring low latency,
location awareness and contextual information on the network while cloud-based FL
is suitable for applications with IoT devices massive over multiple regions and com-
puting power requirements/storage capacities.
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Figure 1.
An overview of FL in IoT systems.

Recently, the integration of DL models with IoT and edge devices has become
more popular, which provides real-time analytics with limited resources [60]. Thus,
Federated DL (FDL) allows Industry 4.0 companies to integrate DL into IoT devices
and provides a secure framework using FL, as shown in Figure 2. DL is computation-
ally expensive, which requires resources and an expensive framework. Thus, the
decentralization of DL models is a multidimensional problem that requires a frame-
work of new technologies to integrate DL with advanced computing and the IIoT. The
main goal of FDL is to provide the IIoT with advanced capabilities using optimized DL
that would turn Industry 4.0 factories into smart factories. Some of the parameters
required to create the FDL model in IIoT are the FDL model, FDL networking, FDL
security, and FDL optimization.

Local Storage

Deep Learning
Training Model

Deployment

Industry /

Server /
Figure 2.

Fedevated DL in IIoT.
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An FDL model can be implemented on both client side and server side. On the client
side, private networks are defined, the DL model of which is tuned and optimized from
the general model present in the cloud. Optimized and fitted models are then deployed
on the client side, where the model is trained with data generated locally from the end
device. Finally, the final device contains a highly quantized and compressed FDL model.
On the server side, the model in the cloud is continuously updated by differentially
integrating the gradients of each private network. Each local DL network in turn is
responsible for continuously uploading and uploading the currently updated gradients to
the cloud model. Thus, a distributed selective stochastic gradient descent approach is
presented in [37] which can be applied in the cloud model to frequently update the local
private model. The first decentralized model called”’Model chain” uses blockchain tech-
nology [38, 39] to allow the preservation of confidentiality in the transfer of data. In
addition to this, asynchronous stochastic gradient descent can also be used when a single
model can be trained in parallel among all devices, aggregated and processed.

Regarding FDL communication and networking, is that the main benefit of using
FDL is to run DL models in IoT devices and involve the model in the decision making
process. This type of decentralized DL process improves the robustness, operational
efficiency and reliability of IoT devices. FDL provides two types of communication,
namely intra-communication channel and inter-communication channel. Train trans-
mits data between all levels of the framework. FDL communicates between the IoT and
the cloud tier where the cloud-optimized model is deployed on the end device. How-
ever, security and confidentiality must be maintained in the FDL during communica-
tion. In inter communication channels, the components of each layer communicate with
each other in three different ways, such as cloud, edge, and end device. The main
objective of FDL is to minimize intra-communication and to maximize inter-
communication, which would greatly reduce the cost of communication. By the way, to
maintain privacy and security, FDL builds DL models that do not expose information
about the data to the cloud. Security issue on the server side includes sharing of DL
models on the cloud that leads to confidentiality and security risk. Security issue on the
client side is done by encrypting the data during the training process before sending it to
the cloud server. Some mechanisms and homomorphic encryption technique controls
the amount of data to be shared on the cloud. Since peripherals have limited memory
and computational requirements, DL models must be optimized so that they can be
deployed to IoT or peripherals efficiently. In terms of hardware optimization, the GPU
provides low-power computation that reduces computation time. The FPGA and
Google’s Tensor Processing Unit [40] are other DL devices that enhance DL network
processing. In terms of memory optimization, algorithms such as shared memory allo-
cation algorithms for DL models can be used. Dynamic scheduling [41] is one of the
main processes used to improve performance on a cloud server.

4. Wireless sensor networks and its relation to industrial internet of
things

4.1 Relation between IIoT and IWSN

At the heart of the IIoT are the WSNs, that include of multi-functional nodes, low-
cost, along with sensing, have both communication and processing capabilities. In order
to communicate wirelessly over short distances, these little, inexpensive sensor nodes
have built-in transceivers and processors. They are densely exploited in an area of
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interest to collect sensory data, by coordinating and collaboratively exchanging infor-
mation by training ad hoc wireless networks. Due to the small size and the batteries use,
Sensor nodes are limited in processing, communication, and power. A unique feature of
WSNs is their network processing attribute, whereby sensor nodes do not send raw sense
data directly to the gateway but merge it locally to make it more consistent and save
significant communication costs. Their application field is multiple and they are now
ubiquitous components of intelligent environments, due to their unique attributes. Their
various area of application covers home, surveillance, military, smart city, patient health
monitoring, automation, etc. WSNs are used in telehealth applications in patient
healthcare monitoring scenarios. As example, to monitor patients with chronic diseases
and regularly check their various parameters such as heart rate, blood sugar and send this
information wirelessly to a doctor remotely for further diagnosis. In order to help the
elderly and disabled in their daily tasks, the WSNs are also used.

Indeed, they have seen major deployments in a diversity of applications, including
agriculture, industrial process automation and control, transportation, and supply
chain management over the past decades. Due to their ubiquitous presence and con-
sidering the potential benefits of these networks, such as simple deployment, cheap
installation cost, no cabling cost, less complexity and mobility, they are increasingly
used. in IIoT applications, which gave rise to IWSNs. WSNs can be used in an IIoT
environment such as automation and control, process monitoring, and safety and
emergency applications. In automation and process control applications, several tasks
may require active nodes named actuators, which have the capability to act autono-
mously on the physical environment based on the detected measurements. For exam-
ple, in the automation and control of feedback-based chemical processes, sensors
measure temperature; if the temperature crosses a certain threshold value, they
inform the actuators to reduce the temperature to a desired value so that the process
remains in a stable state. Such applications place strict constraints on low latency and
reliability because the sensor measurements must reach the actuator in a timely and
reliable manner in order for the valve control action to be performed on time [42].

Today’s sensor nodes have more processing power, longer battery life and memory,
due to recent technological improvements compared to the first resource-constrained
sensor nodes. This allowed them to be used in IIoT applications and resulted in IWSN.
IWSN makes processes independent and autonomous, especially in difficult areas, to get
actuation and control information, sensory. Sensor nodes in the WSN field detect pro-
cess variables (e.g. temperature, pressure, etc.) and pass them to the well or gateway.
The sink then passes it to the process controller whose job is to control the process
variable under some required value. The receiver is responsible for the sensor network
management and is controlled and managed by the host application management. The
Network and Security Manager is responsible for entire network monitoring and ensur-
ing security against attacks. Therefore, WSN has the potential to improve production
processes and quality of products without compromising the IIoT QoS. Actuation and
control, and sensing, are also imperative in majority industrial applications. In these
applications, the sensors detect the data and the actuators act on the data based on
certain control decisions made by the process controller.

4.2 Federated learning implementation challenges in IIoT and IWSN

To implement FL’s full potential in IIoT and IWSN, there are still several funda-
mental challenges that need to be addressed. In this section, we describe the chal-
lenges followed by very promising opportunities to meet those challenges.
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4.2.1 Limited computational resources

Indeed, the FL deployment on IIoT and IWSN networks relies deeply on the
computational resources and memory of edge devices. Consequently, people often
focus only on the IoT devices capabilities to gather data while ignoring their
limited memory and compute resources, which makes it hard for most IoT and
sensor devices to finish local computation with massive data or sophisticated models.
In order to address this challenge, lightweight Al techniques have been explored,
which can be implemented in resource-constrained FL-IoT and WSN environments,
such as improved resource management approaches to accelerate FL training on
devices.

4.2.2 Device heterogeneity

In the multi-device settings, participants under the FL framework have various
system resources, such as compute and memory resources. As the trend in machine
learning is for larger and deeper models, the hardware heterogeneity within the IIoT
and IWSN systems pose several challenges for the FL structure. They could easily
train large models as devices with powerful memory and computing resources while
other devices with limited resources could only train smaller models. Reader speed
will also vary across devices, even for the same model size, which can trigger the
problem of asynchronous communication discussed above. Due to the availability of
the resources, an FL framework for IIoT and IWSN should provide a graceful
adaptation of data and compute load on diverse devices.

4.2.3 Limited networking bandwidth

Communication overload is considered to be one of the main challenges in FL-
based IIoT and IWSN environments. Currently, most IoT and WSN devices commu-
nicate using wireless networks that have a much lower bandwidth than the wired
network bandwidth. As more and more devices join the system, the communication
problem arises when the clients have different resource allocations. The limited net-
work bandwidth not only makes the communication between clients and the server
inefficient, but also triggers the presence of late clients, which fail to share their local
update with the server during the communication cycle. To meet this challenge, some
key ideas can be used, such as decentralized training, data compression and partici-
pant selection.

4.2.4 Adversarial attack and defense

The IoT devices prevalence also poses an attractive target in the real-world
deployment for adversaries seeking to launch attacks, such as identity theft, phishing,
and distributed denial of service (DDoS). Many IoT and ISN devices do not have the
compute resources to do so, although these attacks can be easily defended by installing
security patches. It is critical for the IIoT andd IWSN systems to detect the malicious
or broken IoT devices that will ruin the model training with limited resource. To
address this challenge, one of the promising directions is to implement a lightweight
security protocol in the IIoT andd IWSN systems for the detection of broken and
malicious devices.
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4.2.5 Expected future solutions

Undeniably, the IIoT and IWSN ecosystems continue to evolve at a breakneck
pace, exceeding all growth expectations and ubiquity barriers. From sensor to cloud,
this giant network keeps breaking technological bounds in several domains, and
wireless sensor nodes are expected to be predominant as the number of IoT devices
grows toward the trillions to connect the unconnected world and things. However,
their future in the IIoT and IWSN ecosystems still seems foggy, where several chal-
lenges, such as device’s connectivity, artificial intelligence (AI) at the edge, security
and privacy concerns, growing energy needs, the right technologies to be used and
keep pulling in opposite directions. To address these issues, which are caused by the
complexity and variability of the environment, advanced computing related technol-
ogies are widely applied. However, the edge computing is limited by cost, volume,
power consumption, and other conditions, so the capacity of edge computing cannot
be fully exploited. So that edge computing fully exploits its characteristics of flexible
management, federated and collaborative execution and heterogeneous environment,
the reconfigurable real-time computer system based on FPGA SoC is strongly
recommended. The system, as depicted in Figure 3 can be built in real time as needed,
by the characteristics of the FPGA SoC, including its reconfigurability, partial and
total and precise clock control.

A multi-threaded huge number, computing requirements, and parallel heteroge-
neous data processing are persistently proposed in many environments of
manufacturing. However, depending on the multi-environment’s requirements with
different multiple tasks and several scenes, a single algorithm can no longer face the
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Figure 3.
Reconfigurable edge computing system based on FPGA SoC.
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requirements so that numerous complicated tasks require the algorithm to be
reconfigured and replaced. Without a doubt, the FPGA employment gratifies this
multitude of requirements. However, it can rebuild the logic of the chip by means of
configuration and reconfiguration of the resources inside the chip to form hardware
with different functions by means of software. Therefore, in addition to the program-
mability and flexibility of the software, the FPGA also exhibits high throughput, low
power, and low latency characteristics. In addition, due to its rich In-Output, FPGA
SoCs are also very relevant for use On-chip protocols applications and interface
conversion. The main benefits from employing FPGA for the edge computing are as
follows:

* A constant throughput can be provided by the FPGA with a constant load size-
based application, so that can integrate multiple service requests from several
sensors in the IoT.

* Large-scale temporal and spatial parallelism is provided by the FPGA with fine
granularity, so that ensures a high concurrency and high dependency algorithm
with high acceleration performance.

* Compared with the processor, the FPGA has the lower power consumption and
faster computing speed, which can provide the stability and lower task energy
consumption.

5. Network slicing architecture and system model
5.1 Network slicing architecture

The 5G network infrastructure design should focus on attentive consideration of
software control, hardware infrastructure, and interconnection between them. In this
context, we consider a network slicing architecture consisting of a set of IIoT slices
J ={1, ...,j}, where represents the slice number. These slices are built on a unified
physical infrastructure and share the same network resources. The proposed architec-
ture, which is denoted in Figure 4, consists of three virtual slices. The urgent slice is
the UCLE which yields more significance to the QoS and the efficiency. Thereafter,
the HCLE slice that donates less importance to the latency. The last one is defined as
the LCLE, which has the lowest slice priorities with unsecured QoS. The table denoted
in the work [7] represents the slice’s QoS requirements adopted for our architecture.
This architecture consists of a set of K = {1, ..., k} gateways, where k is the number of
gateways. Then, gateways take over the task of providing radio resources to the
substrate network layer, which contains a set of I = {1, ..., 7} IIoT devices, affected to
the slice that meets its QoS demands.

5.2 Slicing system model

This slice setj €] is integrated virtually on a Gateways (GWs) set k € K. However,
the physical resources of each GW consist of a set of C = {1, ..., ¢} channels, in which
each one includes a bandwidth b € B = {1, ..., b}. The goal of this work is to provide,
for slices member, dynamic channel management based on TP and SF tuning. IN this
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Deep federated RL-based network slicing architectuve.

context, ; € {0, 1} is denoted as the binary value that indicate the admission
success of device i €1 to slice j on GW k. Therefore, we define the Throughput ¢; and
Delay d; models, based on SF and TP parameters for each device i j, as in (1), (2),

respectively [6].

R, bir .
¢; = SF.—5 CR = SF. 2§F .CR, Vi€l j, (1)
L.
d; = 51 Viel j, (2)

where R, is the chip rate, b;; denotes the bandwidth assigned for slice j on LoRa
GW k, CR represents the coding rate, and L; is denoted as the packet size. Following
the ultimate goal that seek to manage slice’s QoS demands, energy efficiency (EE),
given in (3), is considered as the second objective that should be maximized for IIoT
devices assigned to each slice on each GW.

y &; -
maxuly = Z aiﬁ,VlEIj,k, (3)
j C

ielj’k

however, p! denotes the allocation power for each IIoT device. u é; is the EE
metric that provides the efficiency of energy efficiency of each slice. While, P,
denotes the power consumption of the circuit and P]T = icr..p is the TP. Finally,
1 gkl 2

we define the multi-objective problem, as in (4), aiming to maximize the slice utility

jok
revenues U/J'".

max UJk = Z(uéfs +ul) +u1{§L>,Vk eK,Vj€], (4)
jk
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6. The proposed DFRL for network slicing framework

We assume that agents, by sharing its self models based on the Q-network experi-
ences, collaborate to receive global rewards from the federated orchestrator. While
the orchestrator collects these models to builds a global network model that provides
an optimal actions, on LoRa parameters, that maximize QoS revenue [43, 44].

The considered network consists of two agents, called as agent « and agent $, that
play in Markov environment. In this context, we denote the reply memory for agent a

by D, = {sa, Ag> S, Va} and the reply memory for agent by Dy = {s[;, aﬁ,s;;, Vﬁ}.
These memories are used to store transitions parameters which will be collected,
during interaction, to build an optimal policy (z; and 7 ). The notations of
Q-functions, states, actions, and policy are denoted, respecting to agents a and f,
respectively, as {Qa,sa €S, as €Ay, ) } and {Qﬂ,sﬁ €S,ap € A, zz[}k } Thereby,
assuming that states spaces (s, and sp), transitions parameters (D, and D), and the
Q-network functions (Q, and Q;) are different for the defined agents @ and f3. Each
agent builds its own Q-network (Q, or Q;), and 6 (0, or 05) parameters. These agents

interacts with the DFL model with the aim is to build a global federated model that
satisfy dynamic slice’s QoS demands exploiting local agents experiences Q, and Q.

- N )

‘éom ute Yt-n %
: p \‘“\\
Update s /4 Update ‘
B4 and 8p and 8,
Training phase “ eﬂ ; \\>< B l 3
; 4 / N ‘
‘Compute Ca - | Compute Cg ‘
Agent Agenta 'Agentp | Agent
5“) &) (W) % |G (® %
[ Compute " Compute
(10 T X//'. Clﬁ
'@ e Y / r 59
Compute Qf, | \\Compute Qg
l Actions “ Actions | Testing phase
(TP, SF) (TP, SF)
®) (%)
\ ‘Agenta / & "Agentp /

Figure 5.
Training and testing phases.
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Therefore, based on the Q-networks models, (5) represents the DFL (based on DNN)
Q-network output as Q ¥ (0(1, PR Qg).

Q¢ (0> 053 6;) = DNN ([Qu (50> s 0)|Q (555 a3 05) ] 6,), ®)

where [.|.] denotes the concatenation symbol and ¢, denotes the DNN (DFL)
parameter shared between agents.

At this stage, the Mean Square Error (MSE), is defined for agents a and f, as a Loss
function denoted in formulas (6), (7) [7]. These formulas are used to train the
proposed framework, by updating the parameters (6, 64, 6,), to build federated
model that will be able to find, then, an optimal action decision on TP and SF that
maximize slice’s QoS rewards.

MSE (0,,6,) = E {(Y"‘ — Q%(st» ', Cps O eg)ﬂ 6)

MSE},(6,0,) = E {<Yt ~ @} (55 Cus 05 eg)ﬂ : (7)

while Y =#(s) +y max Qf (5" al, Cp; 0a, 0, ) is attributed for agent a only, as a
ae

condition to start training. Figure 5 depicts the DFRL framework process.
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Figure 6.
PLR of UCLE.
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7. Experiment results

The proposed framework has been implemented in Python language using
TensorFlow-gpu package on Intel Xeon E5-2620 v4 2x 8-Core with 64 GB RAM. Also,
the NVIDIA GK110BGL [Tesla K40c] is used to improve speed during the training
phase.

We provide, in this section, the mean percentage of Packet Loss Rate (PLR) for
IIoT devices, as denoted in Figures 6-8, and compare it to the PLR within MBGD
scheme [7].

However, by increasing the devices, PLR will increase subsequently. This return to
the data rate, that when increase, the number of successful transmitted packet
increase accordingly. While it is not the case when throughput is low. We remark also,
in Figures 6-8, that UCLE and HCLE slices have a reduced PLR compared to LCLE.
However, this due to the reliability and efficiency constraints dedicated for this slice
which is not the case in LCLE slice that consider only the load. Compared with the
slice results using the MBGD technique, we could obviously note the efficiency of the
proposed federated scheme in supporting dynamic slicing strategy by reducing PLR
over than 9%. This improvement return to the shared experience between agents that
can improve the action decision on TP and SF to slices.
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Figure 7.
PLR of HCLE.
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PLR of LCLE.

8. Conclusion

This prospective chapter presents a future outlook on low-end motes in the IIoT
and IWSN eras. Following a detailed discussion of the trends and challenges posed by
the IIoT and IWSN paradigm to low-end devices, it discusses how modern
reconfigurable platforms are the perfect candidate to meet the ever-evolving indus-
trial environments. Indeed, in this chapter, we proposed a federated network slicing
based on deep reinforcement learning techniques for channels and bandwidth man-
agement based LoRa promising technology that meet IIoT and IWSN network service
requirements based on the SDN, NFV, network slicing, and deep reinforcement
learning techniques. Each LoRa GW plays an agent role, in the environment, and
profits from the learning experience provided by the other coexist agents via the
global federated model.

In the case of future studies, this chapter introduced comprehensive review
and several research lines, especially one attractive future line is related to the
integration of FPGA SoC at the edge to build a smart factory as well as IIoT and
IWSN environments with environmentally friendly capabilities and functionalities.
In addition, future research is needed to fully embrace cloud services and new
ways of connectivity in order to get the full benefits of the new Edge FPGA SoC
technology.
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Nomenclature

J=A1, ...,j} I[IoT network slices set

K={1,..,k} LoRa gateways (agents) set

I={1, ..,i} I1oT devices set associated to each slice
B={1,..,b} channel bandwidth set

C=1{1, ..,c} LoRa-GW’s channels set
a;€{0,1},Viel device’s admission and association index to slice
Viel device i assigned to slice j on gateway k
TP transmission power

SF spreading factor

i, Vi€l throughput of device i

a, Vi€l delay of device i

u éoks quality of service metric for slice j on GW k
pLVi€El jy the power allocated for each device i

u EJ; energy efficiency metric for slice j on GW &
pr the received power

u Ig;EkL reliability metric for slice j on GW k

U VJ;?’@, VkeK,Yj €] the global slice utility revenues metric
{§,A,T,%} state, action, transition function, reward
aand agent a and agent f

4 discount factor

0> 05 DQL network parameters (weights)

0, DNN network parameters (weights)
Dy, Dy reply memories to store transitions
Abbreviations

IoT internet of things

[IoT industrial IoT

IWSN industrial wireless sensor network

Al artificial intelligence

ML machine learning

DL deep learning

QoS quality of service

RL reinforcement learning

DRL deep reinforcement learning

FL federated learning

DFL deep federated learning

DFRL deep federated reinforcement learning

CPIToS cyber-physical internet of thing systems

5G fifth generation network

SDN software defined network

NFV network function virtualization

NS network slicing

DQL deep Q-learning

GD gradient descent
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GMM gaussian mixture model

SP service provide

MEC mobile edge computing

GPU graphic processor unit

FPGA field programmable gate array

UCLE ultra critical of latency and efficiency
HCLE high critical of latency and efficiency
LCLE low critical of latency and efficiency
GW gateway
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