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Abstract

In response to the growing recognition of health issues, people are seeking products 
that are inexpensive, convenient, and health-related. The incorporation of pseudocer-
eal powder in nutraceutical sector is currently increasing because of their high nutri-
tional profile as well as health-promoting effects. The high nutritional profile includes 
low starch content, high in amino acid profile, high in mineral content, and low glyce-
mic index. Moreover, it contains high levels of phytochemicals that contain consider-
able amounts of flavonoids, polyphenolic chemicals, and phytosterols, making them 
useful in the nutraceutical sector. These bioactive compounds offer antioxidant, anti-
inflammatory, and reduced risk of obesity, prediabetes, and diabetic complications. 
With its tremendous potential and numerous food health-related uses, pseudocereal 
can serve as a low-cost alternative ingredient in health-related food products. Several 
pseudocereal processes via enzyme activity, as well as the high rheological stability of 
its starch, have made pseudocereal an attractive option for modern agriculture.

Keywords: rheological stability, enzyme activity, health benefits

1. Introduction

Pseudocereal grains are edible seeds of dicotyledonous species that possess the 
same physical characteristics as cereal grains, such as having less or similar starch 
content, contribute high caloric value [1, 2] and an edible appearance [3]. The trend 
of pseudocereals in human diet is becoming more popular, because they fulfill 
high nutritional and nutraceutical needs while being gluten-free (GF). Moreover, 
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gluten-free diet has become increasingly popular in recent years due to the increasing 
number of individuals having gluten intolerance, celiac disease, and self-awareness 
toward health. One of the topics that has received a lot of interest and is still being 
explored is the processing of pseudocereal powder and its application in gluten-
free food development with desired texture. Pseudocereal powder manufacture 
has opened the door for these crops to be used into a wide range of food industries. 
Besides pseudocereal is an important resource for developing functional foods, 
research has also highlighted pseudocereal as the potential resource for health benefits 
[4, 5]. Secondary metabolic analysis of pseudocereals indicated that they contain con-
siderable amounts of flavonoids family, polyphenolic components, and phytosterols, 
which contribute to the therapeutics properties [6–11]. In addition, they offer great 
potential for the future because of their high genetic diversity, allowing them to adapt 
to a wide range of climatic conditions, from tropical to temperate [4, 5, 12].

Pseudocereals have been referred to as twenty-first century grains due to their high 
nutritional value [13]. They contain high amounts of starch, fiber, and proteins with a 
balanced essential amino acid composition, among which are many sulfur-rich amino 
acids. When compared with cereals, the protein quality and quantity in pseudocereals 
are far superior and have emerged as a significant source of bioactive peptides in the 
recent decade [14]. Pseudocereal grains are rich in starch, which comprise between 
60% and 80% of seed weight, which can be classified as rapidly digestible, slowly 
digestible, or resistant to digestion [15]. Resistant starch (RS) causes a beneficial effect 
on the body as it cannot be digested and absorbed in the small intestine, instead pass-
ing to the colon where it is fermented by microorganisms into short-chain fatty acids. 
Current dietary guidelines recommend that at least 14% RS on a total starch basis is 
required for health advantages. On the other hand, simple starch contains monosac-
charides compound such as glucose, fructose, arabinose, xylose and disaccharides 
compound such as sucrose and maltose, which exist in less quantity in pseudocereal. 
A significant amount of dietary fiber, lipid, mineral, and vitamin contents existing 
in pseudocereal enhances the nutritional value of these crops and permits their entry 
in the functional food sector. In general, dietary fiber of pseudocereal can be divided 
into two groups: insoluble and soluble polysaccharides. Out of 78% of total dietary 
fiber content consists of insoluble polysaccharides while 22% consists of soluble 
polysaccharides where hemicellulose, branched-galacturonan, cellulose [4, 5] and 
xyloglucans, lignin, cellulose [16] are the examples of insoluble and soluble polysac-
charides, respectively. For lipid profile, pseudocereal is reported to possess a high 
value of polyunsaturated fatty acid, which consists of linolenic acid and linoleic acid 
[17, 18] whereby unsaturated fatty acid, oleic acid, and palmitic acid are among the 
abundant fatty acids existing [19, 20]. The mineral compounds of pseudocereal are 
abundant in coat; therefore, as a whole pseudocereal are a good source of mineral.

2. The rheological modification of pseudocereal starches

The study of starch gelatinization properties through viscometer analysis is very 
important for understanding the viscosity changes and evaluating the disintegration 
of starch components and their tendency to regenerate when forming new hydro-
gen bonds, thereby forming viscoelastic gels [21]. The pasting properties of native 
pseudocereal starches are summarized in Table 1. From Table 1, the measurements of 
pseudocereal starch paste’s viscosity are analyzed using Modular Compact Rheometer 
(unit recorded as cP), Rapid Visco-Analyzer (RVA), Brabender Amylograph (BA), 
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or using a dynamic rheometer in a flow temperature ramp mode. In general, data 
obtained as in Table 1 show that the pasting temperature affects the ability of starch 
to imbibe water whereby as the pasting temperature rises, the likelihood of paste 
creation rises. Hence, it can be suggested that in the presence of water and heat, 
starch granules swell and form paste by imbibing water [21]. The pasting temperature 
of pseudocereal starch as in Table 1 ranges from 63.7 to 95°C, and it can be dif-
ferentiated into two groups, which is the higher pasting temperature ranging from 
81.88–95°C [22, 23] while the lower pasting temperature ranges from 63.7 to 68.75°C 
[21, 24, 25]. The pasting temperature depends on the size of the starch granules where 
small granules are more resistant to rupture and loss of molecular order, so this might 
explain the relatively high pasting temperature [26].

The modifications of pseudocereal starches were studied by many researchers to 
improve the functional and rheological properties of pseudocereal starch [22–25, 27]. 
Pasting properties of modified pseudocereal starches in comparison with their respec-
tive native pseudocereal starches are summarized in Table 2. There are three types of 
modified pseudocereal, namely physical modification, chemical modification, and 
physicochemical modification as in Table 2. In general, chemical modification of 
starch resulted in significantly increased peak viscosity compared with the other two 
types of modified pseudocereal. This is probably due to the increased granular stiff-
ness, which is resultant of starch chain interactions within the amorphous region and 
an increase in crystalline order [24]. Oxidization, acetylation, and octenylsuccinylated 
(OSA) as in Table 2 increased the peak viscosity of Amaranthus hypochondriacus that 
might be accredited to the higher swelling power and comparable solubility of starch 
relative to native starch. Final viscosity signifies the starch ability to develop viscous 
paste on cooling after cooking the starch solution.

Physical modifications of pseudocereal starches by heat moisture treatment 
(HMT) were studied in two types of amaranth spp. such as A. caudatus [21] and 
A. hypochondriacus [22] as in Table 2. Heat moisture treatment causes intensifying 
decrement in setback viscosity with rising amylose content in starches as high-
temperature treatment supports added interactions between amylose-amylose and 

Native 

pseudocereal 

starch

Viscosity (acP/bmPa s/cRVU/dBU)* Pasting 

temperature 

(°C)

Pasting 

time 

(min)Peak Trough Breakdown Final Setback

Amaranth—

Amaranthus 

hypochondriacus

2176a 1533a 643a 1710a 177a 72 3.95

– A. caudatus 2285.85b — 1247.15b 1276.7b 262.64b 64.32 5.13

– Amaranthus sp. 73.42c — 13.5c 68.54c 8.63c 81.88 —

Buckwheat 3133a 1650a — 3912a — — —

4019a — 1641a 4293a 1915a 63.7 —

4589a 2171a 2418a 3986a 1816a 68.75 3.47

600d — 1220d — 620d — —

Quinoa 101.08c — −0.86c 114.39c 12.44c 95 —

*cP: centipoise; mPa s: millipascal-second; RVU: Rapid Viscosity Unit, BU: Brabender Unit.

Table 1. 
Pasting properties of native pseudocereal starches.
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Type of starch modification Type of pseudocereal starches Pasting properties

viscosity Pasting 

temp.

Pasting time

Peak Trough Breakdown Final Setback

Chemical modification

1) Oxidation Amaranth (Amaranthus 

hypochondriacus)

↑ ↑ ↑ ↑ ↑ ↓ ↓

2) Acetylation Amaranth (A. hypochondriacus) ↑ ↓ ↑ ↓ ↑ ↓ ↓

Buckwheat ↑ — ↓ ↓ — —

3) Alcoholic-Alkali Treatment Buckwheat ↓ ↓ ↓ ↑ ↑ ↓ ↑

4) Octenylsuccinylated (OSA) Amaranth (Amaranthus sp.) ↑ — ↑ ↑ ↑ ↓ —

Quinoa ↑ — ↑ ↑ ↑ ↓ —

Physical modification

1) Annealing Buckwheat ↓ — ↓ ↓ ↓ ↑ —

2) Heat-Moisture Treatment 

(HMT): 85 °C

Amaranth (A. hypochondriacus) ↑ ↓ ↑ ↓ ↑ ↑ ↑

: 00°C Amaranth (A. hypochondriacus) ↑ ↓ ↑ ↓ ↑ ↑ ↓

: 20 °C Amaranth (A. hypochondriacus) ↑ ↑ ↑ ↑ ↑ ↑ ↑

3) HMT at 120°C(15 min): 10% 

moisture

Amaranth (A. caudatus) ↓ — ↓ ↑ ↑ ↓ ↓

: 15% moisture Amaranth (A. caudatus) ↓ — ↓ ↑ ↓ ↑ ↓

: 20% moisture Amaranth (A. caudatus) ↓ — ↑ ↓ ↑ ↑

(30 min): 10% moisture Amaranth (A. caudatus) ↑ — ↑ ↑ ↑ ↓ ↓

: 15% moisture Amaranth (A. caudatus) ↓ — ↓ ↓ ↓ ↑ ↓

: 20% moisture Amaranth (A. caudatus) ↓ — ↓ ↓ ↓ ↑ ↑

(60 min): 10% moisture Amaranth (A. caudatus) ↓ — ↓ ↑ ↑ ↓ ↓
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Type of starch modification Type of pseudocereal starches Pasting properties

viscosity Pasting 

temp.

Pasting time

Peak Trough Breakdown Final Setback

: 15% moisture Amaranth (A. caudatus) ↓ — ↓ ↓ ↓ ↑ ↓

: 20% moisture Amaranth (A. caudatus) ↓ — ↓ ↓ ↓ ↑ ↑

4) HMT at 110°C: 20% moisture Buckwheat ↓ — ↓ ↓ ↑ ↑ —

: 25% moisture Buckwheat ↓ — ↓ ↓ ↑ ↑ —

: 30% moisture Buckwheat ↓ — ↓ ↓ ↑ ↑ —

: 35% moisture Buckwheat ↓ — ↓ ↓ ↓ ↑ —

5) Ball Milling Treatment Buckwheat ↓ ↓ ↓ ↓ ↓ ↓ ↑

6 Drum Drying Buckwheat ↑ ↓ ↑ ↓ ↑ ↓ ↓

Physico-chemical modification

Acid hydrolysis + HMT Buckwheat ↓ ↑ — ↑ — — —

Table 2. 
Pasting properties of modified pseudocereal starches in comparison with the native starches (refer Table 1).
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amylopectin-amylopectin chains that lessen amylase leaching and decrease setback 
viscosity. From Table 2, it can be observed that all HMT of modified-amaranth 
(A. caudatus) starches and modified-buckwheat starches decreases in peak viscos-
ity and breakdown viscosity as compared with native starch. It indicates that the 
modified starches are more stable as compared with native one. Meanwhile, Sindhu 
and his team [22] found the contradict results, which increase in peak, breakdown, 
and setback viscosity that reflects the poor stability of modified starches and starch 
retrogradation occurred. All physical treatments aim to modify the granular structure 
of native starch and convert it to cold-dissolvable starch or crystallization of starch.

The hydrothermal treatment of native starch reduced its ultimate viscosity at 
lower temperatures (85 and 100°C), but increased it significantly at higher tempera-
tures (120°C). The eventual viscosity of all starch samples was lower than the peak 
viscosity, which could be due to some glycosidic linkage breakdown. In addition to 
the breakdown viscosity, the stability of starch pastes is determined by their breaking 
point, and higher breaking point values indicate inferior stability during continuous 
heating and shearing procedures in comparison to native starch. Except for acetylated 
starch, which showed a nonsignificant rise in setback viscosity when compared with 
native starch, all treated starches showed a substantial increase in setback viscosity. 
The largest setback viscosity was found in oxidized starch, and results from a freeze-
thaw stability experiment confirmed this. Oxidized starch had the highest syneresis, 
while acetylated starch had the lowest. The setback viscosity varies depending on 
the amount of amylose leaching, the size of the granules, and the type of swelling 
granules. In this study, modified starch samples had an enhanced setback viscos-
ity due to the waxy and low amylose characteristics of the amaranth starch used. 
Increases in pasting temperatures of heat-moisture-treated starches indicated that 
amylopectin chain connections were strengthening and interactions between them 
expanding. Starch pastes were statistically significantly reduced in pasting tempera-
ture and peak time as a result of acetylation and oxidation processes. Because the 
insertion of functional groups modulated the amorphous region and decreased the 
intermolecular hydrogen bonds, the pasting temperature of the starch granules was 
lower. Modification improves the application of modified starch in products where 
the thickening ingredient must gelatinize quickly at low temperatures by lowering 
the pasting temperature and peak time. The increased efficiency of such items also 
decreases the energy costs involved in their processing. As a consequence, acetylated 
and oxidized starches are usable in formulations that require low-temperature cook-
ing/processing to obtain pastes [22, 28].

The effect of octenyl succinylation on the functional characteristics of Amaranthus 
paniculatus starch was investigated by Bhosale and Singhal [29]. The swelling power, 
paste clarity, freeze-thaw stability, enhanced viscosity, and lowered gelatinization 
temperature of OSA-modified amaranth starch were all improved. These findings 
suggest that OSA-modified amaranth starch could have applications in the food 
business, particularly in emulsification. Pal et al. [30] investigated the qualities 
of hydroxypropyl derivatives derived from A. paniculatus starch and discovered a 
considerable improvement in freeze-thaw stability, suggesting that it could be used 
as a thickening agent in frozen foods. All starches (amaranth/quinoa) had increased 
pasting viscosities following modification of octenylsuccinylate (OSA), but RVA 
profiles were affected in different ways. In contrast to native starches, OSA starches 
were found to paste at a lower temperature between 73.7 and 81.4°C. Due to the 
fact that OSA starches have loosely packed surface areas, resulting in lower pasting 
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temperatures, the OSA group produces spatial hindrance, which is responsible for 
weakening internal hydrogen bonds, which increases water absorption and lowers 
energy expenditure for gelatinization [23]. There might be additional influences on 
PT change from starch compositional aspects, such as the chain length of amylopec-
tin, granule surface, and packing arrangement within the granules. As a result of the 
substitution of OSA on starch granules, the pasting qualities are also compromised. 
Peak viscosity can be defined as the water-holding capacity of starch granules in 
terms of swelling and shearing ability. Starches with high peak viscosity are suited 
for application as food thickeners, while a low percentage of OSA starch can replace 
higher levels of unmodified starch. Amylose content and long-chain fraction of 
amylopectin have been reported as major factors influencing peak viscosity [23, 24]. 
Modification of quinoa starch with OSA showed that a substitution degree of 3.21% 
is optimal for emulsifier formation and stabilization. A higher degree of substitu-
tion (4.66%) results in the aggregation of starch granules and the decrease of starch 
granule stable emulsion. In addition, OSA modification is more effective than heat 
treatment in providing hydrophobic characteristics to quinoa. The heat treatment is 
only slightly better than the natural starch granules [31].

Several studies have been reported about different physical modification meth-
ods in buckwheat starches, some of these are roasting process [32], microwave and 
annealing treatments [33], drum-drying and ball-milling treatment [24] high-
pressure and high-temperature treatment [34], heat moisture treatment and anneal-
ing [24], hydrothermal processing [35], autoclaving/cooling [36], and others. The 
duration and quality of the gelatinization process as well as the viscosity and behavior 
of the gelatinization also change in nearly identical ways, including decreased or 
increased pasting viscosity, increased or decreased swelling power and solubility, 
increased retrograded starch content, increased gelatinization temperature, and 
slower digestion of the gelatinization [37].

3. Application of enzyme in pseudocereals

Enzymes are necessary for the production of compounds from grains that are 
used in contemporary foods and beverages. Enzymes have been identified as having 
the ability to improve the processing behavior or qualities of cereal and pseudocere-
als meals such as flavor, texture, and shelf-life with minimal impact on nutritional 
content [38].

Grain contains endogenous and exogenous enzymes. Endogenous enzymes are 
found naturally in grain kernels and are primarily found in the outer layer, fiber, 
and bacteria. Meanwhile, exogenous enzymes are created by bacteria on the surface. 
These enzymes influence grain raw materials quality and processing properties, 
mainly when humidity and time are present. Some enzymes are found in cereals, are 
frequently of microbial origin, and are given as pretreatment and manufacturing 
agents. Enzymes can contribute significantly by increasing the usage of raw materi-
als and improving the impact of food and beverages [39]. Table 3 shows the benefits 
of exogenous and endogenous enzymes in the diet. In general, both exogenous and 
endogenous enzymes influence the quality of the pseudocereal grains as listed in 
Table 3 below. Apparently, the existence of endogenous enzyme gives a huge impact 
on the physical-chemical properties of pseudocereal grain compared with exogenous 
enzyme.
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The areas of enzyme in grain processing are pervasive in terms of raw material and 
enzyme-catalyzed processes. The most important contemporary sectors involving 
enzyme treatment of grains are energy supply, bioethanol, biomaterials, digestible 
films, and sustainable biomass utilization. The enzymes work with polysaccharides 
and proteins to control and use starch structure, which is significant in the food and 
beverage industries [42].

3.1 The involvement of enzymes in seed germination

Seed germination is a phenomenon governed by various mechanisms required to 
transform a seed into a new plant. The mature seed includes the necessary compo-
nents to participate in the processes that control germination, including the enzymes 
that will aid in the process. Germination demonstrates the nutritional value and 
availability of proteins and amino acids while decreasing the amount of anti-nutritive 
substances [43]. Enzymes help restore broken DNA during the drying and germina-
tion of the grain, resulting in proper seedling growth.

Unrefined cereal crops need a variety of pretreatment processes, including the use 
of enzymes in addition to standard techniques. By altering the molecular structure 
and the amount and quality of nutrients, phytochemicals, and harmful compounds, 
enzyme pretreatment improves processability, safety, stability, or technical and 
nutritional utility [43]. For example, enzymes can reduce mycotoxin levels by bio-
transforming mycotoxin into harmless metabolites [38].

Research demonstrated that enzymatic mycotoxin destruction depends on the 
enzyme-producing source, its concentration, and the circumstances used [44]. 
Susanna and Prabhasankar [45] developed an outstanding quality hypoimmuno-
genic pasta using a blend of xylanase, protease, and transglutaminase, which might 
be a gluten-free alternative [45, 46] and showed the use of enzymes in cereal grain 
polishing. Depolymerization of bran carbohydrates happens due to cell wall degrad-
ing enzymes in this process, altering phenolic mobilization and dietary fiber solu-
bilization. Carbohydrate-cleaving enzymes, such as cellulases (e.g., endoglucanase, 
exoglycanases, and beta-glucosidase), xylanases, glucanases, and esterases, undertake 
enzyme biopolishing [46]. Table 4 shows the enzymes utilized and the progress 

Exogenous enzymes Endogenous enzymes

• To boost the nutritional value

• Modify and improve nutritional qual-

ity by allowing starch and non-starch 

components to interact.

• Microbial origin

• Reducing the availability of digestive 

enzymes and, as a result, the pace of 

starch digestion

• Reducing the availability of digestive enzymes and, as a result, 

the pace of starch digestion

• Increase nutritional value and palatability by manipulating the 

main biological macromolecules, such as carbohydrates, lipids, 

proteins, nucleic acids, and simple molecules such as vitamins, 

amino acids, and sugars.

• Catalyzing natural reaction during germination and sprouting

• Provides taste to the mix, which affects sensory characteristics

• Involve the grain’s raw material’s quality and processing 

qualities

• Deteriorate the processing characteristics of flour and other 

grain products

• Capable of altering cereal structure and functional qualities

Table 3. 
The advantages of exogenous and endogenous enzymes in food [38, 40, 41].
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toward pseudocereals. In general, these enzymes have been used in improving 
nutrition level, quality, taste, color, surface structure, strength, and size. Apparently, 
amylases and hemicellulase are the two enzymes that are important for pseudocer-
eal improvement. The taste and quality of pseudocereal as shown in Table 4 were 
affected by the same group of enzymes, namely amylases, proteases, glucose oxidases, 
hemicellulases, and lipoxygenases.

3.2 Fermentation in pseudocereal processing

Fermentation is an ancient and cost-effective way of generating and storing foods 
that may be applied to grain processing. Fermentation is the process that releases 
energy by oxidizing carbohydrates without the need of an external electron accep-
tor. Most of the time, enzymes are required in the fermentation process to speed up 
the reaction. For example, alcohol cannot be produced without the enzyme amylase, 
which breaks down starch into simple sugar. Moreover, fermentation is impossible 

Substances Enzymes Improvement

Nutrition’s 

level

• Hemicellulases Soluble dietary content is increased

Quality • Amylases

• Proteases

• Glucose oxidases

• Hemicellulases

• Lipoxygenases

Balancing the change of recipe, replacement of 

potassium bromates, sodium metabisulfite, emulsifier, 

vital gluten, and fat baking reduction

Taste • Amylases

• Proteases

• Lipoxygenases

• Lipases

• Glucose oxidases

Fermentation substrates production and aroma 

precursors

Color • Amylases

• Hemicellulases

• Lipoxygenases

Brownish, crust color improvement and bleaching 

effects

Surface 

structure

• Hemicellulases

• Amylases

• Proteases

• Lipases

Smoother particles,

Strength • Amylases

• Hemicellulases

Freshen up, anti-evaporate, longer life span

Size/volume • Amylases

• Hemicellulases

• Cellulases

• Lipases

Larger size/volume

Table 4. 
The types of enzymes used and the improvement toward pseudocereals [38].
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without enzymes. Fermentation is one of the oldest and most cost-effective methods 
of food preservation and processing. Due to the enzymatic degradation of antinutri-
tional compounds such as phytate, fermentation enhances the availability of particu-
lar amino acids, B vitamins, and minerals, including iron, zinc, and calcium [42]. 
Certain antinutrient substances in pseudocereals such as phytic acid, polyphenols, 
and protein inhibitors could negatively impact on malnutritions [47]. Fermentation 
with Lactic Acid Bacteria (LAB) can increase pseudocereals’ nutritional and func-
tional qualities [48].

Cereal and pseudocereal fermentation is critical in the creation of chemicals that 
have a significant impact on organoleptic features such as scent, taste, and texture 
as well as the enhancement of nutritional values, all of which have a good impact 
on human health [47]. Microorganisms may be found in practically every biologi-
cal niche; cereals and pseudocereals generally provide an excellent substrate for 
microbial fermentations. Polysaccharides are abundant, which microorganisms may 
use as a carbon and energy source during fermentation. Fermented items made from 
common cereals and pseudocereals are ubiquitous worldwide [48]. LAB, enterobac-
teria, aerobic spore formers, and other microbiota fighting for resources are typical 
in cereal and pseudocereal grains. The pH value, water activity, salt concentration, 
temperature, and food matrix composition all influence the kind of bacteria present 
in each fermented meal [48].

4. Functional and health benefit offered by pseudocereal

Approximately 80% of the human diet is composed of cereals such as corn, wheat, 
and rice. These grains are biofortified in order to boost vitamin and other essential 
micronutrient levels. However, pseudocereals, which are naturally enriched with a lot 
of essential micronutrients and nutraceutical ingredients, are not well utilized for its 
functional and health benefits to the human.

Pseudocereals are a novelty in human diets as they are gluten-free (GF) grains with 
a high nutritional and nutraceutical value. Additionally, recent research suggests that 
pseudo cereals may have health benefits, placing these crops in the role of important 
resources for the development of functional foods [4]. Protein quality and quantity in 
pseudo cereals are considerably superior to cereal quality and quantity, so they can be 
considered functional foods. In addition to amino acids such as arginine, tryptophan, 
lysine, and histidine, pseudocereals are rich in essential amino acids for infant and 
child nutrition, rendering them useful as food supplements. Protein nutritional qual-
ity can be measured using several parameters including protein efficiency ratio (PER) 
or net protein use (NPU), digestibility and bioavailability of protein, and availability 
of lysine. Pseudo cereal protein levels are thus larger than cereal protein levels and 
comparable to casein levels. Proteins of pseudo cereals are similar to those of legumes, 
since they have 2S albumin, 11S globulin, and 7S globulin. Furthermore, pseudocereal 
proteins are acceptable for celiac disease patients due to their low prolamine level [49].

Buckwheat is gaining popularity as a potential functional food due to its health-
promoting components such as phenolic compounds and sterols. It is a good source of 
protein, dietary fiber, fat, and minerals [50]. Foods that give specific health benefits 
(health claims) exceeding their nutritional worth are referred to as functional 
foods, although their intake is not required for humankind [51]. Several biologi-
cal and health benefits can be attributed to the consumption of buckwheat and 



11

Rheological Stability, Enzyme Activity, and Incorporation of Pseudocereal Powder as…
DOI: http://dx.doi.org/10.5772/intechopen.101890

buckwheat products, including hypocholesterolemic, hypoglycemic, anticancer, and 
anti-inflammatory properties. These health benefits are said to be, at least in part, 
attributed to buckwheat proteins and phenolic compounds [52]. Some of these health 
advantages may be due to the antioxidant activity of these compounds, but recently 
identified mechanisms of action may also be related [53, 54]. Despite pseudocereals’ 
composition and properties, there are still relatively little in vivo studies and limited 
human trials supporting its functional benefit. Most studies have linked consump-
tion of pseudocereals or their bioactive components to a protective effect against 
obesity, prediabetes, and diabetes complications. Thus, the rat plasma ghrelin levels 
were reduced while postprandial leptin and cholecystokinin levels increased after 
consuming amaranth-protein-based diets [55]. Amaranth protein also modulates 
the microbiota composition of mice with obesity induced by diet [56]. In addition, 
a streptozotocin-induced diabetes model revealed that amaranth protein improved 
glucose tolerance and boosted plasma insulin levels [57]. In Wistar rats and sponta-
neously hypertensive rats, protein hydrolyzates showed significant antithrombotic 
effects [58] and antihypertensive [59].

For 6 weeks, rats fed with high-fat diet showed a lowering of cholesterol and a 
reduction of inflammation caused by tartary buckwheat protein, as well as changes in 
the animals’ microbiota [60]. In obese diabetic mice [61] and Wistar rats [62], quinoa 
intake prevented hyperglycemia, decreased total cholesterol, and decreased LDL 
cholesterol. Recent research has demonstrated that quinoa can also modulate inflam-
matory biomarkers in the liver as well as dwindle hepatic steatosis and cholesterol 
accumulation. Furthermore, there has been evidence that quinoa phytoecdysteroid-
enriched extracts reduce adipose tissue, regulate gene expressions involved in fat 
storage, and attenuate inflammation and insulin resistance in a mouse model with 
diet-induced obesity [63]. The scientists also found an increase in glucose oxidation 
and fecal lipid discharge without influencing stool sizes, in addition to an increase in 
energy expenditure without modifying food consumption or activity [64].

Until recently, there have been relatively few human studies evaluating the bene-
fits of pseudocereals. Ruales et al. [65] mentioned that two times a day administration 
of 100g of quinoa to 50–65-month-old boys living in low-income Ecuador increases 
plasma insulin-like growth factor (IGF-1). Therefore, quinoa-enriched baby food is 
able to prevent child malnutrition by providing sufficient protein and other essential 
nutrients. Additionally, supplementation of the diet with quinoa has shown to impact 
cardiovascular and metabolic parameters in both healthy [66] and overweight and 
obese people [53, 67, 68].

5. Conclusions

Various fields of study are currently being conducted, from its functional 
and rheological properties as well as enzyme immobilization and its application. 
Pseudocereal is suitable for use in a wide variety of food applications since it is packed 
with nutrients, consists of promising health benefits promoter, and is a source of 
energy. Furthermore, ongoing research into rheological modification of resistant 
starch could offer a number of possibilities and make it a possible source for use in the 
food sector, resulting in a substantial impact on food sustainability. Although research 
on the substances obtained from pseudocereal could be conducted, safety factors 
should be addressed in order to develop health-related food products.
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