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Chapter

A Heuristically Generated Metric
Approach to the Solution of Chase
Problem
İhsan Ömür Bucak

Abstract

In this work, heuristic, hyper-heuristic, and metaheuristic approaches are
reviewed. Distance metrics are also examined to solve the “puzzle problems by
searching” in AI. A viewpoint is brought by introducing the so-called Heuristically
Generated Angular Metric Approach (HAMA) through the explanation of the
metrics world. Distance metrics are applied to “cat and mouse” problem where cat
and mouse makes smart moves relative to each other and therefore makes more
appropriate decisions. The design is built around Fuzzy logic control to determine
route finding between the pursuer and prey. As the puzzle size increases, the
effect of HAMA can be distinguished more clearly in terms of computation time
towards a solution. Hence, mouse will gain more time in perceiving the incoming
danger, thus increasing the percentage of evading the danger. ‘Caught and escape
percentages vs. number of cats’ for three distance metrics have been created and
the results evaluated comparatively. Given three termination criteria, it is never
inconsistent to define two different objective functions: either the cat travels the
distance to catch the mouse, or the mouse increases the percentage of escape from
the cat.

Keywords: hyper-heuristics, metaheuristics, heuristically generated
distance-metric, chase problem, fuzzy logic control

1. Introduction

Heuristics methods are usually employed to solve the AI search problems; how-
ever, in current approaches, heuristic algorithms are not always working. Indeed, a
problem which is invalid for a heuristic approach can give successful results in an
algorithmic approach. Heuristic approach, unlike algorithmic methods, does not
show the exact path to reach the goal. The deficiency in question is not due to the
heuristic methods but is related to the field of problem itself as well as the intui-
tiveness of the algorithms [1]. The features of the problems are also important in
terms of heuristic programming. Solution accuracy in well-formed problems can be
demonstrated by algorithmic approach. Theorem proofs can be given as an example
to this kind of heuristic problems [1].

Time and memory limitation is concerned in resolving the well-formed
problems by algorithmic approach on computers. For example, even though “Magic
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square” or “The Eight Queens” problems, at first glance, carry some sort of
algorithmic nature, examination of all the situation yields combinatorial growth.
Despite the fact that there are 362,880 states under discussion for a 3 � 3 sized
magic square problem, the state space of the 5 � 5 sized problem grows so large that
it cannot be searched thoroughly (1, 5x1025 states). Once the problem state space
grows larger, heuristic approach aims to search the solution in real-time. In light of
these facts, the definition of intuitiveness according to Feldman and Feigenbaum, is
given as follows [2]: “Intuitiveness once the state space of the problem becomes too
large, is the usage of any rule, strategy, trick, simplification, and the other factors”.
Therefore, when the problem contains complexity, intuitiveness plays an important
role to find the path to the solution [1].

The importance of heuristic metrics lies in guaranteeing the closest optimal
solution in a short time in problems having variables with huge values. In toy
problems such as an 8-puzzle, heuristic metrics which do the search, selection and
optimization in a very short period of time can be seen as very critical. Optimization
calculations of subatomic particles, and the use of heuristics in route finding,
automation and city planning are some major applications which increase its
importance. Nevertheless, the effects of investigation and analysis of solving
behaviors of heuristic functions through puzzle problems can be observed easily as
the puzzle size is increased. Thus, the better investigation or review possibility is
provided.

This paper is organized as follows: The first section is an introduction to the
research area and it describes the problem. The second section reviews heuristics,
hyper-heuristics, and metaheuristics applied to solve AI problems from a broad
literature perspective, including the relationships between them, while the third
section introduces heuristically generated metric approach, and lays down its
principles. The fourth section discusses a chasing problem between pursuers and
pray. The design and development are built around fuzzy logic control to
determine the paths of the pursuer and prey. The simulation results are reported
and discussed in the fifth section. The last section summarizes the work with a
conclusion.

2. A review of heuristics, hyper-heuristics, and metaheuristics with
applications to solve AI problems

Burke et al. in their research have aimed to both seek the common goal of
automating the design of heuristic metrics to solve computationally hard search
problems and generalize search methodologies through the use of their introduced
metric concept in solving the target problem [3]. They have classified the heuristics
as “disposable” and “reusable” analogous to “on-line” and “off-line” learning,
respectively. “On-line” learning heuristics learn a heuristic method while solving a
given instance of a problem whereas “off-line” learning heuristics learn the method
from a set of training instances to make generalization in the case of unseen exam-
ples. An example to on-line learning approach can be given as the use of reinforce-
ment for heuristic selection, the use of hyper-heuristics as high-level search
strategies and genetic algorithms in a search space of heuristics [4, 5]. Similarly,
learning classifier systems, case-based reasoning, and genetic programming can be
given as the examples to off-line learning [6–8]. Both heuristic approaches have
their own advantages. For example, on-line learning methods or heuristics may
provide a favorable structure to the search space; therefore, it can be more effective
searching in the space of heuristics rather than in the space of problems directly.
The other advantage may arise as an alternative solution against not having a set of
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related instances to train the heuristic methods off-line in newly encountered prob-
lems. A reusable or off-line method will always have an advantage of increasing the
speed of solving new instances of problems [3].

As an example to the class of on-line learning algorithms, to improve the per-
formance of Traveling Salesman Problem (TSP), a wide range of geometric heuris-
tics have been investigated. The prime objective in terms of searching for a useful
metric in TSP is a tour or a solution quality. Tour quality is assumed “good” when a
valid tour is found even though only small percentage of output tours are valid tours
(≈15% for random 10-city instances in the Euclidian metric). A valid tour and
minimized cost (i.e., minimum tour length) are the major ones that affect the
solution quality most out of the resulting tours. Usually, the incidence of valid tours
are sought to be a part of any measure of success for performance [9].

A broad range of metrics are used in machine learning to evaluate the perfor-
mance of metrics. Although there are many different metrics used in machine
learning, a general theory is lacking to characterize the behavior of these metrics.
For example, determining which metric can or should be used in a certain applica-
tion or why a particular metric is a good metric is not clear. As some metrics behave
differently from some other metrics, determining characteristics of these metrics
can not be made precisely. Flach in their study has aimed to build a general theory
and present a formal analysis in order to characterize the behavior of machine
learning metrics such that dependence on these aspects become more precise and
adequate. For instance, some metrics, by nature, do not depend on the class distri-
bution in order to determine the amount of profit incurred for correctly classified
examples, or misclassification cost distribution in order to determine the amount of
cost incurred. The amount of cost or profit incurred is used to define the expected
yield of a model. Some metrics such as precision, information gain, weighted rela-
tive accuracy have been used to build models in machine learning. Some others such
as accuracy, F-measure, or area under ROC curve have been used to evaluate
models on a test set. They have also proposed the use of true and false positive rates
to evaluate the performance or the quality of models. Metric has been defined in
terms of the counts of these true and false positive rates in a contingency table (a.k.a
confusion matrix). Contingency table must have been chosen because it allows the
metric to eliminate or exclude model complexity. It is also more suited to tabulate
true and false positive rates as sufficient statistics for characterizing the perfor-
mance of a classifier in any target context, and for evaluating the quality of a model.
The metric also considers skew ratio as an additional parameter to indicate a trade-
off between true and false positive rates to determine the direction in which
improvements are to be found. Obviously, what a metric measures is no different
from what an expected skew ratio is [10].

Another research aims to discover criteria that are responsible for a good per-
formance of rule learning heuristics, theoretically and empirically. Rule learning
heuristics aims to control a trade-off between consistency and coverage and there-
fore aims to determine optimizing parameters. The trade-off between consistency
and coverage can only be explained through rules. The objective of this work is to
discover criteria that are responsible for a good performance of rule learning heu-
ristics, theoretically and empirically, and to understand the properties of rule
learning heuristics such that those properties exhibit desirable performance for a
large variety of datasets [11].

The term “metaheuristics” was first coined by Glover [12] and was used to
explain a higher level strategy to modify other heuristics toward solutions generated
beyond the search for local optimality [13]. Furthermore, a metaheuristics can be
used to obtain quality solutions to the challenging optimization problems in a
reasonable amount of time through the use of randomized local search algorithms
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under a certain tradeoff. Nearly, all of the metaheuristic algorithms show a ten-
dency to work suitably for global optimization. However, metaheuristic algorithms
do not guarantee to reach the optimal solutions, and do not work all the time either.
There have been two main approaches to calculate the robustness of a particular
solution in metaheuristic optimization. One is resampling and another one is the re-
use of neighborhood solutions [14]. The first one is reliable but expensive whereas
the latter one is unreliable but cheap. Mirjalili et al. have proposed a metric called
confidence measure for metaheuristic optimization algorithms which aims to
increase the reliability by an effective calculation of the confidence level for each
solution during the optimization process. The authors have also proposed new
confidence-based operations for robust metaheuristics and used these operators to
design a confidence-based robust optimization algorithm which is applicable to
different metaheuristics [14].

Early work was introduced on the approaches to the automatic heuristic gener-
ation during the period of late 70s and early 80s for less constrained subproblems
(i.e., auxiliary problems) which were also called relaxed models [15–18]. These
approaches were lacking systematic means to produce the problems and the models,
and therefore they were mostly proved to be computationally expensive and ineffi-
cient [19]. Passino et al. have introduced a metric space approach to specify the
“heuristic function” which is often difficult for the A* algorithm. It was shown how
to specify an admissible and monotonic heuristic function for a wide class of prob-
lem domains, which is, in general, too difficult to find one. The objective was also to
reduce computational complexity or to obtain a huge computational savings in
addition to the introduction of a new class of “good” heuristic functions which are
admissible and monotone [20].

Rosenfeld et al. have focused on adaptive weight based heuristic approaches for
dynamic and effective robot coordination to meet perceived environmental condi-
tions such as coordination and spatial conflicts within the robot group. The authors
have further stated that their robot coordination using interference metrics mini-
mized interference and thus achieved high productivity [21].

Metric optimization problems have mostly been analyzed probabilistically as
based on Euclidian instances. Nothing much has been done on the side of Non-
Euclidian instances. Therefore, this has motivated Bringman et al. with a study of
random metric instances for optimization problems which were obtained as based
on a complete graph whose edges are assigned to random weights independently.
The length of a shortest path between any two connecting nodes was specified as
“distance”. Then, the authors have proved structured properties of the random
metric instances obtained as above. Their objective was to build good clusters. They
have further used these results to analyze the approximation ratios of heuristics to
match large-scale optimization problems such as TSP [22].

Akinyemi has investigated how to improve the play performance and game
strategy of Ayo game through the enhancement of the knowledge of minimax
search technique by using a refinement-based heuristic method [23].

Sosa-Ascencio et al. have proposed a variable solution heuristics generated by a
grammar-based genetic programming framework to solve constraint satisfaction
problems (CSPs) which is related to artificial intelligence. This approach is also called
the newly generated grammar-based hyper-heuristic and therefore categorized under
heuristic generation methodology, and is distinguished from heuristic selection
methodology in that the former generates new heuristics from constituents of
available heuristics whereas the latter chooses or selects available heuristics [24].

Another heuristic selection design for a grammar-based hyper-heuristic model
has been applied this time to solve the two dimensional bin packing problem
consisting of irregular pieces and regular objects. The objective of designing such a

4

Automation and Control



model was to select heuristics to determine the piece to be packed and the object in
which the piece is located [25].

Dokeroglu and Cosar have proposed a novel multistart hyper-heuristic algo-
rithm on the grid to solve the quadratic assignment problem (QAP) which is an NP-
hard combinatorial optimization problem. The QAP is defined as the problem of
assigning facilities to locations where each location has varying installation costs.
The goal is to find an allocation where the total cost belongs to the installation and
the transportation of the required amount of materials between the facilities is
minimized. The proposed algorithm has put to use hyper-heuristics to find the best
solution for an optimization problem by controlling and combining the strengths of
several heuristics [26].

Wu et al. have proposed an evolutionary hyper-heuristic to solve the software
project scheduling problem (SPSP). In a software project, an NP-hard combinatorial
optimization problem, the SPSP assigns employees to tasks where the completion
time, that is, the project duration, and the cost, that is, the total amount of salaries
paid are to be minimized. The objective of this work is to find most suitable search
operators for the type of the problem instance considered [27].

Lozano et al., in their approach, have used a parameterized schema of
metaheuristics in which each metaheuristic or hybridized basic metaheuristics is
represented by the values of a set consisting of numerical parameters. Their pro-
posed schema aids the accomplishment of a metaheuristic selection or
metaheuristics combination through the selection of the parameter values within
the schema. The hyper-heuristic search of metaheuristic parameters in the
metaheuristic space is automated except for the initial set-up of the hyper-heuristic
parameters by the user. They finally decide to use a shared-memory parameterized
schema both at the hyper-heuristic and the metaheuristic level, resulting in four
level parallelism to reduce the solution time with high computation cost [28].

Another work explores a generation hyper-heuristic that automatically builds a
selection hyper-heuristic using a machine learning algorithm called Time-Delay
Neural Network (TDNN) used to extract hidden patterns within the collected data
in the form a classifier, that is, an ‘apprentice’ hyper-heuristics, which is then used
to solve the ‘unseen’ problem instances. The influence of extending and enriching
the information collected from the expert and fed into TDNN is explored on the
behavior of the generated apprentice hyper-heuristic [29].

In another work, the performance of a hyper-heuristic in terms of the quality
and size of the heuristic pool is investigated. The objective is to produce a compact
subset of effective heuristics from the unnecessary large pool that can decrease the
performance of adaptive approaches. A new variant of iterated local search hyper-
heuristics was also proposed, which incorporates dynamic multi-armed bandits.
Both the heuristic pool selection method and the hyper-heuristic variant were
successfully tested on two complex optimization problems: course timetabling and
vehicle routing [30].

Whether sophisticated learning mechanisms are always necessary for hyper-
heuristics to perform well has also been analyzed. For a benchmark function,
Lissovoi et al. have proved that the Generalized Random Gradient Hyper-heuristics
can learn to adapt the neighborhood size of Randomized Local Search to optimality
during the run. They have also proved that the performance of the hyper-heuristics
improves as the number of low-level local search heuristics to choose from
increases [31].

Genetic programming has also been used as an offline hyper-heuristic to auto-
matically evolve probability distributions, and hence to automatically generate
mutation operators in an evolutionary programming as opposed to human designed
existing operators [32].
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Schlünz et al., in their work, have claimed that the first application of a
multiobjective hyperheuristic, which is an evolutionary-based technique incorpo-
rating multiple sub-algorithms simultaneously, is applied to the multi-objective in-
core fuel management (MICFMO) optimization problem. The hyperheuristic is able
to raise the level of generality at which MICFMO may be performed, and it is
capable of yielding improved quality in optimization results (compared to the
preferred metaheuristics) [33].

A general-purpose selection hyper-heuristic search framework designed for the
grouping has been extended to pair up various heuristic/operator selection and
move acceptance methods for an NP-hard combinatorial optimization grouping
problem of data clustering. The performances of various selection hyper-heuristics
are compared using a set of benchmark instances which vary in terms of the
number of items, groups as well as number ad nature of dimensions. The empirical
results show that the proposed framework is indeed sufficiently general and
reusable [34].

Cyber security in the context of big data is known to be a critical problem and
presents a great challenge to the research community. Sabar et al. have proposed a
novel, domain-independent hyper-heuristic framework for the formulated “Sup-
port Vector Machine” (SVM) configuration process as a bi-objective optimization
problem in which accuracy and model complexity are considered as two conflicting
objectives. The effectiveness of the proposed framework has been evaluated on
Microsoft malware big data classification and anomaly intrusion detection [35].

The next work analyzes the ability of popular selection operators used in a
hyper-heuristic framework to continuously select the most appropriate optimiza-
tion method over time. Van der Stockt et al. have presented the considerations and
criteria to select a diverse mix of heuristics specific to dynamic optimization prob-
lems and non-dynamic optimization problems to enable the heterogeneous meta-
hyper-heuristic to effectively solve dynamic optimization problems [36].

A review article identifies the characteristics necessary for the development of
frameworks for optimization using metaheuristics and, from these characteristics,
identifies existing gaps, especially those related to the hybridization of
metaheuristics. Silva et al., in this article, have also showed that the concepts of
multi-agent systems in the design of frameworks for optimization using
metaheuristics facilitates and flexibilizes the development of hybrid metaheuristics
and allows simultaneous exploration of different regions of the search space [37].

A Modified Choice Function (MCF), a hyper-heuristic method, is applied such
that it can regulate the selection of the neighborhood search heuristics adopted by
the employed and onlooker bees automatically. The proposed MCF-ABC (Artificial
Bee Colony) model is a bee algorithm with multiple neighborhood search heuristics.
While the employed bees and onlooker bees perform neighborhood search to
exploit the promising areas of the search space, the scout bees focus on exploration
of a new region in the search space. The proposed model solves the 64 Traveling
Salesman Problem instances available in TSPLIB, on average, to 0.055% from the
known optimum within approximately 2.7 minutes [38].

Ahmed et al. have evaluated the performance of a set of selection hyper-
heuristics on the route design problem of bus networks, with the goal of minimizing
the passengers’ travel time, and the operator’s costs. Their analysis shows the suc-
cess of the sequence-based selection method combined with great deluge accep-
tance method, outperforming other selection hyper-heuristics in both passenger
and operator objectives [39].

A hyperheuristic framework, namely hyperSPAM, composed of three search
algorithms for continuous optimization problems has been proposed. The main
focus is to select the search algorithms correctly such that a simple random
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coordination can lead to satisfactory results. Four coordination strategies, in the
fashion of hyperheuristics, have been used to coordinate the second and the third
single-solution search algorithms. One of them is a simple randomized criterion
while the other three are based on a success based reward mechanism [40].

Lin has proposed an effective backtracking search based hyper-heuristic (BS-
HH) approach to address the Flexible job-shop scheduling problem (FJSP) with
fuzzy processing time (FJSPF). A back-tracking search algorithm is introduced as
the high-level strategy to manage the low-level heuristics incorporated into the BS-
HH to operate on the solution domain directly. Additionally, a novel hybrid solution
decoding scheme is proposed to find an optimal solution more efficiently. The
author has emphasized by saying that the FJSPF which extends FJSP by allowing
processing time or due date to be fuzzy variable is more close to the real-world
situation [41].

A two-layered decision-making system is proposed where the first step intro-
duces task allocation and sequencing into the system’s energy management pro-
cedures for the purpose of enabling long-term autonomy of a heterogeneous of
marine robots, and the next step includes constructing a validation and evaluation
system for solutions and methods which will enable objective grading during the
process of training a hyper-heuristic top decision-making layer [42].

Another study evaluates Multi-Objective Agent-Based Hyper-Heuristic in real-
world applications, by searching solutions for four multiobjective engineering opti-
mization problems. For this purpose, an additional multi-objective evolutionary
algorithm and new quality indicators better adapted to real-world problems are
used [43].

Next, the resulting sequences of low level heuristic selections and objective
function values minimized through the use of a selection hyper-heuristic are used to
generate a database of heuristic selections. The sequences in the database are broken
down into subsequences and the mathematical concept of a logarithmic return is
used to discriminate between “effective” subsequences, which tend to decrease the
objective value, and “disruptive” subsequences, which tend to increase the objective
value. These subsequences are then employed in a sequenced based hyper-heuristic
and evaluated on an unseen set of benchmark problems [44].

Motivation in another work is to generate effective dynamic scheduling policies
(SPs) through off-line learning and to implement the evolved SPs online for fast
application. Three types of hyper-heuristic methods are proposed for coevolution of
the machine assignment rules and job sequencing rules to solve the multi-objective
dynamic flexible job shop scheduling problem. The results reveal that the evolved
SPs can discover more useful heuristics and behave more competitive than the
man-made SPs in more complex scheduling scenarios without increasing the
online solution time. It also demonstrates that the evolved SPs can obtain trade
offs among different objectives and have a strong generalization performance to
be reused in new unobserved scheduling scenarios, which make the evolved SPs
more robust when they are employed in a stochastic and dynamic scheduling
environment [45].

A case study focusing on multi-objective flexible job shop scheduling problem
(MO-FJSP) in an aero-engine blade manufacturing plant has been proposed. Three
multi-agent-based hyper-heuristic integrated with the prior knowledge of the shop
floor are proposed to evolve SPs for the online scheduling problem. This situation
poses a major challenge to the current scheduling system because dynamic changes
in the shop-floor require real-time responses thanks to the widely used numerous
sensors, automatic robots and enhanced systems in it. Since it is not necessary to get
an optimal solution in real-time scheduling, the use of heuristics to produce a
satisfactory solution for solving the production scheduling problem in an acceptable
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time frame is a viable option. With the change of orders, routes and other elements
in the shop-floor, the previously established rules may not be able to adapt to new
scheduling scenarios. Hence, the implementation of hyper-heuristics to further
enhance the heuristics made by experts is necessitated. The results show that the
bottleneck agent model is more favorable than the other two agent models and
succeeds to make a good trade-off between the solution quality and the generaliza-
tion performance among the three agent models [46].

Oyebolu et al. have presented a discrete-event simulation of continuous
bioprocesses in a scheduling environment. More specifically, characteristics specific
to bioprocessing and biopharmaceutical manufacturing are addressed using a sim-
ulation optimization approach. For the optimization algorithm, the authors use an
evolutionary algorithm to search for optimal production control policies. As they
search the space of possible heuristics or rules as opposed to possible solutions, it
constitutes a hyper-heuristic approach. Dynamic SPs are investigated to make
operational decisions in a multi-product manufacturing facility and react to process
failure events and uncertain demand. In particular, tuning of process run times
leads to improved performance as this enables better lot-sizing decisions which may
allow hedging against process failure by utilizing a shorter run time [47].

Leng et al. have investigated the optimization of a variant of the location-routing
problem (LRP), namely the regional low-carbon LRP (RLCLRP), considering
simultaneous pickup and delivery, hard time windows, and a heterogeneous fleet.
In order to solve this problem, the authors construct a biobjective model for the
RLCLRP with minium total cost consisting depot, vehicle rental, fuel consumption,
carbon emission costs, and vehicle waiting time. They also further propose a novel
hyper-heuristic method to tackle the biobjective model. The proposed method
applies a quantum-based approach as a high-level selection strategy and the great
deluge, late acceptance, and environmental selection as the acceptance criteria [48].

Finally, Lissovoi have aimed to extend the understanding of the behavior and
performance of hyper-heuristcis to multimodal optimization problems. In order to
evaluate their capability at escaping local optima, they consider elitist, which only
accepts moves that improve the current solution, and the non-elitist, which accepts
any new solution independent of its quality, selection operators that have been used
in hyper-heuristics in the literature [49].

3. Heuristically generated angular metric approach (HAMA)

Three heuristic properties are important. The first one is a property of
dominance as a distinctive factor. The objective here is to increase the discrimina-
tiveness, because the efficiency of the heuristic entirely depends on it. The second
one is the property of consistency which is based on the triangle inequality. The sum
of the two sides of the three that make up a triangle must always be greater than or
equal to the third side; their difference must also be less than or equal to the third
one. For example, suppose we are on the node 20 at any puzzle problem. The
functional value of the sum of the twentieth node and its successor must be larger
than the one arising from the successor node so that the heuristic function should
not repeat in itself. The third property is admissibility. In this property, any distance
determined by a heuristic function is always expected to result in smaller than the
actual distance. In other words, heuristic will never yield an overestimation,
thereby making it an admissible one.

In light of these three properties above, it is evident that the metrics turn into a
straight line when it starts from a semi-circle. The fact that it is a semi-circle is
consistent with explaining the principle brought about by triangle inequality. It is
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possible to further state that a heuristic acquisition is proportional to the arc length
of the circle-segment in geometrical representation of HAMA [50].

Although the triangle has different line-segments (i.e., sides) such as r1 and r2 in
the triangle (see Figure 1), the heuristic acquisition can be explained by setting up a
proportional relation with the arc length seen by the angle of α of an isosceles
triangle which is formed by selecting the smaller of r1 and r2 as the equal sides of the
triangle and the radius of the circle as shown in Figure 1. Moreover, it should be
noted the appearance of the angle of α as a choice which is not dependent on the
lengths of the sides given by r1 and r2.

The arc length of the circle-segment shown in Figure 1 is equal to 2πrα=360°

where α resides in the range of 0° ≤ α≤ 180°.
We will focus specifically on the Manhattan, the Euclidean, and the Chebyshev

as a common distance metrics/measures. These distance metrics have advantages
and pitfalls depending on when and how they will be used. One may emerge as a
better alternative to the other. For example, k-NN, a technique often used for
supervised learning, often uses the Euclidean metric. But it would not work if our
data is high dimensional or consists of geospatial information.

The Euclidean distance metric: We can easily calculate the distance from the
Cartesian coordinates of the points according to the Pythagorean theorem:

DE x, yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

xi � yi
� �2

s

(1)

Two major disadvantages of the Euclidean distance metric are the lack of scale-
invariance property and the dimensionality increase of the data used. Although it is
a common distance metric, the Euclidean distance metric becomes the less useful
under these situations. In particular, due to the curse of dimensionality, high dimen-
sional space does not behave intuitively as desired in 2- or 3-dimensional space. The
more the dimension increases, the closer will be the average distance and the
maximum distance between randomly placed points. Therefore, the Euclidean dis-
tance metric works well in the case of low-dimensional data where it is important to
measure the magnitude of the vectors.

The Manhattan distance metric: It refers to the distance between two vectors that
can only move at right angles to each other. Diagonal movement is not taken into
account when calculating the distance:

DM x, yð Þ ¼
Xk

i¼1

xi � yi
�
�

�
� (2)

Figure 1.
Side-selection to determine the circle-segment proportional to heuristic acquisition (shaded area).
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It is a less intuitive metric than the Euclidean metric, especially when used with
high-dimensional data. If the dataset to be used has discrete and/or binary attri-
butes, the Manhattan stands out as a metric that works quite well since it takes into
account the realistic paths that would be taken within those attribute values. For
example, while the Euclidean metric could create a straight line between two
vectors, it is highly unlikely that in reality this is actually possible!

The Chebyshev distance metric: The Chebyshev distance determines the largest
difference between two vectors along any coordinate dimension. With a more
rigorous definition, it represents the maximum amplitude difference of the two
vectors in terms of coordinates. In other words, it is simply the maximum distance
through one axis:

DC x, yð Þ ¼ max
i

xi � yi
�
�

�
�

� �
: (3)

It can also be a useful metric in games that allow unrestricted 8-way movement.
In warehouse logistics, it is preferred because the time an overhead crane takes to
move an object is similar to the Chebshev distance. Except in such very special
cases, it is unlikely to be used as an all-purpose measure of distance, such as the
Euclidean or the Cosine similarity.

All the angles in the range of 0° ≤ α≤ 180° are within the limits of the heuristic
metric approach, HAMA. In this range, an unlimited number of metrics can be
achieved including the Manhattan, the Euclidean, and the Chebyshev distance
metrics covered [50]. For example, if α is selected 120 degrees, then the heuristic
distance metric between the two vectors under the assumption of equal segments,
that is, equal lengths of adjacent nodes n0 and n and n0 and 0, represented as ∆x ¼
∆y (that is, x1 � x2j j ¼ y1 � y2

�
�

�
�, respectively, since our approach accepts equal sides

as circle radius) can be calculated by using the Cosine theorem as follows:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∆xð Þ2 þ ∆yð Þ2 � 2∆x∆ycos120°
q

¼
ffiffiffi

3
p
∆x: (4)

If α is selected 60 degrees, then the new heuristic distance metric can be
calculated as,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∆xð Þ2 þ ∆yð Þ2 � 2∆x∆ycos60°
q

¼ ∆x: (5)

On the other hand, the Manhattan distance metric will calculate the result as
follows:

x1 � x2j j þ y1 � y2
�
�

�
� ¼ 2∆x: (6)

The same result can also be found with the Cosine theorem by taking the angle
180 degrees:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∆xð Þ2 þ ∆yð Þ2 � 2∆x∆ycos180°
q

¼ 2∆x: (7)

Similarly, the Cosine theorem with an angle of 90 degrees and the Euclidean
metric will give the same result of

ffiffiffi

2
p
∆x:

Another equal result is obtained as ∆x between Chebshev and the Cosine theo-
rem with an angle of 60 degrees. This result is misleading. In order for HAMA to
produce the correct results is that the lengths between each pair of nodes, that is,
the lengths of the segments, have to be given differently (i.e., r1 6¼ r2) from each
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other in the original problem. In fact, in general, the Cosine theorem is used to solve
for missing side or angle in non-right triangle and a non-matching pair/side. As we
defined earlier, the Chebyshev distance metric is obtained from the maximum
amplitude difference among elements of the two vectors for a given dimension.
However, this amplitude-based distance is sensitive to spikes or abnormal peaks in
data. As we already know, the angular distance metric belongs to the family of
cosine distances derived from the Cosine similarity metric. As long as the angle
between the vectors under consideration is maintained, the major advantage of the
angular distance metric is its low sensitivity to any changes in vector norms, thus
providing the desired distance that is not dependent on the amplitude [51].

The computer used in the simulations features an Intel 4-core i5-3230 processor
with a 2.6 GHz CPU clock rate and 8 GB RAM. Run times toward a solution for each
one of the metrics in 8-puzzle, 15-puzzle, 25-puzzle, 35-puzzle, 48-puzzle, 63-puz-
zle, 80-puzzle, and 99-puzzle problems have been compared and the comparisons
have been presented in Figure 2.

4. An application of heuristically generated distance-metric to a chase
problem

4.1 Problem statement

In Cat chasing mouse (CCM) problem, the actions and reactions of the pursuer
and prey are designed to be as realistic as possible to the real-world. The prey (i.e.,
mouse) is smart enough how to avoid the pursuer’s (i.e., cat’s) maneuvers. The
model allows multiple cats to chase a single mouse. Cats know how to take the
appropriate angles to block off the mouse [52].

For example, the mouse’s decision-making procedure works like this: the strat-
egy is developed in such a way that the mouse’s future route is to distance itself
from the nearest cat where it sees the greatest threat. After determining which cat is
closest, the mouse runs in the direction that the cat is running. If the cat is away
from the mouse, it is not always necessary to do so away from the cat.

Figure 2.
A comparison of different heuristic metrics.
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Cat’s artificial intelligence, on the other hand, is built on fuzzy logic control
(FLC), mainly to increase the cat’s ability to catch the mouse [53]. The model checks
if the cat is close enough to the mouse. If close, the cat uses the FLC to set its course.
If it is far, it sets its course for a point in front of the mouse using the current
position of the mouse and the angle it is facing. If the cat is away from the mouse
but the mouse is partially moving towards the cat, then the route is again deter-
mined by the FLC. This model also allows the cats close to the mouse to move in a
group, while the cats far away from the mouse block off the mouse in case of an
attempt to escape. Using the random cat locations has also been a good choice for
the model to better represent a real-world situation. Finally, the Max-Min rule is
preferred over Kosko’s Max-Product rule as the inference method in this model,
claiming that it leads to a more successful FLC [52].

At this point, xcat and ycat represent the coordinates of cat’s position whereas
xmouse and ymouse represent the coordinates of mouse’s position.

Let us define the mouse’s speed traveling eastwards as a fixed variable v, and
the cat’s speed traveling at a pursuit direction as a fixed variable w, and it is always
w> v. From Figure 3, we can write from AOB right-angled triangle,

tan azi tð Þ þ ang tð Þð Þ ¼ xmouse � xcat
ymouse � ycat

: (8)

Applying the inverse tangent (functional) operator to each side of Eq. (8) yields,

ang tð Þ ¼ atan
xmouse � xcat
ymouse � ycat

� �

� azi tð Þ, (9)

where ang tð Þ is a dependent dynamic variable.

4.2 Fuzzy logic control (FLC) and design procedures for cat-mouse problem

4.2.1 Mathematical model

First of all, we will set up a mathematical model of the “plant” and determine the
state variables and control input variables from this model as follows:

Figure 3.
Geometric representation of the problem.
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xmouse tþ 1ð Þ ¼ xmouse tþ 1ð Þ þ v:1;

ymouse tþ 1ð Þ ¼ ymouse tð Þ;
xcat tþ 1ð Þ ¼ xcat tð Þ þw: sin azi tþ 1ð Þð Þ;
ycat tþ 1ð Þ ¼ ycat tð Þ þw: cos azi tþ 1ð Þð Þ;

azi tþ 1ð Þ ¼ azi tð Þ þ dz tð Þ:1;

(10)

where state variables are mouse’s and cat’s positions, that is,
M tð Þ ¼ xmouse tð Þ, ymouse tð Þ

� �
and C tð Þ ¼ xcat tð Þ, ycat tð Þ

� �
, respectively, and azimuth

angle azi tð Þ. Control input variable is dz tð Þ. We will keep these state variables as
crisp variables. On the other hand, the control input dz tð Þ and dependent dynamic
variable ang tð Þ which is derived from the state variables will be characterized as
fuzzy variables that will be fuzzified to apply the fuzzy logic.

Next, we will specify the control objective. Our control objective is to minimize
ang tþ 1ð Þ by applying appropriate control input dz tð Þ to update azi tþ 1ð Þ as ang tð Þ
is given. Then, we can express our control law as part of the control effort as
follows:

dz tþ 1ð Þ ¼ K:ang tð Þ, (11)

which is simply ‘proportional control’ P. In this control law, how to choose the
most appropriate value of the proportional constant K is the main question we seek
the answer to. Since this system is observed as nonlinear by nature, conventional
PID design technique could be difficult to apply. Therefore, extensive simulation
and trial-and-error would be required.

4.2.2 Fuzzy logic control (FLC) architecture

Fuzzy Logic Control (a.k.a. Fuzzy Linguistic Control) is a knowledge based
control strategy that can be used when either a sufficiently accurate and yet not
unreasonably complex model of the plant is unavailable, or when a (single) precise
measure of performance is not meaningful or practical.

FLC design is based on empirically acquired knowledge regarding the operation
of the process. This knowledge, transformed or changed into linguistic, or rule-
based form, is the core of the FLC system. FLC architecture differs from a conven-
tional controller in that the selected control algorithm and mathematical model
blocks in the conventional controller will be completely replaced by Fuzzifier
(Encoder), Defuzzifier (Decoder), Knowledge, and Inference Engine as shown in
Figure 4.

In this architecture, the dynamic filter computes all the system dynamics: x
(state variables) consists of selected elements of e ¼ r� y, de=dt, and

Ð
edτ. The rule

base (knowledge base) provides nonlinear transformation without any built-in
dynamics.

4.2.3 Fuzzification of the input variable ‘ang’ to fuzzy logic controller

Fuzzification is the process of decomposing a range of each fuzzy variable into
one or more fuzzy sets via membership functions. Simply, it converts crisp sets to a
fuzzy set. To achieve the fuzzy decomposition firstly, the range of each fuzzy
variable will be specified, and then a set linguistic variables will be devised.
Linguistic variables are variables whose values are words in natural language.
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Fuzzification is no different from finding an estimate of an input value. That is,
it returns an activation vector as a fuzzy function output, representing linearly
interpolated values of a given input vector ‘ang tð Þ’. In the meantime, briefly the
activation vector is a row vector of the same size as the number of columns of a fuzzy
set matrix M. If ‘ang tð Þ’ falls outside the range of the support vector, an error is
reported. If ‘ang tð Þ’ falls between two elements of the support vector, a linear
interpolation is performed as follows:

Let us assume that we have two known points x1, y1 and x2, y2. Our objective is
to estimate y value for some x value that is between x1 and x2. We call this y value an
“interpolated” value. There exists two simple methods for choosing y. The first one
is to see whether x is closer to x1 or to x2. If x is closer to x1, then we use y1 as the
estimate, otherwise we use y2. This is called ‘nearest neighbor’ interpolation. The
second one is to draw a straight line between x1, y1 and x2, y2. We look to see the y
value on the line for our chosen x. This is called “linear interpolation.”

Straight-line equation between x1, y1 and x2, y2 in Figure 5 is given as:

y ¼ y1 þ x� x1ð Þ y2 � y1
x2 � x1

(12)

where y is the estimate of the chosen value x, and represents the output of the
‘fuzzify’ function ‘a’.

Firstly, between ang tð Þ and ‘support for ang tð Þ’, sang, which we will define later,
the following relationship exists: ang tð Þ ¼ sang neð Þ. At the output, the following
relationship will be observed: a ¼ M : , neð ÞT, where ‘ne’ is the initials of ‘number of
elements’.

Next, let ‘ang tð Þ’ be our x. In this case, if we assume that y1 ¼ M : , neð ÞT, then,
y2 ¼ M : , neþ 1ð ÞT. In response to these two, we can write the followings as a result,
respectively: x1 ¼ sang neð Þ and x2 ¼ sang neþ 1ð Þ: If we place all of these into the
straight-line equation in Eq. (12), then we can write:

a ¼ M : , neð ÞT þ ang tð Þ � sang neð Þð ÞM : , neþ 1ð ÞT �M : , neð ÞT
sang neþ 1ð Þ � sang neð Þ : (13)

Here, if a suitable definition is made, such as alpha≜ ang tð Þ�sang neð Þð Þ
sang neþ1ð Þ�sang neð Þ, which

simplifies the above expression, then we get:

Figure 4.
FLC architecture.

14

Automation and Control



a ¼ M : , neð ÞT þ alpha M : , neþ 1ð ÞT �M : , neð ÞT
� 	

: (14)

By rearranging above, we can finally write the following:

a ¼ alpha ∗M : , neþ 1ð ÞT þ 1� alphað Þ ∗M : , neð ÞT: (15)

This appears as the most suitable form of equation for coding the chosen
programming language.

Fuzzification uses a discrete support. The universe-of-discourse (UoD) (i.e., the
range of all possible values applicable to the chosen variable) of support are sampled
at uniform (or non-uniform) intervals. For our CCM problem, both ‘ang tð Þ’ and
‘dz tð Þ’ will share the same set of linguistic variables: LN, SN, ZO, SP, LP. The
dynamic ranges of the supports (i.e., UoD) of these two fuzzy variables however,
are different: ang tð Þ ¼ �1800 to 1800 and dz tð Þ ¼ �300 to 300. These choices may
be due to physical constraints and other prior knowledge. In this problem, the range
difference is determined by the proportional control (law) constant K which were
set to 1/6 [53]. Therefore, dz ¼ K:ang, and sdz ¼ K:sang. It is important that the
supports of adjacent linguistic variables overlap so that more than one fuzzy rules
may be fired as shown in Figure 6.

Figure 6.
Fuzzy quantization of the state variables into a set of linguistic variables. Output: fuzzy inputs. Inputs:
Membership functions vs. crisp inputs.

Figure 5.
Linear interpolation by drawing a straight-line between two points.
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Fuzzification is essentially a fuzzy quantization of the state variables. In this
respect, the state variables ‘ang’ and ‘dz’ may be quantified into a set of linguistic
variables, with two parameters, polarity and size, as follows: NL-Negative, Large;
NS-Negative, Small; ZO-Zero; PS-Positive, Small; PL-Positive, Large. Fuzzification
process converts a crisp sensor reading (value of state variable) x ¼ x0 into the
grade values of each of these linguistic variables. In particular, we have,

μNL x0ð Þ, μNS x0ð Þ, μZO x0ð Þ, μPS x0ð Þ, μPL x0ð Þ½ �:

Fuzzy sets other than LN- and LP- consist of arrays of elements on the identical
sides of an isosceles triangle, moving in the same direction at uniform intervals (i.e.,
quantized values of linguistic variables) and ultimately forming the row of the M
fuzzy matrix. On the other hand, LN- and LP-fuzzy sets are the arrays whose
elements consist of the points advancing at uniform intervals on only one of the
identical sides of a triangle as follows:

M ¼

1 0:67 0:33 0 0 0 0 0 0 0 0 0 0

0 0:33 0:67 1 0:67 0:33 0 0 0 0 0 0 0

0 0 0 0 0:33 0:67 1 0:67 0:33 0 0 0 0

0 0 0 0 0 0 0 0:33 0:67 1 0:67 0:33 0

0 0 0 0 0 0 0 0 0 0 0:33 0:67 1

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

Furthermore, from Figure 6, we can see that the ZO and SP fuzzy sets are the
shifted versions of the SN fuzzy set, which is formed by moving from the left zero
to the right zero of the triangle in Figure 7. After drawing attention to these
important points, we can now construct the M fuzzy matrix as follows:where the
first row is the LN fuzzy set, the second row is the SN fuzzy set, and similarly the
third row is the ZO fuzzy set, the fourth row is the SP fuzzy set, and finally the fifth
row is the LP fuzzy set.

4.2.4 Representing fuzzy logic control rules

Rules can be represented conveniently as a matrix if there are two input fuzzy
variables. To represent rules, a matrix is defined where each row is a rule. Each row
contains d 1ð Þ þ d 2ð Þ elements. Here, d 1ð Þ represents the number of fuzzy sets
defined on the input variable and d 2ð Þ represents the number of fuzzy sets defined
on the output variable. The first d 1ð Þ elements specify which fuzzy set is used as the
antecedent part. The next d 2ð Þ elements specify which fuzzy sets in the output
control variable are used. A simple rule base for the CCM problem that has only one
input fuzzy variable ‘ang tð Þ’ and one control (output) variable ‘dz tþ 1ð Þ’.

Figure 7.
Fuzzy sets arising as arrays of elements at uniform intervals.
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Rule matrix is defined as follows:

rule ¼

1 0 0 0 0 1 1 0 0 0 0 1

0 1 0 0 0 1 0 1 0 0 0 1

0 0 1 0 0 1 0 0 1 0 0 1

0 0 1 0 0 1 0 0 1 0 0 1

0 0 0 0 1 1 0 0 0 0 1 1

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
LN SN ZO SP LP &? LN SN ZO SP LP weight

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

:

In the rule matrix, there are five rules, one from each row, respectively:

If ang tð Þ is LN=SN=ZO=SP=LP, then dz tþ 1ð Þ is LN=SN=ZO=SP=LP:

&? ¼ 1 means that if there is only one input fuzzy variable (i.e., this case) or the
second fuzzy variable is to be ignored for that rule. The last column indicates the
relative weighting of that rule.

4.2.5 Inference engine

A fuzzy inference engine is a mechanism to calculate an output from given
inputs using fuzzy logic. When input variables are fuzzified, each rule in the rule
base will try to determine its degree of activation using ‘min-max’ or ‘correlation-
max’ method. For rules which have a non-zero activation value, the output fuzzy
variables will be combined (fuzzy union) yielding a resultant fuzzy set.

Now, let us show how to create a rule matrix where each row corresponds to a
rule, then its rows and columns can be specified by ‘nrule’, and
d 1ð Þ þ d 2ð Þ þ d 3ð Þ þ 1ð Þ, respectively.

Each row consists of five parts. The first part with 1xd 1ð Þ dimensional input
variable ‘input1’ and the second part with 1xd 2ð Þ dimensional input variable ‘input2’
are allocated for antecedent variables. The third part, which is a single column, will be
equal to ‘1’ if ‘input2’ is to be ignored for that rule, and ‘0’ otherwise. The fourth part
with 1xd 3ð Þ dimensional output variable, output, is fuzzy representation of conse-
quent variable. Here, d ¼ d 1ð Þ d 2ð Þ d 3ð Þ½ � is a 1 � 3 dimensional vector that specifies
the number of fuzzy sets (adjectives or linguistic variables) defined on each UoD. In
this d vector, d 2ð Þ gives the number of fuzzy sets of the second input variable, if there
are 6 input arguments for inference function, otherwise (i.e., the case of 5 input
arguments only for the function), d 2ð Þ gives the number of fuzzy sets of the output,
or else d 3ð Þ is the number of fuzzy sets defined on the output variable.

• First, we consider the first d 1ð Þ columns of the matrix giving the first input set.

• Then, an nrulex1 column vector, of which all elements are ‘1’, premultiplied by
a 1xd 1ð Þ row vector ‘a1’, is multiplied by the corresponding elements of the first
d 1ð Þ columns of the rule matrix to eventually produce a matrix of size
nrulexd 1ð Þ. Here, ‘a1’ represents the activation of fuzzy (antecedent) variables
for input-1 and has the same dimension as d 1ð Þ.

• Next, we apply the ‘max ’ operation to the nrulexd 1ð Þ matrix after it is
transposed, find the maximum values in each ‘nrule’ column, and place these
values in a 1xnrule row vector.
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• Finally, the nrule dimensional row vector is converted back to an nrule
dimensional column vector with a transpose operation and is represented by A1.

Case 1. Having only input-1 or d 1ð Þ:

• This nrulex1 column vector A1 is multiplied by the corresponding elements of the
same size column vector called ‘weight’ which is positioned in the last column of the
rule matrix and represents the weighting of each rule.

• Each element of this nrule-by-1 product is placed on the main diagonal of an nrule
dimensional square matrix which is also a diagonal matrix.

• Later, this diagonal matrix is multiplied by the output fuzzy variable set.

Case 2. Having the second input, input-2 or d 2ð Þ, as well:

• First, we consider the next d 2ð Þ columns of the matrix giving the second input set.

• Then, an nrule-by-1 column vector, of which all elements are ‘1’, premultiplied by a
1xd 2ð Þ row vector ‘a2’, is multiplied by the corresponding elements of the next d 2ð Þ
columns to eventually produce a matrix of size nrulexd 2ð Þ. Here, ‘a2’ represents the
activation of fuzzy (antecedent) variables for input-2 and has the same dimension
as d 2ð Þ.

• Next, we apply the ‘max ’ operation to lastly obtained nrule-by-d 2ð Þ matrix after it
is transposed, and as a result, we get an nrulex1 column vector, A2.

• A ‘min ’ operator is then applied on a 2xnrule transposed augmented nrulex2
matrix of A1 and A2. The result is a 1xnrule row vector consisting of the minimum
elements in each column of the transposed augmented matrix of A1⋮ A2½ �T.

• Afterwards, this 1xnrule row vector converted to nrulex1 column vector via a
transpose operator is multiplied by the corresponding elements of the column vector
‘weight’ which forms the last column of the rule matrix. The resulting product is also
an nrulex1 column vector.

• In addition, each element of this column vector is placed on the main diagonal of an
nrule dimensional square matrix which is also a diagonal matrix.

• Besides, this diagonal matrix is multiplied by a submatrix consisting of columns that
make up the output variable of the rule matrix. Let us call this nrule-by-dout
matrix ‘Tmp’ which gives the activation of each rule. Here, ‘dout’ represents the
number of the fuzzy sets defined on the output variable.

• Now, with the ‘max ’ operator to be applied on this nrulexdout matrix ‘Tmp’, we
will obtain a row vector whose elements consist of the maximum values in each
column of the aforementioned matrix. This dout dimensional row vector called ‘act’
will represent the activation of each output fuzzy set.

• B is an output fuzzy variable matrix whose size is defined by dout-by-nofz, where
dout is equal to d 2ð Þ if there is a single input, and d 3ð Þ in case of two inputs, and
nofz is equal to the length of a row vector giving the coordinates of UoD, or it is equal
to the number of output fuzzy sets which is a subset of UoD. In other words, each row
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in B is a fuzzy set defined on that output variable and each column is the element of
the discrete support it corresponds to.

• If Kosko’s max product rule is applied, then the output is calculated with the
following formula where ‘*’ implies that the product rule is already applied:

out ¼ max diag actð Þ ∗Bð Þ: (16)

• If the max-min rule will be applied instead of the product rule, the calculation will
then be as follows:

◦ Firstly, the ‘act’ vector converted into a doutx1 column vector is multiplied by a
1xnofz row vector composed of 1 s equal to the number of the output fuzzy sets.

◦ The objective here is to generate a sparse matrix of the same size as the B matrix
to be compared via the ‘min ’ operator.

◦ According to the max-min rule, firstly, by applying the ‘min ’ operator between
this generated sparse matrix and the B matrix, an array of the same size as the
sparse matrix and the B matrix is created, in which the elements of both
matrices in the same position are compared and the smaller one is placed.

◦ Finally, by applying the ‘max ’ operator to the resulting matrix, a row vector
containing the maximum element from each column will be returned as the
output ‘out’.

◦ The equation of the max-min rule applied step by step above is as follows:

out ¼ max min actT ∗ ones 1, nofzð Þ
�

,B
� �

: (17)

4.2.6 Defuzzification

Fuzziness helps us to evaluate the rules, but the final output of a fuzzy system has to
be a crisp number. Defuzzification is the process of combining the successful fuzzy
output sets produced by the inferencemechanism. The input for the defuzzification
process is the aggregate output (i.e., unified outputs of all rules) fuzzy set ‘out’.

Most popular defuzzification method is the centroid technique. It involves calcu-
lating the point where a vertical line would slice the aggregate set into two equal
masses. It calculates the centroid of output of the fuzzy set ‘out’ defined on the
discrete support, ‘support’. Here ‘out’ and ‘support’ should have the same size. The
centroid method equation is:

y ¼
Ð
μB zð Þ:z dz
Ð
μB zð Þdz (18)

Centroid defuzzification method finds a point representing the center of gravity
(or area) of the fuzzy set B on the interval ab. In Eq. (18), z represents a crisp sensor
reading or value of the state variable, and μB zð Þ is the fuzzy quantity that is the
graded value of the particular linguistic variable upon the process of conversion
(i.e., fuzzification process) from the crisp or precise quantity. Simply, we can adapt
Eq. (18) for coding convenience with our values ‘out’ and ‘support’ as follows:

y ¼ sum out: ∗ supportð Þ=sum outð Þ (19)
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5. Numerical experiments and simulations

In this work, we have devised a heuristic distance metric approach that employs
the Cosine theorem, which uses the angle between the line-of-sight direction from cat
to mouse and the cat’s current pursuit direction only at non-right angles, rather than
the distance metric which calculates the distance of current cat to mouse based on the
Euclidean distance [52]. As here, if the metric that calculates the current distance
from cat to mouse is not always taken in Euclidean, but built around our heuristic
metric approach that allows an unlimited number of metrics to be achieved, whereby
the distinction between the computation times of each metric can be clearly seen in
Figure 2 as the puzzle size increases, mouse will gain more time in perceiving the
incoming danger, thus increasing the percentage of evading it, and will escape.

We have also compared our heuristic approach with the metric distance between
two adjacent nodes, dm, that do not take into account the angle between the nodes,
defined as [54],

dm ¼ li þ l j
2

, li, l j
� �

∈Rþ, (20)

where li, l j represent the metric lengths of the segments i and j, respectively.
Here, the metric distance defines geodesics (i.e., the shortest paths) as those paths
with minimal sum of metric length.

Next, we chose randomly generated cat locations as they better reflect the real-
world in each run, and compared the results by running a total of 100 trials for each
of the selected cases that accepted first 4 cats and then 8 cats and finally 12 cats
against a single mouse. Thus, ‘caught and escape percentages vs. number of cats’
findings for three metric distances (i.e., the metric calculated only based on the
EUCLIDEAN distance, the metric calculated over the GEODESICS definition, and the
metric devised using the angle-dependent Cosine theorem as a result of our angular
metric approach, that is HAMA) have been searched for and the results evaluated
comparatively. Table 1 below confirms that our approach, which we call HAMA,
performs best in terms of evasion and escape performance that we consider:

As can be seen from Figure 8, the best caught and escape performance is
exhibited by HAMA. That is, when compared to the other two metrics, the caught
performance is minimum and the escape performance is maximum. Another note-
worthy finding is that as the number of predators increases, caught and escape

Distance metrics

used

Number of

trials

Number of

cats

Caught

percentage (%)

Evasion and escape

percentage (%)

HAMA 100 4 14 86

GEODESICS 18 82

EUCLIDEAN 21 79

HAMA 100 8 30 70

GEODESICS 39 61

EUCLIDEAN 41 59

HAMA 100 12 47 53

GEODESICS 52 48

EUCLIDEAN 61 39

Table 1.
Comparative metric performances based on numerical experiments.
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performances in other metrics replace. However, in this sense, compared to the
increasing number of cats, HAMA still demonstrates the ability to at least maintain
its initially set objective—that is, the prey can constantly escape from the pack of
predators, and avert their attacks as much as possible.

The program runs the simulation until the mouse is caught, escapes the
600 � 600 square, or it iterates 500 times. When any of these three termination
criteria is met, the solution to problem has been achieved, and thus the program will
terminate its execution. Given these three termination criteria, it can never be
inconsistent to define two different objective functions: they can either be formu-
lated in such a way that, with the advantage of the heuristic metric approach, the
cat travels the distance to catch the mouse in the shortest time, or the mouse easily
increases the percentage of escape from the cat. The latter essentially describes the
performance we would like to see and for which we have shared the results in the
light of these expectations in Table 1 above. Figures 9 and 10 below give the

Figure 8.
The percentages of caught and escape performances of the distance metrics considered.

Figure 9.
Program output depicting the caught of a single mouse for 10 randomly initialized cat states.
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program output of the caught and escape problem for the case of 10 cats against a
single mouse for randomly generated cat locations.

In the meantime, by emphasizing the points where we differ from different
perspectives given in the literature, we find it useful to clarify the definition of
angular metric that we have discussed in this work. For example, Figure 11 shows
the routes with the same metric length but with increasingly higher angular lengths
[54]. The angular distance we mean in our work differs from the angular distance
meant there in that: In Figure 11(a), the angular distance between perfectly aligned
axial segments is zero [54], whereas in our approach, while determining the heu-
ristic metric that allows the predator to take the distance it needs to cover in order
to catch its prey in the shortest time or that allows the prey to easily increase the
percentage of escape from the predator, we have developed an approach that uses
the angle as an effective parameter, and hence called the angular distance metric, as
we explained above.

6. Conclusion

The main motivation behind our heuristic metric approach was that, consistent
with the triangle inequality principle, the heuristic acqusition that started with a

Figure 10.
Program output depicting the escape of a single mouse for 10 randomly initialized cat states.

Figure 11.
Three routes of pursuit between the predator and prey, with the same metric length but with increasingly higher
angular lengths [54]: a) route as simple as possible with almost zero angular variation, i.e., the shortest route,
b) more complex route, but still far from random, c) the most complex route, far from any regularity, composed
by angles of all amplitudes.
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semi-circle and turned into a straight-line was ultimately proportional to the length
of the arc seen by the angle of α of the circle-segment. The use of HAMA became
even more important as the angle emerged as the most determining factor of the
problem, as we explained in the relevant section above.

In prey-predator-like pursuit-evasion problems, the angles between the direc-
tion of pursuit and the direction of the line-of-sight exhibit a broad perspective
corresponding to acute, right, and wide angles, depending on how the prey and the
predator are positioned relative to each other for their own purposes. In the heuris-
tic angular distance metric approach, we therefore chose to use a formula that takes
into account angles rather than vector lengths.

As a distance metric application, we believe that “cat and mouse” is a good
example of what is known as chase problem and the resulting trajectories are called
curves of pursuit. Cat chasing a mouse problem is a very common yet interesting
problem in kinematics. The trajectory, travel time and relative approach velocity of
a pursuer tracking a prey along a simple curve of pursuit are deduced using basic
principles of two-dimensional kinematics. Problems of this general sort are of
interest to the military community and to video game designers. Here, in the
context of pursuit and evasion, a design problem that allows an artificial
intelligence-like process where cat and mouse makes smart moves relative to each
other and therefore makes more appropriate decisions, is discussed. The design is
built around Fuzzy logic control to determine route finding between the predator
and prey. As long as the angle between the vectors under consideration is
maintained, the major advantage of the angular distance metric is its low sensitivity
to any changes in vector norms, thus providing the desired distance that is not
dependent on the amplitude.

In the numerical experiments, we chose randomly generated cat locations as
they better reflect the real-world in each run, and compared the results by running a
total of 100 trials for each of the selected cases that accepted first 4 cats and then 8
cats and finally 12 cats against a single mouse. Thus, ‘caught and escape percentages
vs. number of cats’ findings for three metric distances (i.e., the metric calculated
only based on the Euclidean distance, the metric calculated over the geodesics
definition, and the metric devised using the angle-dependent Cosine theorem as a
result of our angular metric approach) have been serached for and the results
evaluated comparatively. From the comparison of these three, it is clear that our
approach gives better results than the others.

As for future work, the larger the graphic size representing the route of the prey
and the predator and specified by the same width and height in pixels, or the higher
the number of iterations, we will end up facing high computational cost of deter-
mining the minimum routes. To prevent this situation, in the near future, we are
planning to consider using a subgraph around each node containing the nodes that
are reachable from the origin node within the restricted distance. It may be seen as
the maximum pursuer distance from the node under calculation. In this way, we
will always be able to calculate the metric geodesics or the shortest paths between
each pair of nodes. For example, we would use the following set of distances (in
pixels): P = {600 (current situation), 1000, 1400, 2000, 4000, 8000}.
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