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Chapter

Siamese-Based Attention Learning
Networks for Robust Visual Object
Tracking

Md. Maklachur Rahman and Soon Ki Jung

Abstract

Tracking with the siamese network has recently gained enormous popularity in
visual object tracking by using the template-matching mechanism. However, using
only the template-matching process is susceptible to robust target tracking because
of its inability to learn better discrimination between target and background. Sev-
eral attention-learning are introduced to the underlying siamese network to
enhance the target feature representation, which helps to improve the discrimina-
tion ability of the tracking framework. The attention mechanism is beneficial for
focusing on the particular target feature by utilizing relevant weight gain. This
chapter presents an in-depth overview and analysis of attention learning-based
siamese trackers. We also perform extensive experiments to compare state-of-the-
art methods. Furthermore, we also summarize our study by highlighting the key
findings to provide insights into future visual object tracking developments.

Keywords: visual object tracking, siamese network, attention learning, deep
learning, single object tracking

1. Introduction

Visual object tracking (VOT) is one of the fundamental problems and active
research areas of computer vision. It is the process of determining the location of an
arbitrary object from video sequences. A target with a bounding box is given for the
very first frame of the video, and the model predicts the object’s location with height
and width in the subsequent frames. VOT has a wide range of vision-based applica-
tions, such as intelligent surveillance [1], autonomous vehicles [2], game analysis [3],
and human-computer interface [4]. However, it remains a complicated process due
to numerous nontrivial challenging aspects, including background clutter, occlusion,
fast motion, motion blur, deformation, and illumination variation.

Many researchers have proposed VOT approaches to handle these challenges.
Deep features are used more than the handcraft features such as scale-invariant
feature transform (SIFT), histogram of oriented gradients (HOG), and local binary
patterns (LBP) to solve the tracking problem and perform better against several
challenges. Convolutional neural networks (CNN), recurrent neural networks
(RNN), auto-encoder, residual networks, and generative adversarial networks
(GAN) are some popular approaches used to learn deep features for solving vision
problems. Among them, CNN is used the most because of its simplistic feed-
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forward process and better performance on several computer vision applications,
such as image classification, object detection, and segmentation. Although CNN has
had massive success in solving vision problems, tracking performance has not
improved much because of obtaining adequate training data for end-to-end training
the CNN structure.

In recent years, tracking by detection and template matching are two major
approaches for developing a reliable tracking system. VOT is treated as a classifica-
tion task in tracking-by-detection approaches. The classifier learns to identify the
target from the background scene and then updates based on prior frame predic-
tions. The deep features with correlation filter-based trackers such as CREST [5], C-
COT [6], and ECO [7], as well as deep network-based tracker MDNet [8], are
followed the tracking by detection strategy. These trackers’ performance depends
on online template-updating mechanisms, which is time-consuming and leads
trackers to compromise real-time speed. Besides, the classifier is susceptible to
overfit on recent frames result.

However, techniques relying on template matching using metric learning extract
the target template and choose the most similar candidate patch at the current
frame. Siamese-based trackers [9-15] follow the template-matching strategy, which
uses cross-correlation to reduce computational overhead and solve the tracking
problem effectively. Siamese-based tracker, SiamFC [9], gains immense popularity
to the tracking community. It constructs a fully convolutional Y-shaped double
branch network, one for the target template and another for the subsequent frames
of the video, which learns through parameter sharing. SiamFC utilizes the off-line
training method on many datasets and performs testing in an online manner. It does
not use any template-updating mechanisms to adapt the target template for the
upcoming frames. This particular mechanism is beneficial for fast-tracking but
prone to less discrimination due to the static manner of the template branch.

Focusing on the crucial feature is essential to improve tracker discrimination
ability. Attention mechanism [16] helps to improve the feature representation abil-
ity and can focus on the particular feature. Many siamese-based trackers adopted
attentional features inside the feature extraction module. SA-Siam [11] presents two
siamese networks that work together to extract both global and semantic level
information with channel attention feature maps. SCSAtt [10] incorporates stacked
channel and spatial attention mechanism for improving the tracking effectively. To
improve tracker discriminative capacity and flexibility, RASNet [13] combines
three attention modules.

This chapter focuses on how the attention mechanism evolves on the siamese-
based tracking framework to improve overall performance by employing simple
network modules. We present different types of attention-based siamese object
trackers to compare and evaluate the performance. Furthermore, we include a
detailed experimental study and performance comparison among the attentional
and non-attentional siamese trackers on the most popular tracking benchmarks,
including OTB100 [17, 18] and OTB50 [17, 18].

2. Related works
2.1 Tracking with siamese network

The siamese-based trackers gain great attention among the tracking community
after proposing SiamFC [9], which performs at 86 frames per second (FPS).

SiamFC utilizes a fully convolutional parallel network that takes two input images,
one for the target frame and another for the subsequent frames of the video. A
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simple cross-correlation layer is integrated to perform template matching at the end
of fully convolutional parallel branches. Based on the matching, a similarity score
map or response map is produced. The maximum score point on the 2D similarity
map denotes the target location on the search frame. However, a siamese network is
first introduced to verify signatures [19].

Before introducing SiamFC, the siamese-based approach was not much popular
for solving tracking problems. The optical flow-based tracker SINT [20] is consid-
ered as one of the earliest siamese-based trackers, but it was not operating in real
time (about 2 FPS). Around the same time, another siamese-based tracker named
GOTURN [21] utilizes a relative motion estimation solution to address the tracking
problem as regression. Then many subsequent studies for siamese tackers [20, 22—
25] have been introduced to improve the overall tracking performance. CFnet [23]
employs a correlation-based filter in the template branch of SiamFC after
performing feature extraction in a closed-form equation. SiamMCF [26] considers
multiple layers response maps using cross-correlation operation and finally fused it
to get a single mapped score to predict the target location. SiamTri [24] introduces a
triplet loss-based simaese tracking to utilize discriminative features rather than
pairwise loss to the link between the template and search images effectively. DSiam
[25] uses online training with the extracted background information to suppress the
target appearance changes.

2.2 Tracking with attention network

The attention mechanism is beneficial to enhance the model performance. It
works to focus on the most salient information. This mechanism is widely used in
several fields of computer vision, including image classification [16], object detection
[27], segmentation [28], and person reidentification [29]. Similarly, visual tracking
frameworks [10, 11, 13-15] adopt attention mechanisms to highlight the target fea-
tures. This technique enables the model to handle challenges in tracking. SCSAtt [10]
utilizes a stacked channel-spatial attention learning mechanism to determine and
locate the target information by answering what and where is the maximum similar-
ity of the target object. RASNet [13] employs multiple attentions together to augment
the adaptability and discriminative ability of the tracker. IMG-Siam [14] uses the
super pixel-based segmentation matting technique to fuse the target after computing
channel-refined features for improving the overall target’s appearance information.
SA-Siam [11] considers a channel attention module in the semantic branch of their
framework to improve the discrimination ability. FICFNet [30] integrates channel
attention mechanism in both branches of the siamese architecture and improves the
baseline feature refinement strategy to improve tracking performance. IRCA-Siam
[31] incorporates several noises [32, 33] in its input feature during training the tracker
in off-line to improve the overall network generalization ability.

Moreover, the long short-term memory (LSTM) model also considers attention
learning to improve the important features, such as read and write operations.
MemTrack [34] and MemDTC [35] used the attentional LSTM-based memory
network to update the target template during tracking. The temporal feature-based
attention for visual tracking is introduced by FlowTrack [36], which considers
temporal information for the target.

3. Methodology

This section discusses how siamese-based tracking frameworks integrate with
attention mechanisms, which help to improve the overall tracking performance.
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Before going into the deep details of the attention integration, the underlying
siamese architecture for tracking is discussed.

3.1 Baseline siamese network for visual tracking

Siamese network is a Y-shaped parallel double branch network and learns
through parameter sharing. The end of the parallel CNN branch calculates a simi-
larity score between two branches. In the siamese-based tracking frameworks,
usually, SiamFC [9] is popularly considered as a baseline. It computed a response
map as a similarity score by calculating the cross-correlation score between target
and search image. The highest score point of the response map represents the
corresponding target location in the search image.

Figure 1 shows the basic siamese object tracking framework, where z and x denote
the target and search images, respectively. The solid block represents the fully
convolutional network, which learns through parameter sharing between two branches.

The baseline siamese-based tracker, SiamFC, can be defined mathematically as.

R(z,x) =w(2)*xw(x) +b -1, (1)

where R(z,x) denotes cross-correlation-based similarity score map called
response map, and y/(z) and y(x) represent fully convolutional feature maps for
target image and search image, respectively. * stands for cross-correlation opera-
tion between two feature maps. b - 1 denotes bias value on every position on the
response map R(z,x).The baseline siamese tracker solves the closed-form equation
and learns through parameter sharing. It can run at real-time speed but cannot
handle tracking challenges properly due to its lack of discriminative ability. There-
fore, the attention mechanism comes into action to improve the overall tracker
accuracy by handling challenging scenarios.

3.2 Siamese attention learning network for visual tracking

The human visual perception inspires the attention learning network; instead of
focusing on the whole scene, the network needs to learn an essential part of the scene.
During the feature extraction of a CNN, it learns through the depth of channels. Each

CNN Feature Map

Template Image (z) : : [ |
.

[ Response Map (R)

) Parameter Sharing

CNN Feature Map

Search Image (x)

Figure 1.
The basic siamese-based visual object tracking framework.
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channel is responsible for learning different features of the object. Attention net-
works learn to prioritize the object’s trivial and nontrivial parts by using the individ-
ual channel’s feature weight gain. As explained in the studies by He et al., Rahman

et al., Wang et al., and Fiaz et al. [11-13, 15], the attention mechanism greatly
enhances siamese-based tracking frameworks that can differ between foreground and
background from an image. It helps to improve the overall discriminative ability of
the tracking framework by learning various weights gain on different areas of the
target to focus the nontrivial part and suppress the trivial part.

Integrating attention mechanisms into the siamese network is one of the
important factors for improving the tracker performance. There are three common
approaches of integrating attention mechanisms into the siamese-based tracking
framework, including (a) attention on template feature map, (b) attention on
search feature map, and (c) attention on both feature maps. When the attention
mechanism is integrated into the siamese tracker, the attention-based tracker can be
defined by altering the baseline equation as.

R(z,x) = A(y(z)) xw(x) +b -1, (2)

R(z,x) =y(z) xA(y(x)) + b -1, (3)
and

R(z,x) = Alw(z) +w(x) +b -1, (4)

where A(-) denotes the attention mechanism on the feature map y/(.), which
learns to highlight the target information by providing the positive weights on
important features. The Egs. (2)-(4) represent the three common ways of integrat-
ing attention mechanisms subsequently.

Figure 2 illustrates a general overview of these three common types of attention
integration to the baseline siamese tracker. The backbone of the siamese network
learns through parameter sharing. The CNN feature extractor networks are fully
convolutional and able to take any size of images. After computing features from
both branches, a cross-correlation operation produces a response map for the simi-
larity score between the target and search image. The difference between the
baseline and attention-based siamese tracker is that baseline does not use any
attentional features. In contrast, the attentional feature is used to produce a
response map in the attention-based trackers.

The attention on the template feature map (illustrated in Figure 2(a)) considers
only the attention mechanism on the template/target feature, which improves the
network’s target representation and discrimination ability. A better target repre-
sentation is essential for the better performance of the tracker. The attention on
search feature map approach (shown in Figure 2(b)) integrates the attention
mechanism to search branch of the underlying siamese tracker. Since in the
siamese-based trackers, the target branch is usually fixed after computing the first
frame of the video sequence. The search branch is responsible for the rest of the
subsequent frames of the video. Therefore, adding the attention mechanism to the
search branch will be computed for all video frames, which seriously hinders the
tracking speed. Integrating the attention mechanism on both branches (illustrated
in Figure 2(c)) takes attentional features and performs similarity score computa-
tion instead of taking typical CNN features. This type of attentional siamese archi-
tecture usually faces less discrimination on the challenging sequences and reduces
the tracking speed because of the attention network in the search branch.

Attention with template branch is the most popular strategy among these three
ways of integration. It also considers how many attention modules are used. The
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(a) Attention on the template feature map in the siamese tracker.
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Figure 2.
The common approaches of integrating attention mechanisms into the baseline siamese tracking framework.

number of integrating attention mechanisms to the baseline siamese architecture
is another important factor for improving the siamese tracker performance.
However, this section will discuss the two most common and popular ways of
utilizing the attentional feature to improve tracking performance with less
parameter overhead.
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3.2.1 Single attention mechanism for visual tracking

Many challenges are encountered when visual object tracking using a basic
siamese tracking pipeline to track the object in challenging scenarios. Candidates
similar to the template and the correct object should be identified from all of these
candidates. A tracker with less discrimination ability fails to identify the most
important object features during tracking for challenging sequences such as occlu-
sion and cluttered background, which results in unexpected tracking failure. A
robust discriminative mechanism needs to increase the siamese network’s perfor-
mance to deal with such issues. Therefore, incorporating an attention mechanism
with the underlying siamese network improves the overall tracking performance,
particularly tackling challenging scenarios.

It has been widely observed that the channel attention mechanism [16] is
beneficial to prioritize the object features and is used as the popular single-
employed attention mechanism for visual tracking. It is one of the most
popular approaches to improve the siamese-based tracker performance in terms of
success and precision score. The idea of learning different features by different
channels utilizing the channel attention. Figure 3(a) shows a max-pooled and
global average-pooled features-based channel attention mechanism. The max-
pooled highlights the finer and more distinct object attributes from the individual
channel, whereas global average-pooled offers a general overview of individual
channel contributions. Therefore, the max-pooled and average-pooled features are
fused after performing a fully connected neural operation. The fused feature is
normalized by sigmoid operation and added to the original CNN feature using
residual skip connection.

The following subsection presents some state-of-the-art tracking frameworks to
overview the single attention mechanism-based siamese visual object tracking.

Cax1x1 Cax1x1
— . — — .
CXHxW A—
- [ O— mm — Q— W
Cx1x1 CXHXW
S [E— | —T |—>- Fused feature Attentional feature
| cmx1x1 tmx1x1
Residual Skip Connection
— Sigmoid operation MILP Multilayer perceptron I Average-pooled feature

@ Element-wise addition ® Element-wise multiplication | Max-pooled feature

(a) Channel attention mechanism.
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(b) Spatial attention mechanism.

Figure 3.
Channel attention and spatial attention networks.
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* IMG-Siam [14]: The channel attention mechanism and matting guidance
module with a siamese network called IMG-Siam. Figure 4 represents the
IMG-Siam. They consider channel attention mechanism into the siamese
network to improve the matching model. During online tracking, IMG-Siam
uses super-pixel matting to separate the foreground from the background of
the template image. The foreground information is inputted to the fully
convolution network after getting the features from convolution layers. The
features from the initial and matted templates are fed to the channel attention
network to learn the attentional features. Both attentional features are fused
for cross-correlation operation with the search image features to produce a
response map. The response map is used to locate the target in the
corresponding search image. The IMG-Siam channel attention mechanism only
computes the global average-pooled features rather than considering the max-
pooled features with it. After integrating the channel attention module, IMG-
Siam performance has improved from the baseline siamese tracker. Although
the performance has improved, using only the average pooled feature
susceptible to the real challenges, including occlusion, deformation, fast
motion, and low resolution.

e SiamFRN [12]: Siamese high-level feature refines network (SiamFRN)
introduces end-to-end features refine-based object tracking framework.
Figure 5 illustrates the SiamFRN object tracker. The feature refines network
(FRN) takes input from the higher convolutional layers to improve the target
representation utilizing semantic features. FRN block uses features from the
fourth and fifth layers of Alexnet [37]-based network to get the fused features
by performing concatenation operation. The fused features propagate through
several convolution and ReLu layers and are added to the identity mapping-
based skip connection. However, the only FRN block is unable to handle
tracking challenges because of its less discriminative power [12]. Therefore,
SiamFRN integrates the channel attention module into the FRN block to
improve the network discrimination ability. The channel attention computes
both max-pooled and global average-pooled features to learn the fine details
and get an overall idea of the object’s feature. The attentional features are fused
to the original features map using element-wise multiplication operations. The
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Figure 4.
IMG-Siam tracking framework [14].
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SiamFRN tracking framework [12].

ultimate features produced by the refined network and channel attention
module are used to cross-correlation with similarly processed search image
features.

* SA-Siam [11]: Instead of a single siamese network, SA-Siam introduces a
siamese network pair to solve the tracking problem. Figure 6 represents the
SA-Siam object tracker. It proposes a twofold siamese network, where one fold
represents the semantic branch, and another fold represents the appearance
branch, combinedly called SA-Siam. The semantic branch is responsible for
learning semantic features through an image classification task, and the
appearance branch is responsible for learning features using similarity
matching tasks. An important design choice for SA-Siam separately trained
these two branches to keep the heterogeneity of features.

Moreover, the authors integrate a channel-wise attention mechanism in the
semantic branch of the tracker. SA-Siam considers only max-pooled-based channel-
wise features for acquiring finer details of the target. The motivation of using the
channel attention mechanism in the SA-Siam framework is to learn the channel-
wise weights corresponding to the activated channel around the target position. The
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Figure 6.
SA-Siam tracking framework [11].
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last two layers’ convolution features are selected for the semantic branch because
the high-level features are better for learning semantic information. The low-level
convolutional features focus on preserving the location information of the target.
However, the high-level features, that is, semantic features, are robust to the
object’s appearance changes, but they cannot retain the better discrimination abil-
ity. Therefore, the tracker suffers poor performance when similar objects in a scene
or the background are not distinguishable from the target object. Incorporating the
attention mechanism into the SA-Siam tracker framework helps alleviate such
problems and enhances its performance in cluttered scenarios.

3.2.2 Multiple attention mechanisms for visual tracking

Multiple attentions are employed instead of using single attention to improve the
tracker performance further in challenging scenarios. RASNet [13] and SCSAtt [12]
used multiple attentional mechanisms in their tracking framework to enhance the
baseline siamese tracker performance. In the multiple attention mechanisms, one
attention is responsible for learning one important thing and others are responsible
for learning other essential things of the target. Combinedly, they learn to identify
and locate the target more accurately. This subsection describes the siamese-based
trackers where multiple attention mechanisms are incorporated.

* RASNet [13]: Residual attentional siamese network (RASNet) is proposed by
Wang et al. [13]. It incorporates three attention mechanisms, including general
attention, residual attention, and channel attention. Figure 7 represents the
RASNet tracker. RASNet design allows a network to learn the efficient feature
representation and better discrimination facility. It employed an hourglass-like
convolutional neural network (CNN) for learning the different scaled features
representations and contextualization. Since RASNet considers residual-based
learning, it enables a network to encode and learn more adaptive target
representation from multiple levels. It also investigates a variety of attentional
techniques to adjust offline feature representation learning to track a specific
target. All training operations in RASNet are completed during the offline phase
to ensure efficient tracking performance. Tracker’s general attention mechanism
gradually converges in the center, which is similar to a Gaussian distribution. It
represents the center position as a more important part of the training samples
than the peripheral parts, which is tremendously beneficial to train the siamese
network. A residual attention module is incorporated to improve the general
attention module performance and combinedly called the dual attention

Residual Attention p General Attention p

@ channel-wise scale @ element-wise summation

Figure 7.
RASNet tracking framework [13].
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(DualAtt) model. The residual module helps to learn better representation and
reduces bias on the training data. Furthermore, the channel attention module
integrates to a single branch of the siamese network to improve the network
discrimination ability, which learns through channel-wise features.

» SCSAtt [10]: Stacked channel-spatial attention learning (SCSAtt) employed
channel attention and spatial attention mechanisms together. Channel
attention uses to learn “what” information, and spatial attention focuses on the
location information by learning “where” information of the target. To
improve tracking performance with end-to-end learning, SCSAtt combines
“what” and “where” information modules and focuses on the most nontrivial
part of the object. Figure 3 shows the channel attention and spatial attention
mechanisms. Figure 8 illustrates the SCSAtt tracker combining channel
attention and spatial attention. The overall framework tries to balance the
tracker’s accuracy (success and precision) and speed. SCSAtt extends the
baseline siamese network by incorporating the stacked channel-spatial
attention in the target branch to handle challenges. SCSAtt channel attention
and spatial attention modules consider max-pooled and global average-pooled
features together to learn better target representation and discrimination
learning. These improved features help the network to locate and identify the
target in challenging scenarios, such as background clutter, fast motion,
motion blur, and scale variation. SCSAtt does not employ any updating
mechanisms in the tracking framework and considers only a pretrained model
during testing, which helps to ensure fast tracking performance.

4. Experimental analysis and results

This section describes the experimental analysis and compares the results of the
visual trackers over the OTB benchmark. The most popular comparison on the OTB
benchmark is the OTB2015 benchmark [17, 18]. It is also familiarized as the
OTB100 benchmark because of consisting 100 challenging video sequences for
evaluating tracking performance. Besides, the subset of OTB100 benchmark named
OTB50 benchmark is also considered for evaluating tracking performance. It con-
tains the most challenging 50 sequences among hundred sequences. The OTB video
sequences are categorized into 11 challenging attributes, such as scale variation
(SV), background clutter (BC), fast motion (FM), motion blur (MB), low

11
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resolution (LR), in-plane rotation (IPR), out-plane rotation (OPR), deformation
(DEF), occlusion (OCC), illumination variation (IV), and out-of-view (OV).
Usually, one-pass evaluation (OPE) uses to compute success and precision plots.
The percentage of overlap score between the predicted and ground-truth bounding
box is considered as success scores. The center location error of the predicted and
ground-truth bounding box is considered as precision scores. The overlap score is
computed by the intersection over union (IOU), and the center location error is
computed by the center pixel distance. Success plots and precision plots are drawn
using the tracking community-provided OTB toolkit based on these two scores. The
precision and success plots thresholds are 20 pixels distance and 0.5 IOU score,
respectively, and considered accurate tracking. The following subsections demon-
strate a quantitative and qualitative analysis by comparing the tracking speed.

4.1 Quantitative and qualitative comparison and analysis

To compute a fair comparison, we carefully selected various trackers including
attentional and non-attentional siamese-based trackers. Figure 9 and Figure 10
show the compared trackers’ results on the OTB100 and OTB50 benchmarks,
respectively. The compared trackers in Figure 9 and Figure 10 are siamese-based.
Among them, SA-Siam [11], SCSAtt [10], MemDTC [35], MemTrack [34], and
SiamFRN [12] utilize attention mechanism to improve the baseline SiamFC tracker
[9]. SiamFC achieves 77.1% and 69.2% for overall precision plots, and 58.2% and
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Compared trackers’ vesults on OTB50 benchmark.
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51.6% for overall success plots on OTB100 and OTB50 benchmarks. The attention-
based tracker SA-Siam shows the dominating performance among the compared
trackers. It acquires 86.4% and 65.6% precision and success scores on the OTB100
benchmark, respectively. The OTB50 benchmark also achieves 82.3% in the preci-
sion score and 61.0% in the success score.

The overall performance of the attention-integrated siamese trackers is
higher than other siamese-based trackers. Among the other siamese trackers,
GradNet performance is better due to its expensive tracking time operation.
GradNet performs 86.1% and 82.5% for precision plots, and 63.9% and 59.7%
success plots on OTB100 and OTB50 benchmarks. The other siamese-based
trackers’, including DSiamM, SiamTri, and CFnet, performance is not much
improved than the original siamese pipeline. However, the attention with the
siamese baseline tracker shows improving the tracker’s overall performance. The
attention-integrated siamese trackers, including SCSAtt and SiamFRN, utilize
the same channel attention mechanism inside their framework. They achieve
82.8% and 77.8% for precision, and 60.2% and 58.1% for precision success plots,
respectively, on the OTB50 benchmark. The trackers with the LSTM attention
network (MemDTC and MemTrack) also performed better than the baseline
siamese tracker. Both follow a similar attention mechanism except considering
different features for memory, which makes the performance difference.
MemDTC achieves 84.5% for precision plots, which is 2.5% higher than the
MemTrack scores (82.0%). Similarly, the gap between them is 1.1% for success
scores on the OTB100 benchmark. MemDTC also performs better than
MemTrack on the OTB50 benchmark.

Figures 11 and 12 show the trackers’ performance comparison on the challeng-
ing attributes of the OTB100 benchmark in terms of precision and success plots. For
better visualization of these two figures, the interested reader may check this link: h
ttps://github.com/maklachur/VOT_Book-Chapter. SCSAtt tracker performs better
in precision plots than other trackers in several challenging scenarios, such as scale
variation, illumination variation, deformation, motion blur, and fast motion.
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Figure 11.

Compared trackers’ performance on the challenging attributes of OTB100 benchmark in terms of precision

plots.
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Figure 12.

Compared trackers’ performance on the challenging attributes of OTB100 benchmark in terms of success plots.

SCSAtt utilizes channel attention and spatial attention mechanism into the baseline
SiamFC model. Furthermore, the channel attention-based SA-Siam tracker per-
forms better than the other siamese-based trackers, including CFnet, DSiamM, and
SiamTri. SA-Siam also shows the dominating performance on other trackers over
the OTB100 benchmark in the success plots of challenging attributes. It performs
better than the other trackers except on the motion blur challenge, whereas SCSAtt

performs better than the other trackers for success plots.

Figure 13 illustrates the qualitative comparison results among trackers over
several challenging sequences from the OTB100 benchmark. For better visualiza-
tion of this result, the interested reader may check this link: https://github.com/ma
klachur/VOT_Book-Chapter. The overall tracking accuracy of attention-based
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Figure 13.
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MemDTC

The qualitative compavison results among trackers over several challenging sequences (carScale, liquor,

motorRolling, skating2—2, and soccer) from the OTB100 benchmark.
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trackers is better than the other trackers. They can track the target object more
correctly with accurate bounding boxes from the background information. We
observed that most trackers fail to handle the target in the car sequence, but
MemTrack and MemDTC trackers manage to provide better tracking. Similarly,
SCSAtt, SA-Siam, and SiamFRN show accurate tracking for other compared
sequences, whereas the non-attentional trackers suffer handling the target
accurately.

4.2 Speed comparison and analysis

In order to compare tracking speed, we selected trackers from our previous
comparison for quantitative and qualitative analysis. Table 1 shows the speed
comparison results in terms of FPS and corresponding success and precision
scores on the OTB100 benchmark. We observed that SiamFC tracking speed
(86 FPS) shows the highest tracking speed, but it achieves the lowest accuracy
scores in terms of success and precision. Therefore, it could not utilize its full
potential of tracking speed. The motivation of designing trackers is not just to
improve the tracking speed, but they should be able to track the target in
challenging scenarios. Preserving a balance between speed and accuracy is
essential when designing a tracker for real-time applications. Most of the presented
trackers in our comparison illustrate better performance than the SiamFC. RASNet
and SCSAtt achieve the second-highest and third-highest tracking speeds,
respectively. They also show better accuracy on success scores and show a balance
performance.

Most trackers presented in Table 1 show the high tracking speed because of
leveraging the SiamFC pipeline and computing template image only for the
very first frame of the video sequence. However, MemDTC achieves the lowest
tracking speed among the other trackers, which is 40 FPS. It utilizes the memory
mechanism for updating the target template during tracking, which reduces its
operational efficiency. SA-Siam, Img-Siam, MemTrack, and SiamFRN achieve
50 FPS, 50 FPS, 50 FPS, and 60 FPS tracking speed, respectively. The motivation
of these trackers is maintaining a balance between the tracking speed and
accuracy utilizing the siamese tracking framework for handling challenging
sequences fully.

Tracker name Speed (FPS) Success score (%) Precision score (%)
SA-Siam [11] 50 65.6 86.4
RASNet [13] 83 64.2 —
SCSAtt [10] 61 64.1 85.5
Img-Siam [14] 50 63.8 84.6
SimaFRN [12] 60 63.6 84.0
MemDTC [35] 40 63.7 84.5
MemTrack [34] 50 62.6 82.0
SiamFC [9] 86 58.2 771

"The red highlight represents the best, green represents the second best, and blue represents the third-best performance.
RASNet paper did not provide the precision scove that is why we do not include it in our comparison.

Table 1.
The speed comparison vesults in terms of FPS and corresponding success and precision scores on the OTB100
benchmark.
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5. Conclusion and future directions

The attention mechanism is very simple but powerful for improving the net-
work learning ability. It is beneficial for better target representation and enhancing
tracker discrimination ability with fewer parameter overhead. The baseline siamese
tracker does not perform well on accuracy on the challenging scenarios due to its
insufficient feature learning and distinguishing inability between foreground and
background. The attention mechanism is integrated into the baseline tracker pipe-
line to overcome the underlying siamese issues and improve the tracking perfor-
mance. Attention helps to prioritize the features by calculating the relevant weights
gain of the individual feature map. Therefore, it learns to highlight the important
features of the target, which helps to handle challenges during tracking. In our
study, we present a detailed discussion about the attention embedding in siamese
trackers. The attention-based siamese trackers show outstanding performance and
domination over other non-attentional trackers in the compared results. For exam-
ple, SA-Siam and SCSAtt achieve high tracking accuracy in success and precision
plots on most challenging attributes, representing the robustness of the model.

Furthermore, we observed that the employed attention mechanism in the target
branch performs well instead of integrating only in the search branch or both
branches. Besides this, multiple attention mechanisms are considered rather than
the single attention mechanism to focus on the target class and the location infor-
mation. Since the location information is important for correctly predicting the
object’s bounding box, the spatial information-focused module helps to improve the
tracker’s effectiveness on challenges. RASNet and SCSAtt trackers used the multiple
attention mechanisms in their pipeline to handle the challenging sequences. The
trackers’ performance on challenging attributes in Figures 11 and 12 proves the
attention mechanism advantages. Using the attention mechanisms inside the
tracker framework would be a better choice for future tracker developments.
Therefore, improving the overall tracker performance on challenges and preserving
the balance performance between accuracy and speed, integrating attention mech-
anisms are recommended for designing the future tracking framework.

Acknowledgements
This research was supported by Basic Science Research Program through the

National Research Foundation of Korea (NRF) funded by the Ministry of Educa-
tion, Science and Technology (NRF-2019R1A2C1010786).

Author details
Md. Maklachur Rahman* and Soon Ki Jung
Virtual Reality Lab, School of Computer Science and Engineering, Kyungpook

National University, South Korea

*Address all correspondence to: maklachur@gmail.com; maklachur@knu.ac.kr

IntechOpen

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited. [{<)
16



Siamese-Based Attention Learning Networks for Robust Visual Object Tracking

DOI: http://dx.doi.org/10.5772/intechopen.101698

References

[1] Attard L, Farrugia RA. Vision based
surveillance system. In: 2011 IEEE
EUROCON-International Conference
on Computer as a Tool. IEEE; 2011.

pp- 1-4

[2] Janai ], Giiney F, Behl A, Geiger A.
Computer vision for autonomous
vehicles: Problems, datasets and state-

of-the-art. arXiv preprint arXiv:
170405519. 2017;12:1-308

[3] Lu WL, Ting JA, Little JJ,

Murphy KP. Learning to track and
identify players from broadcast sports
videos. IEEE Transactions on Pattern

Analysis and Machine Intelligence.
2013;35(7):1704-1716

[4] Pavlovic VI, Sharma R, Huang TS.
Visual interpretation of hand gestures
for human-computer interaction: A
review. IEEE Transactions on Pattern
Analysis and Machine Intelligence. 1997;
19(7):677-695

[5] Song Y, Ma C, Gong L, Zhang J,

Lau RW, Yang MH. Crest: Convolutional
residual learning for visual tracking. In:
Proceedings of the IEEE International

Conference on Computer Vision. Italy:
IEEE; 2017. pp. 2555-2564

[6] Danelljan M, Robinson A, Khan FS,
Felsberg M. Beyond correlation filters:
Learning continuous convolution
operators for visual tracking. In:
European Conference on Computer
Vision. Netherland: Springer; 2016.
pp. 472-488

[7] Danelljan M, Bhat G, Shahbaz Khan F,
Felsberg M. Eco: Efficient convolution
operators for tracking. In: Proceedings of
the IEEE Conference on Computer

Vision and Pattern Recognition. Hawaii:
IEEE; 2017. pp. 6638-6646

[8] Nam H, Han B. Learning multi-
domain convolutional neural networks
for visual tracking. In: Proceedings of
the IEEE Conference on Computer

17

Vision and Pattern Recognition. Nevada:
IEEE; 2016. pp. 4293-4302

[9] Bertinetto L, Valmadre ],
Henriques JF, Vedaldi A, Torr PH.
Fully-convolutional siamese networks
for object tracking. In: European

Conference on Computer Vision.
Netherland: Springer; 2016. pp. 850-865

[10] Rahman MM, Fiaz M, Jung SK.
Efficient visual tracking with stacked
channel-spatial attention learning. IEEE
Access. Utah: IEEE. 2020;8:100857-
100869

[11] He A, Luo C, Tian X, Zeng W. A
twofold siamese network for real-time
object tracking. In: Proceedings of the
IEEE Conference on Computer Vision
and Pattern Recognition. Utah: IEEE;
2018. pp. 4834-4843

[12] Rahman M, Ahmed MR,
Laishram L, Kim SH, Jung SK, et al.
Siamese high-level feature refine

network for visual object tracking.
Electronics. 2020;9(11):1918

[13] Wang Q, Teng Z, Xing J, Gao J,

Hu W, Maybank S. Learning attentions:
Residual attentional siamese network
for high performance online visual
tracking. In: Proceedings of the IEEE
Conference on Computer Vision and
Pattern Recognition. Utah: IEEE; 2018.
pp. 4854-4863

[14] Qin X, Fan Z. Initial matting-guided
visual tracking with Siamese network.
IEEE Access. 2019;03:1

[15] Fiaz M, Rahman MM, Mahmood A,
Farooq SS, Baek KY, Jung SK. Adaptive
feature selection Siamese networks for
visual tracking. In: International
Workshop on Frontiers of Computer
Vision. Japan: Springer; 2020.

pp. 167-179

[16] Woo S, Park ], Lee JY, So KI. Cbam:
Convolutional block attention module.



Visual Object Tracking

In: Proceedings of the European
Conference on Computer Vision
(ECCV). Germany: Springer; 2018.
pp. 3-19

[171 Wu Y, Lim J, Yang MH.

Object tracking benchmark. IEEE
Transactions on Pattern Analysis and
Machine Intelligence. 2015;37(9):
1834-1848

[18] Wu Y, Lim J, Yang MH. Online
object tracking: A benchmark. In:
Proceedings of the IEEE Conference on
Computer Vision and Pattern
Recognition. Oregon: IEEE; 2013.

pp- 2411-2418

[19] Bromley J, Guyon I, LeCun Y,
Sackinger E, Shah R. Signature
verification using a “siamese” time
delay neural network. In: Advances in

Neural Information Processing Systems.

US: NIPS; 1994. pp. 737-744

[20] Tao R, Gavves E, Smeulders AW.
Siamese instance search for tracking.
In: Proceedings of the IEEE Conference
on Computer Vision and Pattern
Recognition. Nevada: IEEE; 2016.

pp. 1420-1429

[21] Held D, Thrun S, Savarese S.
Learning to track at 100 fps with deep
regression networks. In: European

Conference on Computer Vision.
Netherland: Springer; 2016. p. 749-765

[22] Chen K, Tao W. Once for all: A
two-flow convolutional neural
network for visual tracking. IEEE
Transactions on Circuits and Systems
for Video Technology. 2018;28(12):
3377-3386

[23] Valmadre ], Bertinetto L,
Henriques ], Vedaldi A, Torr PH.
End-to-end representation learning
for correlation filter based tracking. In:
Proceedings of the IEEE Conference
on Computer Vision and Pattern
Recognition. Hawaii: IEEE; 2017.

pp- 2805-2813

18

[24] Dong X, Shen J. Triplet loss in
siamese network for object tracking. In:
Proceedings of the European
Conference on Computer Vision
(ECCV). Germany: Springer; 2018.

pp. 459-474

[25] Guo Q, Feng W, Zhou C, Huang R,
Wan L, Wang S. Learning dynamic
siamese network for visual object
tracking. In: Proceedings of the IEEE
International Conference on Computer
Vision. Italy: IEEE; 2017. pp. 1763-1771

[26] Morimitsu H. Multiple context
features in Siamese networks for visual
object tracking. In: Proceedings of the
European Conference on Computer
Vision (ECCV). Germany: Springer;
2018

[27] Khan FS, Van de Weijer J,

Vanrell M. Modulating shape features
by color attention for object recognition.
International Journal of Computer
Vision. IJCV: Springer; 2012;98(1):
49-64

(28] FuJ, LiuJ, Tian H, Li Y, Bao Y,
Fang Z, et al. Dual attention network for
scene segmentation. In: Proceedings of
the IEEE Conference on Computer
Vision and Pattern Recognition. 2019.
pp. 3146-3154

[29] Xu ], Zhao R, Zhu F, Wang H,
Ouyang W. Attention-aware
compositional network for person re-
identification. In: Proceedings of the
IEEE Conference on Computer Vision
and Pattern Recognition. Utah: IEEE;
2018. pp. 2119-2128

[30] Li D, Wen G, Kuai Y, Porikli F. End-
to-end feature integration for
correlation filter tracking with channel
attention. IEEE Signal Processing
Letters. SPL: IEEE; 2018;25(12):
1815-1819

[31] Fiaz M, Mahmood A, Baek KY,
Farooq SS, Jung SK. Improving object



Siamese-Based Attention Learning Networks for Robust Visual Object Tracking
DOI: http://dx.doi.org/10.5772/intechopen.101698

tracking by added noise and channel
attention. Sensors. Utah: IEEE; 2020;
20(13):3780

[32] Rahman MM. A DWT, DCT and
SVD based watermarking technique to
protect the image piracy. arXiv preprint
arXiv:13073294. 2013

[33] Rahman MM, Ahammed MS,
Ahmed MR, Izhar MN. A semi blind
watermarking technique for copyright
protection of image based on DCT and
SVD domain. Global Journal of Research
In Engineering. SPL: IEEE; 2017;16

[34] Yang T, Chan AB. Learning
dynamic memory networks for object
tracking. In: Proceedings of the
European Conference on Computer
Vision (ECCV). Germany: Springer;
2018. pp. 152-167

[35] Yang T, Chan AB. Visual tracking
via dynamic memory networks. IEEE
Transactions on Pattern Analysis and
Machine Intelligence. TPAMI: IEEE;
2019

[36] Zheng Z, Wu W, Zou W, Yan J.
End-to-End Flow Correlation Tracking
with Spatial-Temporal Attention. Utah:
IEEE; 2018. pp. 548-557

[37] Krizhevsky A, Sutskever I,
Hinton GE. Imagenet classification
with deep convolutional neural
networks. In: Advances in Neural

Information Processing Systems. US:
NIPS; 2012. pp. 1097-1105

19



