
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

142,000 180M

TOP 1%154

5,800



Chapter

Welding Defect Detection with
Deep Learning Architectures
Paolo Tripicchio and Salvatore D’Avella

Abstract

Welding automation is a fundamental process in manufacturing industries.
Production lines integrate welding quality controls to reduce wastes and optimize the
production chain. Early detection is fundamental as defects at any stage could deter-
mine the rejection of the entire product. In the last years, following the industry 4.0
paradigm, industrial automation lines have seen the introduction of modern technol-
ogies. Although the majority of the inspection systems still rely on traditional sensing
and data processing, especially in the computer vision domain, some initiatives have
been taken toward the employment of machine learning architectures. This chapter
introduces deep neural networks in the context of welding defect detection, starting
by analyzing common problems in the industrial applications of such technologies and
discussing possible solutions in the specific case of quality checks in fuel injectors
welding during the production stage.

Keywords: deep learning, visual inspection, industry 4.0, welding defects,
imbalanced data, transfer learning

1. Introduction

The Fourth Industrial Revolution, or Industry 4.0, aims at automating traditional
manufacturing and industrial practices exploiting the most recent technologies
depicted in Figure 1. Integrating artificial intelligence (AI) and robotics with tradi-
tional practices, the world of manufacturing processes is undergoing a transformation
from activities that rely on human experience and skills into flexible environments,
including objective decisional systems fully integrated within the industrial process.
Advanced robotics is meant to develop autonomous and intelligent systems that could
reduce the intervention of human workers [1] in many of the crucial and repetitive
tasks that represent the core business of companies. Augmented and virtual reality can
give operators more information about their tasks [2] and help them to alleviate
mental stress during some jobs. Additive manufacturing [3] can speed up the produc-
tion process. Internet of things (IoT) [4] allows new forms of communication
between machines, giving rise to smart devices that can help humans achieve their
objectives. Radiofrequency identification (RFID) technologies are used for efficient
logistics and inventory warehouse management [5] reducing costs while increasing
quality and competitiveness.

1



Among all the aforementioned technologies, AI is perhaps the one that received
more interest during the years. Indeed, nowadays, the industrial interest in AI appli-
cations in various sectors is undeniable. However, for industries, artificial intelligence
is both a source of enthusiasm and skepticism. One reason is that deep learning (DL) is
a technology based on data, and problems solved using AI are as good or as bad as the
data they are trained on. In addition, companies perceive AI as a black box and would
prefer understandable and explainable processes [6]. Both these aspects should be
taken into consideration when developing industrial AI solutions.

Current automation-assisted production is mostly open-loop and relies on specific
checkpoints to perform product quality analysis. Early systems based on vision date
back to the nineties. Such an approach suits best when critical issues can be formally
expressed by taking advantage of geometrical measurements or well-known features
on the inspected objects. Unfortunately, these techniques cannot perform many
quality-control activities because they need a predefined sequence of actions where
quality checks should be designed carefully to meet the precise production require-
ments. Moreover, human nature shows formidable efficiency in learning simple
checks even if it would be difficult to formalize such operations with a sequence of
rules. Indeed, experience plays a relevant role in human evaluation for products
quality assessment. Similarly, vision inspection processes performed by automated
machines will require the development of novel algorithms that should be trained and
improved with time and experience.

The introduction of automation systems in the production lines that exploit AI
techniques has reduced the need for human intervention in the manufacturing process
of many products. This innovation had a major impact on many industrial applica-
tions, and visual inspection is by far the activity that has profited most. Thanks to
deep neural networks (DNNs), difficult computer vision tasks, such as object classifi-
cation or detection and image segmentation, have been addressed recently using an
adequate number of training data. DNNs are scalable, experience-based, and have
similar performance to human workers. Since the development of AlexNet [7],

Figure 1.
Industry 4.0 pillar technologies.
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solutions based on deep learning have been encouraged, and convolutional neural
networks (CNN) also have been extensively utilized for automating optical quality
inspections. However, since such networks need a huge amount of labeled data for
training their parameters, it is difficult to have an adequately large set of faulty
samples with well-optimized industrial processes for creating a balanced dataset for
efficiently training the network to defect classification. Therefore, in most cases, the
objective of the training moves from defect classification to anomaly detection.

Welding is a fundamental activity in many industrial manufacturing processes,
such as automotive, shipbuilding, aerospace, and electronics. It is a crucial operation
for the overall quality of the production line because a defect not detected in the early
stages can determine the rejection of the entire product. This chapter introduces deep
neural networks in the context of welding defect detection, starting by analyzing
common problems in the industrial applications of such technologies and presenting
in detail a solution for quality checks in fuel injectors welding during the production
stage.

2. Background

Inspection analysis can be classified into one of the following categories [8]—
structural quality, which searches for the presence of unnecessary components or lack
of required parts; surface quality, where objects surfaces are inspected for wear,
scratches, cracks, and other defects; dimensional quality, where the dimensions of the
objects are checked to fall within given tolerances; operational quality, which evaluates
the correctness of the quality inspection processes.

As of today, different methods have been proposed for inspecting the welding
process online [9]. Their design is suited to diverse defects types and differ in the data
processed during the evaluation. Among the sensing technologies employed in litera-
ture, optical detectors [10], acoustic measurements [11], and vision analysis [12] are
surely the most utilized. While, for classification applications, artificial neural net-
works [13–15] and fuzzy inference systems [16, 17] are usually preferred thanks to the
wide range of problems and diversity of defects they could cope with as in the case of
classification of steel strip defects [18, 19].

However, the focus of these works is on defects classification and not on their
detection. Therefore, they could not cope with feature understanding problems such
as discriminating between good samples and defective ones. A different approach is
proposed by Ak et al. [20] where X-ray images are used to detect defects in metal
castings.

Recent literature is plenty of research addressing the problem of welding localiza-
tion employing off-the-shelf DL architectures or introducing slight modifications on
the tail of popular networks. These approaches are mostly based on the R-CNN [21],
Faster R-CNN [22], and YOLO [23] architectures. The reason behind their adoption is
that these architectures usually require little fine-tuning procedures for efficiently
localizing welding areas and spots. Such efficiency is strictly related to the presence of
plain metal surfaces in the surrounding area of the welding by enabling simple and
accurate segmentation of the feature under inspection. This is the case of resistance
spot welding (RSW) processes typically employed to connect metal sheets at a low
cost and in a short time.

Concerning detection approaches, early methods based on traditional computer
vision techniques [24] require hand-crafted features and complex threshold settings

3

Welding Defect Detection with Deep Learning Architectures
DOI: http://dx.doi.org/10.5772/intechopen.101951



to adapt to environmental conditions. However, approaches based on deep learning
allow increasing the robustness of the detection coping with environmental noise and
the sensitivity of the welding processes.

The majority of approaches are built upon the above-mentioned architectures for
welding spots localization. Fast R-CNN [25] is a region proposal network that com-
putes the region of interest (ROI) on the feature map, thus improving upon the R-
CNN architecture. Faster R-CNN integrates convolutional layers for object classifica-
tion, feature extraction, bounding box regression, and region proposals into a net-
work, further improving the detection performance but still not reaching real-time
capabilities. Unlike the R-CNN family, which has a two-stage detection architecture,
YOLO implements a regression network with a grid of bounding boxes and associated
class probabilities, thus enabling real-time detection with recent hardware. In the race
for timing performance, YOLOv2 [26] borrowed the anchor mechanism from SSD
[27] and Faster R-CNN, which also enhanced the network accuracy. Focusing on small
object detection (like welding spots), YOLOv3 [28] builds upon a backbone network
combined with a feature pyramids network (FPN) [29] improving multi-scale pre-
diction. The efficiency of the detection depends on the selected backbone network.
Common choice are VGG [30], ResNet [31], DenseNet [32], and MobileNet [33].
These architectures differ in the computational complexity, the number of parame-
ters, and inference speed.

Considering the reduced dimension of small spot welds, low-resolution feature
maps in the backbone, and convolution strides dimension could cause an information
leak. To face this issue, the work proposed by Dai et al. [34] introduces a modified
MobileNEtV3 [35] architecture obtaining a good tradeoff between accuracy and
timing.

Focusing on the classification and detection of defects over the welding area or
joint, off-the-shelf solutions are no more efficient by themselves, and some issues
need to be faced to enable the use of DNNs. Clustering and segmentation become
difficult because the feature to be recognized are not easily separable. This chapter
introduces some of the most common issues in the employment of DL for industrial
quality inspection discussing the practical case of detection of welding defects in
diesel injectors heads.

3. Inspection pipeline

Quality inspection systems based on vision techniques in most cases follow the
workflow depicted in Figure 2. The process starts by collecting the sample images
using a set of cameras or sensors exploiting an adequate source of illumination. Such
samples are then processed to improve images quality. Therefore, once the features
are extrapolated, the evaluation of the quality and the classification of the defect are
performed. Measurement and classification could either be implemented with tradi-
tional computer vision algorithms, with modern DNN architectures, or with a fusion
of both of them, as in the case presented in the following. Usually, the inspection
system also provides an actuation step that triggers actions, depending on the analysis
result, to the production lines that directly communicate with the control unit
(commonly based on programmable logic controllers (PLCs)).

The work discussed in the study by Sassi et al. [36] originated from industrial
demands with the specific target of detecting welding defects on diesel injectors in the
production line. Such a project focused on realizing the most effective combination of
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traditional computer vision methods and deep neural network architecture for identi-
fying the defects in the welding. In particular, the aim was to substitute the existing
vision inspection system extending the classes of detectable defects in the analysis
phase.

Welding joint defects may appear in different typologies: some are related to
anomalies on the surface of the joint, while others are related to its geometrical
properties, such as its thickness and position. Four categories have been defined for
the analysis of the welding joint, as depicted graphically in Figure 3 showing an
example from each category:

• D1 (Blowhole): This defect corresponds to the joint area in which the material is
blown up, thus, generating a loss of welding tightness and cavity;

• D2 (Excess/Lack of material): Blowholes are usually accompanied by a lack of
material, while when they are unexploded with an excess of it;

• D3 (Misalignment of the welding center): When the injector head is not correctly
aligned with the laser source, the resulting welding joint position is not centered;

Figure 3.
Examples of defect classes. IN D3, green and red circles show the detected inner and outer edges of the welding joint.
In D4, the red arrows highlight thin welding, while the green ones are standard ones.

Figure 2.
Typical visual inspection workflow.

5

Welding Defect Detection with Deep Learning Architectures
DOI: http://dx.doi.org/10.5772/intechopen.101951



• D4 (Large/Thin welding joint): When the amount of melt welding material is
excessive or limited, the joint could be larger or thinner.

Defects D3 and D4 are quantitative measurable and are examined employing an
algorithm based on traditional computer vision techniques (similar to the existing
commercial solution). On the contrary, the others (D1 and D2) are more qualitative
and are recognized through a method based on deep learning.

Furthermore, the analysis of the defects must be performed within a time slot that
depends on the actual production line (1.8 seconds cycle time in the depicted scenario)
to avoid interferences with the manufacturing process. This amount of time is required
for the actuation system and the welding stage to process a new injector as input to the
system.

4. Common challenges and possible countermeasures

During dataset preparation, the ideal case is the one in which several samples (in
the order of thousands or more) are available for each class to be detected, the classes
have balanced data, and they are well separated from each other. In such an ideal case,
it is possible to give the network a representative set of samples of the whole input
space for the training and avoid confusing the network with an uneven distribution of
the inputs or the similarities between the classes.

Unfortunately, industrial production lines having well-optimized processes are
usually present with few defective products and much more good samples. Therefore,
it is often unfeasible to get sets of defective samples large enough to train CNNs for
classification purposes. In the majority of the cases, the objective of the training moves
from defect classification to anomaly detection. The worst-case scenario is the one
presenting an imbalanced dataset with scarce availability of defect samples and classes
that are not easily separable. Deep metric learning uses DNNs to directly learn a
similarity metric, rather than creating it as a byproduct of solving a classification task
[37]. They are well suited for tasks where the number of object classes is perhaps
endless, and classification is not applicable. The approach is to compute a certain
distance metric between input samples and reference prototypes. Moreover, the
training will not even require defective samples if the class features are well defined
and distinct from each other. Unfortunately, textured objects present surface appear-
ance and properties that are stochastic.

Different sampling strategies could be implemented to deal with imbalanced
datasets. When the minority class represents the defective pieces, it could be conve-
nient to use as many elements from the majority class as the available defective ones.
This approach is known as undersampling in literature. It can certainly be applied
when the amount of defective samples is adequate for the training task. The alterna-
tive for not reducing the majority class is to give the network the available defective
samples multiple times, trying to get the same amount of the good ones. Such an
approach is called oversampling in literature. It is important to notice that this method
could be risky as it can be easy to overfit the network due to the scarce representation
of the input space that usually cannot completely cover the possible scenarios. Never-
theless, there are cases in which the beforementioned solutions are valuable tools to
enhance the performance of the classifier as the work proposed by Yap et al. [38].

An alternative approach that is often used to increase the robustness of the classi-
fication is data augmentation. Traditional techniques involve operations on the input
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images, such as scaling, cropping, rotation, mirroring, and color shift [39]. The sam-
ples are augmented based on the available data with the risk of a strong correlation
between the original samples and the augmented ones that could probably lead to
overfitting scenarios on a small dataset. However, if the augmentation is correctly
managed, it can boost the performance of the classifier. Indeed, data augmentation
has been employed with success in many defect inspection methods [40, 41].

Other ways for enlarging the dataset have been experimented like passing the
input data through an encoder-decoder network that applies different transforma-
tions featured with random noise [42]. Another approach worth mentioning is the
generation of virtual samples. For example, the work presented by Leng et al. [43]
successfully exploits virtual samples for face reconstruction.

Virtual data generation could be obtained by producing synthetic images with the
intent to cover the whole input feature space. Generative adversarial network (GAN)
[44] or the most recent conditional GAN (cGAN) [45] could be alternatively used for
this purpose. However, this is computationally expensive and requires taking into
account all possible configurations and boundary conditions for generating samples as
close as possible to real ones. Domain randomization techniques [46] could be applied
to synthetically generated data for improving the generalization capabilities and the
robustness of the network.

Similar to humans, when learning new concepts or rules, if not clearly defined, the
training can lead to fuzzy assumptions, possibly resulting in wrong outcomes.
Additionally, when dealing with data obtained by a sensing apparatus, it is important
to check the correctness of the acquired data samples to avoid possible causes of
classification errors. A cleaning process should remove outliers (wrong data associa-
tion of a sample with a class) and spurious samples that could confuse the learning
process. Industrial processes often rely on qualitative evaluation, and unfortunately,
different quality experts in the same industrial process classify the same product as
belonging to different classes. If the same confusion is transferred to the DL architec-
ture, the learning process will probably worsen the decision process. For this reason, a
preprocessing stage on the data is essential. In most cases, the help of professionals of
the sector for interpreting, filtering, and preprocessing the data is welcome.

A last and quite important aspect is the adoption of correct performance metrics
and loss functions enabling successful training with imbalanced datasets. In this context,
Mower [47] proposes a balanced accuracy statistic that mediates the recall and speci-
ficity metrics. A more general approach is to directly scale the confusion matrix terms
based on the relative support of each class as proposed by Tripicchio et al. [48]. Other
studies modify the loss function to account for class imbalance. In particular, binary
cross-entropy loss is a common choice for classification tasks. In a study by Xi and Tu
[49] a balanced cross-entropy is introduced where, differently from the binary cross-
entropy loss, the contribution of the dominant class is multiplied by the fraction of the
less dominant class. However, the method does not differentiate between easy/hard
examples. A different approach is proposed by Lin et al. [50] where the authors focus
the training on hard negatives, down-weighting the loss assigned to well-classified
examples. The resulting loss is called focal loss.

5. Transfer learning for defect detection

It has been seen that the first layers of CNNs learn kernels acting as color blob
detectors or Gabor filters. Such a property seems to be very general and the features
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learned do not appear to be strictly dependent on the particular training set that has
been adopted. As humans can learn from experience and transfer the notion learned in
diverse application domains, similarly, a DL architecture can transfer the features
learned on a particular dataset to another CNN, which will be trained on a different
one [51]. Such a technique is called transfer learning and is a worthy tool for solving
the problem of scarcity of defective samples. This paradigm involves pretraining the
network on a dataset (usually larger) for learning feature extraction layers and after-
ward fine-tuning the classification pipeline with the relevant dataset for the specific
task. Knowledge transfer breaks the fundamental assumption that the data presented
to the network during the training phase must be in the same feature space as the ones
presented in the inference phase. Feature extraction layers obtained applying the
transfer learning paradigm would be able to extract generic convolution features that
could be exploited in different tasks.

Following the transfer learning approach, the work by Sassi et al. [36] yielded a 97%
accuracy during testing in the laboratory and proved successful during operation in a
real production line, reaching an accuracy of 99% after subsequent training.

The work combines a traditional computer vision pipeline together with a DL
architecture. This pipeline was necessary to maintain the compatibility with classical
production lines and provide a correct input to the welding defect detection phase.
The algorithm receives the raw image as input, converts it from Bayer format to
grayscale, and improves the edge detection by equalizing the levels and applying a
Gaussian blur. In a successive step, since different kinds of injectors can be analyzed
by the same system, the type of injector is identified, and the position of its center is
obtained. The algorithm proceeds to detect the outer shell of the injector head by
estimating an external radius that approximates the detected blob. Then, using the
extracted information, the algorithm performs an area search for welding points and
estimates a welding circle on the joint. Subsequently, the algorithm collects statistics
about the number of welding points found and their positions. In traditional industrial
systems, a set of thresholds decided by the manufacturing company is used to evaluate
the welding quality from the measured quantities.

A schematic overview of the algorithm is shown in Figure 4. The algorithm’s
output gives quantitative information about the welding and produces a processed
image to be given as input to the second analysis stage. The extracted information
allows evaluating the continuity of the welding in a certain area on the injector’s head,
verifying the centering of the inner part of the injector with respect to the outer one,
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Figure 4.
Schematics of the components of the geometrical analysis pipeline.
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and eventually the welding thickness. This information is also beneficial to clean the
image from unnecessary data for the subsequent analysis and to center the injector
images to obtain more controlled conditions on the input of the successive stage.

The DL architecture chosen in that work is the DenseNet-121. Figure 5 depicts the
structure of the network. DenseNet efficiently simplifies the connectivity pattern
between layers guaranteeing maximum information flow by reusing the features
through the network. Concerning the training phase, every layer has direct access to
the gradients from the original input image and the loss function. Different from the
first feedforward neural networks that connect the output of each layer to the subse-
quent layer after applying a composite of operations, DenseNet concatenates the
output feature maps of the layers to obtain the equation xl ¼ Hl x0, x1, … , xl�1½ �ð Þ. The
network is formed by dense blocks, which have a constant size of the feature maps
within a block but a varying number of filters, and transition layers that connect the
blocks combining batch normalization, 1x1 convolution, and 2x2 pooling.

In the approach presented by Sassi et al. [36], the transfer learning technique has
been employed and evaluated by comparing the results achieved when the features
are transferred from a pretrained model on the Material in Context (MINC) [52]
dataset. Such dataset contains 2,996,674 patches obtained from 436,749 images
labeled according to 23 material classes. A binary classification problem has been set
up by selecting positive samples as scrap injectors and negative samples as good
injectors. The results of the classification problem are shown as a confusion matrix
having four possible values—true negative (tn), true positive (tp), false negative (fn),
and false positive (fp). The metrics that better estimate the quality of the defect

analysis are the recall tp
tpþfn

� �

, which describes the ability to detect faulty pieces, and

the accuracy tpþtn
tpþtnþfpþfn

� �

that describes the overall quality of the analysis. The precision
tp

tpþfp

� �

is important to not discard too many injectors, but it is not crucial as the recall

since not detecting a defect could be dangerous if it proceeds through the assembly
line.

Unfortunately, the MINC dataset is highly unbalanced. Therefore, three classes,
that is, plastic, metal, and others, have been selected as a subset for the pretraining
stage to alleviate training problems. The idea of using such a dataset for transfer
learning was to exploit the metallic features that could resemble the ones in the
welding images, and the dataset class reduction does not affect the learned features on
metallic materials.

6. Managing production variability

Sometimes, during production lines maintenance or innovations, the replacement
of a machine, the change of a supplier, or the change in a manufacturing process,
could lead to a significant variation on the usual production procedure in terms of the

Figure 5.
Schematic representation of the layers and blocks in the DenseNet-121 deep learning architecture.
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visual quality of the products. Such situations could vanish the capacity of a machine
computation to return the expected results.

In this context, continuing on the problem of detecting welding defects on injec-
tors heads, the work presented by Tripicchio et al. [48] proposes possible solutions to
this issue without requiring an architectural change in the learning architecture. The
new case had to handle some modifications concerning the parameters associated with
the welding process, producing input samples with specific artifacts that the previ-
ously designed and trained network did never encounter. In particular, such new
inputs were correlated to a variation in the substance used for the soldering that
generated gold-violet spots on the injector head in random positions. Such noise
introduces a novel complexity in the detection of the defects because the spots can
hide or visually resemble the presence of bumps and holes in the welding layer. The
followed approach was to make fewer changes as possible in the architecture of the
network, operating a smart preprocessing and applying filtering techniques.

The results show the ability to train a network with almost 7 million parameters on
just 306 training images belonging to the new alteration, achieving a recall of 100.00%
and an accuracy of 97.22%.

Such a result has been achieved leveraging on two important aspects. The first is
the design of a custom preprocessing and filtering stage, while the second is the
adoption of a novel data balancing strategy.

A preprocessing stage is needed on the input images with the aim of erasing or
smoothing the chromatic nuances that could confuse the feature learning process. In
particular, three filtering approaches have been proposed and tested (Figure 6). The
first filter (constant filter) detects regions on the image in the gold and violet ranges of
the HSV space filling such regions with a constant RGB color resembling the chromatic
value of the injector contour. The second kind of filter (median filter), once selected the
regions, fills them with the median RGB value of each channel. In the third filtering
approach (patch filter), a 4 � 4 patch is virtually generated to resemble a part not
affected by defects, and it is used to fill the detected gold and violet regions. In
particular, every pixel of the regions is substituted with the value of the corresponding
pixel of the synthetic image, adding the median value of the original image.

Different analyses have been done to assess the performance improvement given
by such filters. As a result, a patch filter was selected as the method for the subsequent
tuning of the network.

Concerning data imbalance, an exploration of different unbalanced splits has been
performed. To prevent overfitting and lead the learning process toward generaliza-
tion, the authors propose to compute the performance metrics at each evaluation step
considering the input imbalance. In particular, metrics like specificity or recall are not
affected by the imbalance of the data different from other metrics, like accuracy,
which should be revised.

Figure 6.
Different filters applied on a sector of the same injector contour image. (a) No filter. (b) Median fill filter.
(c) Patch filter.
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Defective injectors were chosen as positive samples and false negatives and true
positives values were weighted depending on the imbalance since the defective class
was the smaller one. The imbalance is compensated by multiplying these values by the
proportion of the input dataset. Consequently, the confusion matrix presents a more
balanced indication of the performance of the training.

Cross-validation has been applied to improve generalization concerning the sto-
chastic gradient descent optimization. The network has been trained multiple times by
combining different variations of the proportions between defective and good sam-
ples and changing the numbers of epochs. During the training phase, each epoch is
compared with all previous epochs for obtaining the one with the highest performance
in terms of recall and accuracy.

The F-score was chosen as the best multi-performance metric to evaluate the
testing achieved on the different variations of the training. Concerning the imbalance,
the obtained performances give that an unbalanced dataset could provide better results
if the imbalance is considered while training.

7. Conclusions

This chapter highlights the importance of the employment of deep learning archi-
tectures in the context of future industrial applications with a focus on welding and
welding defects detection. The industrial sector and especially the manufacturing
industry pose several challenges to the design of efficient and robust quality inspec-
tion processes. The most common issues are discussed in detail, and possible counter-
measures are suggested to overcome such issues. In particular, the problem of data
imbalance, scarcity of examples, environmental noises, change in the nominal condi-
tions of the process, or the presence of artifacts are discussed. Application examples
from previous works of the authors are proposed to clarify how the suggested coun-
termeasures can be put into practice. Although many industries are still scared of
adopting deep learning approaches due to a lack of knowledge of their internal pro-
cesses or reasoning, extensive use of artificial intelligence applications is envisaged for
the near future.

Abbreviations

AI Artificial Intelligence
CNN Convolutional Neural Network
DL Deep Learning
DNN Deep Neural Network
GAN Generative Adversarial Network
ICT Information and Communication Technologies
IoT Internet of Things
PLC Programmable Logic Controller
ROI Region of Interest
RSW Resistance Spot Welding
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