
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

148,000 185M

TOP 1%154

6,000



Chapter

Elements of the Nonlinear
Theory of Elasticity Based on
Tensor-Nonlinear Equations
Kirill F. Komkov

Abstract

The chapter contains information that forms the basis of a new direction in the
nonlinear theory of elasticity. The theory, having adopted the mathematical appara-
tus obtained in the middle of the last century, after its analysis, is used with signif-
icant changes. This concept allows us to more accurately reveal the mechanism of
deformation of materials, the elastic nature of which significantly depends on the
type of stress state, due to the growth of additional volumetric deformation associ-
ated with the accumulation of defects, called dilatation. The work is original — after
abandoning the elasticity characteristics in the form of modules - constants, the main
role is assigned to material functions, which represent statistical characteristics.
Their relation can be considered a coefficient of variation and a parameter of tensor
nonlinearity, which makes it possible to represent the deformation in the form of
two parts, different in origin.

Keywords: dilatancy, volume deformation, shape change, phase similarity of
deviators, volume deformation, coefficient of variation, tensor nonlinearity,
anisotropy, variable elasticity parameter

1. Introduction

Experimental studies of well-known mechanics with various materials already in
the eighteenth century revealed numerous nonlinear effects described in the book
[1]. From the standpoint of the linear theory of elasticity, many of them could not
be explained, so they were called second-order effects, as not significant. However,
in the middle of the twentieth century, they pushed M. Rayner [2], and a little later,
V. V. Novozhilov [3], to the need to develop a theory based on a new concept of
tensor-nonlinear equations [4, 5] that more accurately reflect the nonlinearity of
materials. The widespread introduction of composite media and the study of their
mechanical properties began at the end of the last century. In the same years, a lot
of experimental works appeared to study the mechanical properties of various
composites, illuminating the properties of not only reinforced materials, but also
grain composites, which differ in different reactions to tension and compression.
This property is possessed by media whose longitudinal modulus of elasticity and
other characteristics depend on the type of stress state, determined at values of
deformations close to zero. It should be called the work of Tolokonnikov L. A.,
Makarov E. S. [6] and many others who have devoted research to the properties of
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these media, in which the presence of damage to internal connections and loosen-
ing, that is, the development of dilatancy, is stated. The theories put forward by
them are based on tensor-linear equations. As a rule, in them all the characteristics
of different-modulus media are determined from the condition of the existence of a
specific deformation potential.

In this paper, in continuation of the study [7], to take into account the noted
effects, such a transformation equations was found, which made it possible to
develop methods for determining the elasticity characteristics. These equations
presented for the main deformations made it possible not only to describe the
deformation of the shape change, the coefficients of transverse deformations along
different axes, to determine the volume deformation depending on the average
stress, but also the dilatancy associated with the shape change.

2. About of different-module materials

The development of methods was carried out based on the results of studies
of grain composite [8], and in earlier works of gray cast iron, using the research
of [9]. The first is a hardened mechanical mixture of a mineral filler with a
polymer matrix, the test results and information about its properties are published
in [8, 10–12]. These materials have not only the presence of divergence of the initial
longitudinal modules under tension and compression, but also show the depen-
dence of elastic properties on time; therefore, in this work, the test results obtained
at a single strain rate are used. The nonlinearity of the diagrams of a grain composite
is clearly represented by the results of testing cross-shaped samples under repeated
static stretching. It has a high malleability at normal temperature. The main purpose
of testing such samples was to more fully reveal the mechanism of deformation of
different-modulus materials. Figure 1a shows the curve 1—the ascending branch at
the first cycle of active deformation along the axis 1–1 represents the initial proper-
ties of the material. Where P is the force in H, Δl is the elongation in millimeters.
When unloading, the curve decreases sharply, which indicates a significant
decrease in the number of bonds that break down with small deformations. The
residual deformation does not represent plastic properties, but a residual dilatancy,
from which it is possible to make a quantitative assessment of the initial deforma-
tion anisotropy for the next loading cycle. Curve 2—the ascending branch of the
second cycle illustrates the resistance of the restored “short” and remaining “long”
bonds. In Figure 1b, curve 1 is the ascending branch of the test at the first cycle
along the axis 2–2. For comparison, a diagram (dashed) is shown, marking the
initial properties of the composite. The difference in the curves of the first cycles in
different directions suggests that the connection break occurs in the transverse
direction as well. The first curve shows that the “short” connections in the direction
2–2 are partially preserved.

The difference between the ascending branches of the first and second
stretching cycles along the 1–1 and 2–2 axes is a real one, called [3] by V. V.
Novozhilov “real” anisotropy. The second cycle shows that the material has notice-
ably softened, the slope of the curve has decreased, but the tangential longitudinal
elastic modules manifest themselves on the second part of the branch as increasing,
differing from the first cycle. This emphasizes the fact that the links are divided into
“short” and “long”—stronger, although in [13] a more detailed gradation of links is
given, which will be superfluous for this work.

Both in [8, 12], it is noted that stretching is accompanied by a noticeable increase
in volume. The same is observed with compression, although to a lesser extent. The
loss of bonds and softening are the cause of the loss of elastic energy, which is taken
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into account by the mathematical model with a proportional increase in stresses
only by the growth of additional volume deformation, as in the deformation theory,
plastic shifts. For practical calculations, test diagrams of standard samples were
used according to the method described in [8]. The tensile diagram for testing along
the 1–1 axis, curve 1, Figure 1a, is a sequence of limit values of groups of bonds that
are close in strength. The same is true for other types of loading, but to a lesser
extent.

The purpose of this work is to fully reveal the possibilities tensor-nonlinear
equations: transformed to a form convenient for the formulation of material func-
tions, analysis, and processing of test results. On their basis, to develop methods for
calculating all characteristics, including the coefficients of transverse deformations,
elastic modulus, and compliance, as well as parameters that characterize the loos-
ening of the structure and the change in elastic properties both with increasing load
and with a change in the type of stress state.

3. On tensor-nonlinear equations

To describe the deformation of different-modulus materials, considering them
isotropic, we used tensor-nonlinear equations of the connection of the strain devia-
tor De with the stress deviator Dσ by V. V. Novozhilov [3], which, unlike the
equations of M. Reiner [2], do not yet require the equation of the connection of the
average strain with the average stress:

εij �
1

3
ê1δij ¼

1

2G

cos 2ξþ ψð Þ
cos 3ξ

Sij þ
ffiffiffiffi

3

ŝ2

r

sinω

cos 3ξ
SiαSαj �

2

3
ŝ2δij

� �� �

: (1)

In the left part: eij ¼ εij � ε0δij� components of the strain deviator; ε0 ¼ εiið Þ=3 ¼
ê1=3� average strain; ê1 � the first, ê2 ¼ 3e20=4� the second and ê3 ¼ 3det∣De∣� the
third invariants of the strain tensor;

e0 ¼ 2=3eijeij
� �1=2

(2)

Figure 1.
a—Curve 1—The ascending branch at the first cycle of active deformation on the axis 1–1, curve 2—The
ascending branch of the second cycle; b—Curve 1—The ascending branch at the first cycle on the axis 2–2.

3

Elements of the Nonlinear Theory of Elasticity Based on Tensor-Nonlinear Equations
DOI: http://dx.doi.org/10.5772/intechopen.100906



Strain intensity. In the right part: Sij ¼ σij � σ0δij� components of the stress

deviator; σ0 ¼ σiið Þ=3 ¼ ŝ1=3– medium voltage, ŝ1� first, ŝ2 ¼ S20=3� second and

ŝ3 ¼ �3det∣Dσ ∣�third invariants of the stress tensor; S0 ¼ 32SijSij
� �1=2� is the

intensity of the stress; Si ¼ S0сi=3- principal values of the stress deviator; ei ¼
e0di=2� the main values of the deviator of the strain used in [3]; c1 ¼ 2 cos ξ, c2 ¼
ffiffiffi

3
p

sin ξ� cos ξ, c3 ¼ �
ffiffiffi

3
p

sin ξþ cos ξ
� �

� trigonometric values that relate the
main stresses to the stress intensities and similar di to the strain intensities.

Abandoning the constancy of the phase similarity diverters ω, which was pro-
posed in [4], the generalized modulus G and the phase can be expressed through the
coefficients of the tensor arguments:

X ¼ 1

2G

cos 2ξþ ψð Þ
cos 3ξ

, Y ¼ 1

2G

ffiffiffiffi

3

ŝ2

r

sinω

cos 3ξ
¼ 1

2G

3

S0

sinω

cos 3ξ
(3)

For this we can use Eq. (1) presented for the main component of the deviator of
the strain

ei ¼ XSi þ Y S2i � 2=9S20
� �

: (4)

The coefficients X and Y can be given an unambiguous physical meaning and
formulas for determining them can be derived. Using three shear pliabilities φi ¼
γi=τi i in sites with principal tangential stresses τi ¼ S j � Sα

� �

=2, where γi ¼
ej � eα� a are the principal shifts, Eq. (12) allow us to find three shear pliabilities

φi ¼ 2 X� Ŷci
� �

, where Ŷ ¼ YS0=3. Given that the sum cið Þ ¼ 0, from the relations

for the pliabilities we find their average value and standard deviation:

Φm ¼ ϕið Þ=3 ¼ 2X; Φd ¼ ϕj � ϕα

	 
2
� �

=8

� �1=2

(5).

Thus, the analysis of the Eq. (1) allows, without any assumptions, to be free
from uncertainty and to find an approach to the characterization of the deformation
Φm and Φd that are already used for different materials, therefore will continue to
remain the same notation, naming the material features:

Φm ¼ 2X ¼ cos 2ξþ ψð Þ
G cos 3ξ

; : Φd ¼ 1

3
Ŷ ¼ sinω

2G cos 3ξ
(6)

The sum of the squares of the differences of the main values of the deformation
deviator

ei � ej
� �2 ¼ S0

2

9
ci � cj
� �2

X2 þ 2XŶcα þ Ŷ
2
c2α

	 


(7)

leads to the need to calculate the relations:
P

ci � cj
� �2 ¼ 18,

P

cα ci � cj
� �2 ¼

18 sin 3ξ,
P

c2α ci � cj
� �2 ¼ 18; i, j, α ¼ 1, 2, 3; i 6¼ j 6¼ α. Finally, the relationship

between the strain intensity (2) and the stress intensity is reduced to the equation:

e0 ¼ 2S0
3

X2 þ 2XŶ sin 3ξþ Ŷ
2

	 
h i1=2
: (8)

It leads to generalized malleability:

Φξ ¼
3e0
S0

¼ Φ2
m þ 4=3ð ÞΦmΦd sin 3ξþ 4=9ð ÞΦ2

d

 �1=2
, (9)
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as a function of the angle ξ, and the inverse of the malleability to the generalized
modulus of elasticity under shear:

G ¼ 1=Φξ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffi

ŝ2=ê2
p

¼ 1= 2 X2 þ 2XŶ sin 3ξþ Ŷ
2

	 
h i1=2
� �

: (10)

It follows from this relation that the modulus clearly depends on the type of
stress state, and it can be a constant value only in the special case, as it was
envisaged in [4]. After replacing the second invariants on the stress intensity and
strain intensity and replacing the sequence of main stresses: σ1 ≥ σ2 ≥ σ3, it is possi-
ble to give the original (1) equations of V. V. Novozhilov a form that was used
without simplifications in the work [7]. After replacing the second invariants on the
stress intensity and strain intensity and replacing the sequence of main stresses:, it is
possible to give the original equations of V. V. Novozhilov (1) the form, without any
simplifications, which was also used in the work [7]:

eij ¼ ΦmSij=2þΦd SiαSαj � 2S20=9δij
� �

=S0: (11)

After replacing the third invariants, the formulas for the angles take the form:

the first ξ ¼ 1=3 arccos 27SijSjαSαi= 2S30
� � �

� is the angle of the stress state view, and

the second one is ψ ¼ 1=3 arccos 4eijejαeαi= 3e30
� � �

� the angle of the view of the
deformed state, which change already in other limits: 0≤ ξ и ψ≤ π=3; i, j, α ¼ 1, 2, 3;
i 6¼ j 6¼ α. The coefficients for tensor arguments (6) make it possible to find a
formula for determining the phase the similarity of deviators:

ω ¼ ξ� ψ: (12)

The exact definition of which is given below. Performing trigonometric trans-
formations taking into account the new sequence of principal stresses, the material
functions in Eq. (8) can be represented:

Φm ¼ Φξ sin 3ξ� ωð Þ= sin 3ξ ¼ φi=3; (13)

Φd ¼ 3Φξ sin ωð Þ= 2 sin 3ξð Þ ¼ 3=8 Φm � φið Þ2
h in o1=2

: (14)

where they acquire values that have a physical meaning of average and standard
compliance, manifesting themselves by statistical characteristics. The deviatory
part of M. Rayner’s equations [2] leads to the same results of the functions φi.

4. Initial data

Due to the lack of proven methods, the first calculations in [8] used only the
results of tensile and compression tests. Generalized compliance is determined by
the relation (6), which for these states is taken by simple expressions:

Φξp ¼ Φm þ 2=3Φd, Φξc ¼ Φm � 2=3Φd (15)

Assuming the independence of these functions from the type of stress state, we
find a simple way to approximate the calculation of the shear modulus and the
phase similarity of deviators according to the formula (6). The form change for any
stress state, although approximate, can be described. To refine it, you can use the
same ratio, but for a pure shift. At the same time, difficulties arose due to the fact
that the tests were usually carried out on other equipment and other means of
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measuring deformations, so the lack of initial data was compensated by algorithms
that were derived from the same equations converted to equations for anisotropic
media [8, 10].

Experimental data obtained by tensile testing and compression of grain com-
posite [8, 11], which has the maximum deformation under compression εc > 10% in
the form of primary charts σi � ε and graphs for the coefficients of lateral defor-
mations, νi � ε, νi ¼ �εn=ε, stress and strain have to specify, according to the
formulas of [4], which can be given as follows:

σ ∗ ¼ σ 1þ 2ε ∗n
� �2

= 1þ 2ε ∗ð Þ
h i1=2

, (16)

where ε ∗ ¼ ε 1þ ε=2ð Þ; ε ∗n ¼ εn 1þ εn=2ð Þ; ν0i ¼ �ε ∗n =ε
∗� are the coefficients of

transverse deformations; i ¼ p, c; index n – indicates transverse deformation. The
stresses σ* and deformations ε* are called reduced [4]. Then the asterisk above the
given stresses and deformations is removed. The ratio of material functions can be
considered a coefficient of variation [14, p. 544]:

p ¼ Φd=Φm ¼ 3sinω=2 sin 3ξ� ωð Þ, (17)

Since the material functions exhibit a statistical character, and its values corre-
spond to the condition: p < 1. The study of its extremum shows that the derivative
with respect to the angle ξ is zero if the phase of similarity of deviators obeys
equality:

ω ¼ arctg 2psin3ξ= 3þ 2pcos3ξð Þ½ �: (18)

The graphs for the phase differ slightly from the half-wave of the sine wave
when the angle ξ changes from zero to π/3.

For phase values other than zero, the ratios of the deviator components belong-
ing to the same stress state are not equal: e1=S1 6¼ e2=S2 6¼ e3=S3� is the condition of
their disproportionality. However, for the states of tension and compression, this
inequality becomes an equality: S1=S2 ¼ e1=e2 ¼ 1, since similarity conditions are
implemented for them, since S2 ¼ S3 and e2 ¼ e3, so the phase is zero regardless of
the properties of the This conclusion is consistent with the relation (13), which
directly follows from the formulas (13) and (10). The material functions are similar:
Φd ¼ pΦm� for all states. This connection of functions allows us to consider both
shape-changing deformations and volumetric deformations in the form of two
parts. The first part should be associated with a change in the intermolecular
distances in the rigid elements of the structure, and the second part of the defor-
mation, including the coefficient of variation, should be attributed to the loss of
bonds [8]. These deformations, despite their different physical origin, are included
in the model as elastic. The initial data were taken based on the results of tests [8]
obtained during tests of grain composites, the diagrams of which are shown in
Figure 2a with dashed lines.

Solid lines represent two diagrams, after the refinement performed according to
formulas (11). The dependence of S0τ on the strain, taken as a diagram for pure
shear (fine stroke), is obtained from diagrams for stretching and compression,
according to an algorithm [7] using transformed equations. The stress values along
the ordinate axis in Figure 2a in MPa.

Graphs for the coefficient of variation p (dashed line), the maximum values of
the similarity phase of the deviators ωmax (small stroke), and the functions by which
they are determined are shown in Figure 2b. These functions include Φd and Φξ for
stretching and compressing (solid lines).

6
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5. On the equations for form-changing

The rejection of the constancy of the phase gives the ratio of (6), which after the
transition to the second sequence of the principal stresses is the law of deformation:

e0 ¼ ΦξS0=3, (19)

where the main characteristic becomes generalized compliance (7):

Φξ ¼ Φm 1þ 4=3ð Þpcos3ξþ 4=9ð Þp2
 �1=2 ¼ 1=G, (20)

as the inverse of the generalized shift modulus of G, they are represented in a
discrete (digital) form by a mathematical model, as well as material functions. After
replacing the sequence of main stresses, sin3ξ in the expression (6) is transformed in
the ratio (15) into cos 3ξ. If the relation (15) is simplified by getting rid of the square
root, then the second part with the coefficient of variation can be represented as:

e ∗0 ¼ Φ ∗
ξ S0=3, Φ ∗

ξ ≈pΦm cos 3ξþ 1=3ð Þp½ � (21)

where the compliance for the second part is the value Φ ∗
ξ .

From the ratio (15) for stretching and compression, it also follows:

Φξi ¼ Φmi 1� 2=3pð Þ, (22)

where i ¼ p, c; (p� stretching, c - compression). The functionsΦmi andΦdi, as the
characteristics of the shape change, are determined for these states using the first
Cauchy sign [14]. On this basis, their values follow from the relations (13) and (10), if
the angle ξ is shifted by a small deviation from the original angles. The second variant
of determining the coefficient of variation follows from the relations (16):

p ¼ 3 κ� κmð Þ=2 κþ κmð Þ: (23)

It protects the characteristics of the shape change from errors in their calcula-
tions: Φm, Φd and Φξ, where κ ¼ Φξp=Φξc� is the ratio of generalized and κm ¼
Φmp=Φmc� is the average compliance. Calculation of material functions by formulas
(13) and (10), or rather by their second equalities, cannot be carried out, since there

Figure 2.
a: Test diagrams of granular composites: Curve σp– During the tensile test, curve σc� for compression, curve
S0τ�according to the algorithm using data on tension and compression; curves σ ∗

p and σ ∗
с � after the transition

to the reduced stresses. b: Curves based on the results of calculations: The change in the р – Coefficient of
variation and the ω�phase of the similarity of deviators and the curves Φd, Φm, and Φξ for the characteristics of
the shape change with increasing deformation.

7

Elements of the Nonlinear Theory of Elasticity Based on Tensor-Nonlinear Equations
DOI: http://dx.doi.org/10.5772/intechopen.100906



is no initial information about the functions φi ¼ γi=τi for the same state. This
obstacle can be overcome if we use the following postulates: the first one states that
the values of the functions φi can be considered the values of the malleability φi ¼
3e0=S0 ¼ Φξi for three stress states: stretching, net shear, and compression.
According to the second one, the functions φi ¼ Φξiare equal.

The results of calculations for two variants according to the formulas (12) and
(17) showed that they differ only by the fifth significant digit after the decimal
point for any loading stage. It is for checking the postulates that duplication is
necessary. If there is a coefficient of variation, the calculation of material functions
for any other states is significantly simplified: first, Φm by relation (13) is deter-
mined, and then Φd ¼ pΦm, as a function of the angle ξ and the load level, since the
coefficient of variation is the only value independent of the type of stress state.

6. On the equation for volumetric deformation

The derivation of equality (21), as an additional part of the deformation of the
form change, is proposed as an unknown formula for dilatancy, as a part of the
volume deformation, consistent with the previously expressed idea that the param-
eter p allows the deformation, divided into two parts. This thought, the results of
experimental studies and already published works allow us to propose an equation
for the volumetric strain in the following form:

ε0 ¼ εy þ εg ¼ σ0=3Kξ þ 2pΦmæS0 1þ kζð Þ=9: (24)

The first part εy� linearly dependent on the mean stress refers to the defor-

mation of the stiffer elements of the structure, where the value Kξ is the theoretical
bulk elasticity modulus. The formula for linear-elastic deformation is inherited
from linear elasticity theory, and the second part εg� dilatancy with the parameter
p, including œ – the loosening parameter and Φd� the function reflecting the
dependence of the volume strain on the form change. The coefficient k in for-
mula (18) was introduced in order to take into account the influence of average
stress on dilatancy as well as for convenience of checking the proposed relation. So,
at k ¼ 0 the formula for dilatancy takes the form that has already been used in
several works of the author, including [7, 15], because at k ¼ 0:3 the curves for
volume deformations under tension and compression are well superposed on the
experimental curves.

The process of transformation of the tensor-nonlinear equations mentioned
above is covered in sufficient detail in [7 , p. 56] and probably first implemented in
[10]. The equations for coupling the strain tensor to the stress tensor (8), together
with the equation for average strain with average stress (18), lead to the equations
for coupling the strain tensor to the stress tensor

εij ¼
3Фjkþ 2œФdkð Þσ0δij

9
þФmSij

2
þФd

S0
SiαSαj �

2 1�œð ÞS20δij
9

" #

: (25)

The equations reduced to the principal deformations are used for the matrix
transformation: εi ¼ aijσi, which can then be reduced to the form of equations
characteristic of anisotropic media:

εi ¼ σi=Ei � νjiσj=Ej � ναiσα=Eα, (26)

8
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with the known specifications for the diagonal components:

aii ¼ 3Фm þ фh þФdcii½ � ¼ E�1
i (27)

and non-diagonal matrix components:

aij ¼
3Фm

2
� фh �Фdcij

� �

¼ �νijE
�1
j , (28)

where фh ¼ 1=Kξ þ 2Φdæk=9 ¼ фξ þ aΦd

� �

=3; a ¼ 2kœ=3; Ei�moduli of

longitudinal elasticity, νij� coefficients of transverse deformation.
Reconciliation of Eqs. (7.6) leads to the equation for the relation of average strain
with stresses:

ε0 ¼ σ1ϕk1 þ σ2ϕk2 þ σ3ϕk3ð Þ=3, (29)

where ϕki ¼ 1=Ki is the bulk elasticity yield

ϕki ¼ 3 1� νij � νiα
� �

=Ei ¼ 3 1� νið Þ=Ei: (30)

Pairs of coefficients νi ¼ νij þ νiα
� �

=2 determine the transverse deformations
in three directions of the main stresses and volumetric deformations; where
i ¼ 1, 2, 3; i 6¼ j 6¼ α. The relations (23) are an integral part of the methodology of
determining Kξ� theoretical bulk modulus of elasticity and œ� the loosening
parameter. In this process, the most critical importance is assigned to the procedure
of matching theoretical curves for transverse strain coefficients [7].

7. Supplement to the methodology

The high values of the theoretical modulus of volumetric elasticity, but low for
compliance with tension, and low for compression, can be explained by a simple
transformation of the ratio (18), if we isolate from it εy ¼ ε0i � εgi ¼ σ0фki=3�linear
volumetric deformation. It allows you to find the pliability фki for stretching and
compression, which are required to combine experimental curves with theoretical
curves during the transformation. Taking ζc ¼ �ζp, 1=ζi ffi �3; 1=ζ ¼ 3, 0009 и

Ki ¼ Ei=3 1� 2νið Þ, simple actions lead to the formulas:

фkp ¼
1

Kp
� 2œpΦdp 1=ζþ kð Þ ffi 1

Kp
� 6:6œpΦdp, (31)

фkc ¼
1

Kc
þ 2œcΦdc 1=ζ� kð Þ ffi 1

Kc
þ 5:4œcΦdc: (32)

It follows from the first that the second term reduces the flexibility for
stretching, and the value of the theoretical module, on the contrary, increases as an
inverse value. In the second formula, the second term increases the malleability for
compression, although dilatancy is present. The second terms in these relations
allow us to quantify its influence on the values of theoretical compliance. From the
second formula, for compression, greater malleability is required, although dilat-
ancy is present. The second terms in these relations allow us to quantify its influ-
ence on the values of theoretical compliance. Since the pliability of фkp is
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determined by the initial value of the function Φdp, it makes sense to refine it by

redefining the loosening parameter œp ffi фp � фkp

	 


=6:6Φdp and then dilatancy.

The mean stress in pure shear is zero, but given that, ζp þ ζc ¼ 0, as the value of the

parameter ζτ, it is suggested algorithm, as a response to the question about the
significance of the theoretical module, and for this condition: фkτ ¼ 1

Kτ
þ

œτΦdτ≈Kξi=2, where i ¼ p, c; (p� stretching, c� compression).
It follows from the relations (24) and (25) that in the process of converting

tensor-nonlinear equations to matrix equations, the pliabilities фki ¼ 1=Kξi are real-
ized, the values of which along the axes 2 and 3 satisfy the conditions of continuity
and smoothness, as functions of the main stresses. These formulas contain an
answer to the reasons for the large difference in the values of the theoretical
module. It is called theoretical, because its values correspond to the inequality with
respect to the classical module: Kξ >K. The considered technique made it possible to
find such values of the theoretical elastic modulus that lead to more accurate values
of the linear elastic volume deformation.

8. On deformation anisotropy

V. V. Novozhilov in his work [3] expressed his opinion about this phenomenon,
for the description of which the mathematical apparatus of tensor-nonlinear equa-
tions can be used, as an “important phenomenon,” without emphasizing on what
characteristics it manifests itself. The studies show that the effect of dilatancy on the
longitudinal elastic moduli Ei is not significant. Their divergence with different
indices is less than 5%, but leads to appreciable strain anisotropy of the transverse
strain coefficients. In the history of the mechanics of materials described in the book
[1], much space is devoted to the research of its initial value (the Poisson’s ratio),
since not only modules, but also the theories of authoritative scientists depended on
it. However, the latter values, for example, at destructive stresses, are not given due
attention, especially in other areas of the main stresses. In this paper, perhaps for the
first time, graphs of the theoretical coefficients of transverse deformations are given.
They are easier to describe not by formulas, but by graphs for: ν12, ν31, νp, νc, and νi,
Σνi=3. The line in Figure 3a, represented by points, here repeats the curves for ν12 ¼
ν13, which are combined with the values of the coefficient νp by the method. The
deviation of the curve for the coefficient νp from its initial value should be considered
the main “source” of dilatancy and all other coefficients. If this curve for the coeffi-
cients νp and ν1coincided with the graph for Σνi=3, then all the curves presented in

Figure 3.
The change in the coefficients of transverse deformations: a – Under tension; b – Under compression.

10

Elasticity of Materials



Figure 3a, would merge into one curve, and there would be no dilatancy. The main
direction is the voltage σ1.

The lower the values of the last points of the curve for νp fall, the greater the
dilatancy takes on and the higher the values of the coefficients of the other two pairs, ν2
and ν3, which overlap each other, rise. Since the dilatancy is stretched in the direction
of stretching, it is transverse for deformations of other directions. The coefficients of
the first pair have the same values, ν12 ¼ ν13, but the coefficients of the other two pairs,
ν2and ν3, differ significantly. The graphs that make up the second pair of coefficients,
ν3 and ν23, reveal their behavior—the values of ν23, exceed the number 0.5.

Figure 3b shows graphs of the dependence of transverse deformations during
compression. The line shown by the dots refers to the main direction coinciding
with the voltage σ3, and the graphs with the symbols νc and ν3should be considered
the main “source” of dilatancy. As they increase, they cross the value of 0.5, which
is typical for many loosening materials. The graphs for the coefficients with the
symbols ν1 and ν2 coincide, slightly deviating from the graph for the curve Σνi=3,
although the curves that make up them, ν21 and ν23, are almost symmetrical.

The deformation anisotropy is more clearly shown on the graphs for the pliability of
the bulk elasticity in the direction of the main stresses. The total volume deformation is
determined by the formula (22), where ϕki ¼ фk þ æ aþ cið ÞФd ¼ 3 1� νið Þ=Ei� the
compliance of the volume elasticity in the directions of the main stresses. In contrast to
the theoretical volume compliance of ϕk the characteristics of ϕki are smooth and
continuous functions of stresses. Its first term is the pliability ϕk, established by the
methodology, the second with a coefficient a ¼ 2k=3, which is responsible for taking
into account the dependence of the average voltage, and the third with a coefficient ci:

which determines the directions of the axes. Give ϕki, value (reverse module), to
allow any state to find the values of three parameters changing of elasticity:

ϑξi ¼
фk

фki

¼ Kξi

Kξ

, (33)

defining them as the degree of deviation from the theoretical volumetric compli-
ance, which is the average, фk ¼ фki=3, for three compliance фki. Each of them refers
to the main stress, in the direction of which the initial values of the volume elasticity
modules Kξi ¼ 1=фki are calculated (for σi ¼ 0). In Figure 4 curves 1, 2, and 3
represent graphs of these parameters ϑξ1 по оси. The value of the parameter ϑξ1 on
curve 1 exceeds the values of other curves with a rapid decrease along the axis ξ to the
value ϑ0 ¼ 1. Judging by the shape of these curves, the elementary volume acquires
the greatest deformation anisotropy in the direction with index 1. Curves with indices
2 and 3, having at first equal and small values compliance with the growth of the

Figure 4.
Curves of changes in the values of the parameters of the changing elasticity ϑξi.
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angle ξ, increase slowly and in different ways. The third curve is affected by the
presence of negative stress along the axis 3, given that the curves for these coeffi-
cients of transverse deformations overlap each other. Curve 4, denoted by the symbol
ϑ ∗
ξ ¼ фk=фkmax, is the ratio of the pliability of фk ¼ фki=3 to its first value.

The behavior of the curves for the parameters ϑξi can be associated with the
behavior of the interstructural connections involved in creating the dilatancy for
each state. The ordinates of the points of the curves, as it were, show the number of
lost connections related to dilatancy. Numerical values of parameters can be useful
for comparing the behavior of different materials, which is an important procedure
for their analysis and practical selection of materials that differ, for example, in the
binding matrix. At the same time, the material more clearly exerts a real deforma-
tion anisotropy [16, p. 151].

Briefly still on the shape change, it should be noted that the initial values of shear
moduli Gξi or their yields Фξi during the shape change deformation have no such
features as the bulk yields, although the different values of the transverse strain
ratios νij, analyzed above, naturally influence their behavior. Nevertheless, the
ratios of the strain intensities found, as from the initial data associated with the
experimental results, to the strain intensities found after the matrix transformation
of Eq. (19) are equal to 1. The high accuracy of each strain is especially valuable in
determining the Lode parameters [15] when processing the results of experimental
studies carried out in the 30–50 years of the last century. In order to estimate the
nonlinear properties of the materials used, researchers resorted to constructing
Lode diagrams based on the results of experimental studies, for example, in [17–19]
by testing tubular specimens. In the test process, two strains are most often mea-
sured: axial and circumferential. And the researchers had to calculate the radial
strain from the condition of “incompressibility,” considering the sum of these three
strains equal to zero. This led to a noticeable discrepancy in the results of each
author, so that the author of the already quoted book [1] placed in it a diagram of
the S-shaped curve with a minimum and a maximum.

The solution to this problem is formulated using tensor-nonlinear Equations
[15]. Using the material functions of the proposed equations, finding the difference
of Lode parameters, Δλ ¼ λσ � λε, without assumptions, diagrams with one mini-
mum were obtained. The first λσ for stresses and the second for deformations:

λε ¼ 3 ε2 � ε1 � ε3ð Þ= ε1 � ε3ð Þ, (34)

where the former repeats the same fraction with the principal stresses by which
it is determined. The problem of the researchers was to determine λε.

9. Conclusion

A variant of the tensor-nonlinear equations, which can become the main direc-
tion in the nonlinear theory of elasticity, is proposed for wide use. This concept
leads to taking into account dilatancy and strain anisotropy, about which
Novozhilov V.V. prudently expressed in his work. They were used to study the
properties of different-module materials and show that this mathematical apparatus
is suitable not only for describing second-order smallness effects but also for
describing effects associated with changes in the material structure. The influence
of dilatancy on all the characteristics of form change and bulk elasticity is revealed,
since its development with proportional stress growth is the main cause of defor-
mation anisotropy, both of transverse strain coefficients and of bulk elasticity yields
(or modules), which are directly related to the changing elasticity parameter, which
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is a quantitative estimate of these changes. In tensile and near-tensile states, its
values significantly exceed unity. This can be explained by the fact that, in the first
direction, dilatancy, being transverse for the other directions, causes transverse
strain coefficients with values exceeding the number 0.5. The assumption of dilat-
ancy to elastic deformations is an unavoidable step to trace the behavior of all
deformations along the three directions. The exact coincidence of the total bulk
strain as the sum of its components in the direction of the principal stresses, or, as
the sum of linear-elastic and dilatancy, indicates recognition of the fact that the
apparatus of the proposed equations may be a major trend in nonlinear elasticity
theory. Whatever concepts other elasticity theories may adhere to, taking into
account the real values of transverse strain coefficients in tension and compression
will implicitly lead to the consideration of dilatancy and, consequently, to the
difference in the values of the bulk elasticity characteristics. The next stage in the
development of the nonlinear theory of elasticity is the involvement of the
apparatus of thermodynamics.
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