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Abstract

Since the revelation in the detection of the persistent organic pollutants (POPs) 
in industrial wastewater in the early 1990s, a notable progress has been achieved 
on the research and different removal applications or methods of this challenge 
at hand. This book chapter entails a decent understanding on the occurrence, 
effects, and amputation of POPs in the water sector in advancement of municipal 
performances of treating industrial wastewaters and environment at large. This 
current chapter also presents an overview of research associated to the amputa-
tion of persistent organic pollutants (POPs) from various water bodies, i.e., river 
sediments, sewage plants, industrial sludges, and wastewater. Also, discussing the 
relationships with actual pre-treatment and removal rates. Vital characteristics such 
as the wastewater matrix, location, sources of POPs, materials and modules, opera-
tional parameters and problems are presented with a clear focus on removal of these 
organic pollutant’s different sources (like, textile wastewater). The particular meth-
ods to the removal of POPs can be associated with the application of ultrafiltration, 
nanofiltration and reverse osmosis as advanced treatment stages are considered 
in correlation with the textile wastewater characteristics and removal efficiencies 
requirements. This gives significance to the amalgamation of physico-chemical 
and biological treatment with membrane processes which is likely to represent an 
efficient solution for the removal of POPs from textile wastewater. However, since 
membrane fouling and hydrophilicity are apparent in the execution of this process, 
this chapter also covers the effective strategies like fabrication of membrane with a 
suitable additive to counterattack these challenges, which are often used in mem-
brane technological research. This chapter also proposes an updated understanding 
of fouling and improvement of membrane properties.

Keywords: persistent organic pollutants (POPs), ultra-filtration (UF) membranes, 
blending, fouling, hydrophilicity

1. Introduction

There has been an advanced progress regarding the persistent organic pollutants 
(POPs) - i.e., elongated-lived, lethal organic composites such as PCBs, PAHs, OCPs 
and dioxins which have predominantly pursued their way into the environmental 
sector - constitute the theme of a research programme launched in the early 1990s 
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by the Swedish Environmental Protection Agency (SEPA). This environmental 
programme has raised funds estimated to SEK 50 million for the research facilities 
in Sweden to bring focus only on persistent pollutants [1]. Equally concerning, the 
data obtained by World Health Organization (WHO) in late 2016, an estimated 
that 1.2 billion public does not have access to clean water [2, 3]. The occurrence of 
persistent organic pollutants (POPs) in river water and water treatment plants has 
raise serious concerns, especially due to the high costs and energy consumption 
that comes with mitigation of these challenges – because it involves variety of steps, 
and over thirty processes have been primarily used [4, 5]. The apparency or the 
occurrence of POPs in industrial wastewaters and textile industries have led to more 
of ecological negative effects, these includes, i.e., good taste and odor issues of the 
downstream water supplies, and further forming foam. This results in inhibition 
of the natural self-purification processes, and worse case - negative effects on the 
marine life and living organism in the society [6].

Persistent organic pollutants (POPs) remains nothing else but a bunch of differ-
ent chemical compounds that constitutes of different pedigrees but have common 
traits, viz., semi-volatility, hydrophobicity, bio-accumulative, high toxicity, and 
alarming persistency in the environment, and they can also drift into food chains 
[7]. Research have indicated major contributors of POPs in the environment, these 
are typically chemical industry, textile industry [8], pulp and paper industry [9], 
and treatment of landfill leachate [10, 11].

1.1 Textile industries contribution to POPs in waste streams

During the early months of 1990, several studies reported on textile industrial 
sector being the major contributor of POPs, and worse, discharging very high 
absorptions of different hazardous POPs, i.e., polychlorinated dibenzo-p-dioxins 
(PCDDs) and polychlorinated dibenzofurans (PCDFs) [12–14]. A bigger portion 
of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans from 
textile industry are sourced all through - washing into sewage sludge, which is often 
used as an agricultural fertilizer, and are also the source of dioxins in the food chain 
[15]. A Few of these POPs like polychlorinated biphenyl, phenols, benzenes and 
dichloro-diphenyl-trichloroethane (DDT) are purposely formed in different of 
commercial applications for their significant nature or properties they have inter-
mediates or pesticides Table 1.

Persistent organic pollutants are toxic chemicals which belong to the families of 
chemicals such as aliphatic and polycyclic aromatic hydrocarbons (PAHs), poly-
chlorinated biphenyls (PCBs), organochlorines (OCPs), and organophosphorus 
pesticides (OPs) [17]. They tend to accumulate in the environment and have shown 
to resist photolytic, chemical, and biological degradation [18]. Persistent organic 
pollutants have been described by Stockholm convention as a wide range of chemi-
cals which poses a greater risk to human life and biota due to their toxic, persistent 
and bio-accumulative nature [19]. Their exposure may lead to birth defects, 
dysfunctional immunity, change on the reproductive and/or nervous systems [20]. 
Therefore, their continuous detection in the environment even in low concentra-
tions has been a genuine concern for many years. This chapter aims at giving a deep 
understanding on the occurrence of POPs, their nature and detection methods.

1.2 Occurrence of persistent organic pollutants (POPs)

The industrial application of POPs can be traced back during the early 1900s 
when these chemicals were commercialized, and used for pest and diseases control 
[7]. For a number of years, researchers have focused their attention on studying the 
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persistence factor, bioaccumulation, and toxicity of the common POPs such as, viz., 
PCBs (polychlorinated biphenyls, PAHs (polycyclic aromatic hydrocarbons) and 
OCPs (organochlorine pesticides) [21]. Although many POPs have been prohibited 
due their adverse effects however, they are still detected in considerable levels in the 
environment around the globe [22]. Several studies around the research space have 
reported significantly elevated levels of POPs in various matrices, including biota, 
sediment, soil, surface water, and drinking water [23–25]. It is no doubt that the 
rapid increase in human population, urbanization and industrialization have had a 
great impact in the rapid increase of the POPs in the environment [26]. Moreover, 
farming practices such as discharge of pesticides and fertilizers into the environ-
ment also lead to significant increase of POPs in the environment [27].

1.2.1 Compositional patterns and properties of different POPs

i. Sources of PCBs, their toxicity and nature in the environment

Polychlorinated biphenyls (PCBs) have been identified as a group of chlorinated 
organic pollutants consisting of 209 isomers and congeners that resulted from the 
variation in number and position of the chlorine atoms connected to the biphenyl 
rings [28, 29]. Most of these chemicals which are synthetic, have been used as 
coolants and lubricants mainly in electrical equipment such as electrical capacitors, 
generators and transformers owing to their insulating properties [30, 31].

They are characterized as persistent pollutants due to their low water solubility, 
high fat solubility, resistance to degradation and bioaccumulation in the environment 
[32]. The major concern associated with PCBs is their high level of toxicity even in 
extreme low concentrations. Despite their prohibition and also classified as one of the 
“dirty dozen” in the grouping of POPs, they are still detected in the different environ-
ment matrix [33]. Research conducted on monitoring of PCBs in the environment 
show that sediments are the major sources of PCBs [26]. This is because POPs such 
as PCBs have high organic carbon partition coefficients (Koc), making them to easily 
adsorb to sediments. Polycyclic biphenyls are often discharged into the environment 
from industrial discharge, storage leaks, volatilization, urban discharge [34].

ii. Sources of PAHs, their toxicity and nature in the environment

Polycyclic aromatic hydrocarbons are a group of lipophilic chemicals which exist 
in the environment in different forms (colorless, white, or yellow solids). These 

POPs Effects Processes or methods

Aromatic amines Cancer-causing effect Textile industry, dyeing

Dioxazine Hazardous effect Textile industry, dyeing

Antraquinone Oncogenic effect Textile industry, dyeing

Pentachlorophenol Carcinogenic effect Processing of cotton

Chloranil Carcinogenic effect Textile industry, dyeing

Phthalocyanine Oncogenic effect Textile industry, dyeing

Phenolic compounds Harmful effects on neuraxins, liver and kidney, 
cancer-causing effect

Textile industry, dyeing

Table 1. 
Processes and effects of some persistent organic pollutants from textile industry assembled by Mustereţ and 
Teodosiu [16].
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chemicals exist as a mixture containing two or more benzene rings fused together 
in linear, cluster, and angular arrangements as shown below in Figure 1 [35]. They 
have been listed under Stockholm convention as POPs due to their bio-accumulative 
and toxic nature in the environment, while they also have been found to exhibit 
toxic properties such as; carcinogenic, mutagenic and teratogenic making them 
harmful to human health and aquatic life [36]. Naturally, PAHs can be produced 
from incomplete combustion of renewable materials (e.g. wild fires) [37], and vol-
canic eruptions [38]. However, literature shows that anthropogenic activities such 
as garbage burning, coal combustion, exhaust from motor vehicles, etc. dominate 
the sources of PAHs in the environment [39]. The persistency of PAHs tends to 
increase with increasing molecular weight Figure 2 [40].

iii. Sources of OCPs, their toxicity and nature in the environment

Organochlorine pesticides are chemicals often used in agricultural activities 
mainly for pest control purposes [41]. They have been listed as POPs owing to their 
toxic, bioaccumulation and non-biodegradability nature [42]. Improper disposal 
from domestic use such as indoor residual spraying of pesticides plays a significant 
role in the increased levels of OCPs in the environment [43]. The increasing demand 
of agricultural practices and the persistent fight against pests mean more pesticides 
residues produced Figure 3.

According to a study by Jayaraj, Megha [44], only 0.3% of the pesticides used on 
crops interact with the target pest while the rest becomes excess. Therefore, these 
chemicals end up in different environment matrix including soil, sediments, and 
air. Of all the environmental matrix contamination, sediment contamination has 
reported to have detrimental effect on the source of food chain [45]. Furthermore, 
literature shows that considerable levels of OCPs have been detected in various honey 
samples [46–48], which is a proof of the impact that OCPS have on the food chain.

iv. Removal of persistent organic pollutants (POPs) in wastewater

Due to the continuous released of POPs into the environment, this has prompted 
researchers across the globe to find solutions for treating POPs. Physico-chemical 
methods such as coagulation, ion exchange, oxidation and adsorption have over 
many years been applied for removal of wide variety of POPs in the environment 
[18, 49]. However, many of these methods have been associated with several set-
backs such as high cost. Equally important, POPs have been reported to be resistant 
to physico-chemical methods such as flocculation, coagulation, filtration, and oxi-
dation process [50]. More so, bioremediation has proved to have more advantages 
over some physico-chemical methods due to its cost effectiveness, wide variety 
of the microorganisms or bio-sorbents and non-destruction of the material site 
[51–54]. The in situ bioremediation process which involves carrying out treatment 

Figure 1. 
Structure of PCBs.
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process at the contaminated site, has been regarded as a cheap, non-destructive and 
reliable method for degrading POPs in polluted sites [55].

Advanced oxidation process, defined as oxidation process in which hydroxyl 
radicals acts as oxidants, has drawn considerable recognition as a potential method 
for treating POPs in the environment [56]. An advanced oxidation process such as 
heterogeneous photocatalysis, has been widely used in degradation of POPs in the 
environment due to its cost effectiveness, wide availability and non-toxic properties 
[57]. In this heterogeneous photocatalysis, the decomposition and mineralization of 
contaminants using TiO2 as photocatalyst is based on the principle of the separation 
of light-induced electrons/holes (e−/h+) pairs [58].

1.3  Removal of persistent organic pollutants (POPs) in wastewater  
membrane method

Membrane technology have caught so much attention in the research sector due 
to the drastic growth over a short space of time. This is due to its approach with 
advantages of using reasonable energy, less chemical matrix, good film forming 
ability, flexibility, robustness, separation properties, and recently, they can easily 
integrate with a number of methods [59, 60]. Ultrafiltration (UF) membranes are 
likely to be the approach having replaced macromolecular separation technique 
such as proteins – and apart from being the newest approach, UF membranes 
have some very good attributes like, low energy consumption, mild operating 
conditions, no phase change and they are environmentally friendly [61]. There are 
many polymeric materials that have been used before in the membrane processes, 

Figure 2. 
Different arrangements of PAHs [35].

Figure 3. 
Chemical structure of OCPs.
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however, poly(ether)sulfone (PES) is mostly preferred material in (UF) membranes 
because of excellent properties (mechanical, thermal, and chemical stability). 
Some of the famously highlighted challenge about PES is the factor of hydrophobic-
ity. This shortcoming have led to the announcements of membrane fouling from 
previously reported studies [62, 63]. The other polymer material previously investi-
gated are cellulose [64], poly(vinylidene fluoride (PVDF) [65, 66], polyetherimide 
[67, 68], polysulfone (PS) [69] and polyethersulfone (PES) [70]. Nevertheless, PES 
remains the preferable membrane materials in the synthesis of UF membranes, for 
decades because of its convenient features.

Now, surface modification of polymeric membranes can be physical, chemical, 
or said to be bulky modified (i.e., polymer blends) [71]. Any type of membrane 
modification, be physical or chemical method - after the membrane is formed, it 
creates a more hydrophilic surface. These vast modification techniques can be clas-
sified into three processes, (i) graft polymerization, this is when smaller particles 
with hydrophilic nature are smoothly distributed or chemically infused onto the 
membrane scaffold; (ii)physical pre-adsorption of hydrophilic components to the 
membrane surface plasma treatment, this is slightly different because, there is 
rather a selected or a change of a functional group to the membrane surface [i.e., 
sulphonation, carboxylation, etc]; and (iii) Former studies confirms different 
kinds of modification procedures for the modification of PES membranes, namely, 
physical methods like blending and surface-coating methods [72, 73], and chemical 
methods including photo-induced grafting [74], and plasma treatment and plasma-
induced grafting [75, 76].

1.3.1 Membrane blending method as an effective technique for the removal of POPs

1.3.1.1 Blending method

Usually, for an improved PES polymer property, blending method should be 
taken into considerations because of its simplicity and efficiency it has shown 
over the years. In order to observe a noticeable change in the performance of the 
membrane, blending method should be a necessity – this is when both PES polymer 
is mixed together with poly vinyl pyrrolidone (PVP), and thawed in N-methyl-2-
pyrrolidone (NMP). The resultant polymer resin formed from the mixture should 
be left to be stable until handled further as normal casting technique [77]. Nearly, 
the idea of blending is to consortium or improve a material in a hydrophobic nature 
into a good mechanically hydrophilic material. This is achieved by directly blending 
a hydrophilic polymer like as PVP [78, 79] and poly (ethylene) glycol (PEG) [80], in 
that way, PES membranes are easily modified.

In this case, PVP is considered for the formation of micropores, in that way, 
the hydrophilicity and the antifouling properties of the membrane are increased 
[80]. Therefore, polymer blending technique gives rise to polymeric membrane 
with much improved performances and improved properties in reference to the 
pristine or bare PES membrane. Some researchers have encountered significant 
shortcomings, based on miscibility of the polymer [81]. In one way or other, 
there are going to be unexpected challenges with the miscibility which is limited 
to a narrow concentration range of vinyl pyrrolidone. These challenges are 
eventually resolved by blending sulfonated PES with the original PES, this is 
what has been done before [82, 83]. This positively outcomes the higher water 
permeability, and high rejections in the synthesized membrane – hence the 
confirmation by the sudden appearance of smaller pore sizes [84, 85]. Hence 
a clear indication that hydrophilicity can be wide-ranging by changes in the 
composition ratios of blending.
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1.3.2 Considerations affecting the removal of POPs by NF/UF PES membranes

1.3.2.1 The membrane characteristics

Throughout the process of eliminating POPs from the source of waterbodies (or 
wastewater samples), PES material membranes become a vital factor if you consider 
the nature of the apparent POPs. This accurate selection of a PES membrane largely 
plays a role in the removal mechanism since the process is strongly related to the 
type and functional groups in the membrane chosen. Subsequently, there is also a 
significant aspect to contemplate in a suitable membrane selection, and that is - the 
molecular weight cut-off (MWCO), normally articulated in Dalton. This indicates 
the molecular weight of a hypothetical non-charged solute lying between 85 and 
90% rejection, the porosity of a membrane, the surface charge, and the membrane 
material (polymer composition) as well as the degree of ionic species rejection 
[86]. In conclusion, the effect of each constraint on the removal of POPs is specifi-
cally related to the actual solute properties (molecular weight, molecular size, acid 
disassociation constant-pKa, and hydrophobicity/hydrophilicity — logKow), with 
which this governs the strength of the POPs-membranes physical and chemical 
interactions.

1.3.2.2 Membrane charge

Usually referred to as zeta potential, membrane surface charge is another vital 
factor to primarily study in membrane properties. The fundamental principle of 
the above factor lies in the fabrication of the membrane where you have to con-
sider if the membrane has either a negatively or a positively charged surface [87]. 
Sometimes a membrane is pre-known to reject negatively charged pollutants (in 
this case, anions), such as nitrates, sulphates, and sulphites, henceforth, these fic-
tional membranes should be negatively charged for them in order to be effectively 
repel the pollutants. This phenomenon therefore results into a reduced membrane 
fouling [88, 89]. This genius analysis of a membrane charge was discovered PVP 
micro particles were dispersed onto PES membrane for the membrane to give rise 
into an increased water permeability [90]. Thus, the zeta potential could result to 
many functional groups, such as, O=S=O, that comes with PES, and O=C-N of PVP 
that was dispersed across the scaffold of the membrane. The practical functional 
groups become the primary source of a negatively charged membrane [91, 92]. 
Consequently, this boldly confirms that an increase in the PVP particles likely to 
increase the hydrophilicity of the synthesized membrane – which by default leads 
to high permeability. Hence, the membrane charge increases as the PES and PVP 
dosages are varied.

1.3.2.3 Persistent organic pollutants (POPs) hydrophobicity or hydrophilicity

Hydrophilicity and hydrophobicity extremely defines the adsorption on the 
rejection of POPs during membrane applications process [93, 94]. Studies clearly 
shows that the interface between the non-polar hydrocarbon segments of POPs 
and the used membrane is primarily the cause of hydrophobic bonding - this 
has advanced the membrane progress on the extensive adsorption of POPs and 
of other organic pollutants onto the membrane technology [94–96]. A book 
published in the early 2000s vividly show that beyond hydrophobic interactions, 
adsorption could possibly occur over hydrogen bonding between the organic mol-
ecules and the hydrophilic groups of the membrane material [97]. Henceforth, 
hydrogen bonding and hydrophobic interactions may both occur independently 
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or concurrently. Therefore, according to the studied POPs in this book, the 
literature approves that the hydrophobic interactions is the driving force for the 
organic pollutants adsorption on the membrane surfaces - this constitutes the pri-
mary step of the rejection mechanism as Nghiem and Schäfer [97] have indicated 
in his study. In both ways, these observations have implicitly concluded that the 
rejection of hydrophobic compounds should (by experimentation) be examined 
after the used membrane is saturated with the target compounds, otherwise, the 
rejection could be incorrectly mistook for adsorptions are misread [98].

1.3.3 Alternative method - Surface modification

Several studies have been done on surface modification of membranes, and 
it has shown decent suitability for PES material for the amputation of POPs in 
wastewater. This includes, self-assembling nanoparticles [99] and/or nanotubes in 
PES membranes. Nonetheless, this book chapter solely focuses on PES polymer as 
an adsorbent blended for the improvement of the membrane properties. Another 
method still to advance in the membrane technology is - surfactant modification. 
However, a little progress has been observed in literature and still requires more 
work to be reported on using PES membranes. In the late 2000s, Boussu, Van 
Baelen [100] showed an increased in the flux for the nanofiltration membrane of 
waterbodies comprising of surfactants. Lastly, a brief study confirms that hydrogen 
fluoride could be considered to advance the membrane performances. Fourteen [14] 
days of immersion in a hydrogen fluoride solution, an increased permeability was 
obtained without any loss of rejection capacities [101–103].

1.3.4 Factors to consider during the removal of POPs

1.3.4.1 Effect of the feed water composition

A modified membrane performance with real water normally consists of (i) 
solutions containing salts, (ii) other organic matters, (iii) pesticides, hence, POPs 
rejection value is likely to vary significantly depending on the feed water composi-
tion. Importantly so, pH of the water becomes a prominent influent in the POPs 
rejection. Below is a brief discussion of how pH is an important parameter as the 
driving force in rejection values.

Influence of water pH: pH in the rejection role is vitally imperative in these 
experiments – as it directly involved in the membrane surface and membrane 
charge because of the dissociation phenomenon of functional groups throughout 
the adsorption of POPs. Different researchers have found membrane charge (zeta 
potential) suddenly leaning more to negative charge whilst the pH of the water 
body is increased, thus, resulting in functional group deprotonation [104–106]. 
Moreover, another prominent researcher, Freger, Arnot [107] verified about the 
varying of the pore sizes likely to take place reliant on the electrostatic interactions 
amongst the dissociated functional groups within the membrane material. Pang, 
Gao [108], also showed a study where high pH ranges seemed to cause reduced 
rejection rates, with permeate flux also going up. And this this was ascribed by 
the increased number of pore sizes at high pH values. These tests were conducted 
during the removal of one of the top four POPs (PCBs, OCPs and DDT, etc), and 
expectedly, the outcome exhibited that membrane rejection achieved the high-
est value at pH 7, and repeatedly gave lower rejection values at pH 2.5 [109]. This 
clearly indicates, the ion adsorption on the membrane scaffold, and predominantly 
at higher pH, OH− ion adsorption is increased - which automatically leads to an 
increase in the zeta potential of the membrane.
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1.3.4.2 Effect of membrane fouling

Fouling of a membrane is apparent and continue to be a challenge within the 
membrane technology scope and industrial applications – this includes the wastewater 
treatment processes [86, 110]. This takes place as the undesirable particles accumulate 
to cause clogs in the water flow across the membrane. This results in the shortening of 
membrane life. Membranes looks at advancing the progress by creating membranes 
with better or improved properties – this means fabrication or modification to create 
low fouling propensity. The achievement relies on transformation of hydrophobic 
polymers into hydrophilic nature [111, 112]. However, it is of emergency that cost-effi-
ciency efforts be applied in order to mitigate membrane fouling as much as possible. 
For this to be counter-attacked effectively, mechanisms of membrane fouling should 
be studied expansively, hence, to develop dynamic anti-fouling methodologies.

2. Conclusions

The contamination regulator of persistent organic pollutants (POPs) due to 
industrial and textile discharged effluents has become more severe and, clearly 
demands for interventions of more efficient wastewater advanced treatment. This 
leads to a combination of physico-chemical and biological treatment using mem-
brane methods – which in-fact, embodies an efficient solution for the removal of 
POPs from these industrial and textile wastewaters.

In conclusion, application of membrane methods could successfully rely on 
several factors for its optimum use, i.e., material composition membrane selection, 
type of modules, wastewater characteristics and the interactions between contami-
nants (POPs) and the synthesized membrane. Membrane procedures potential use, 
for the removal of significance organic pollutants in industrial water bodies and 
from textile effluents are ultrafiltration (UF), reverse osmosis (RO) and nanofil-
tration (NF). These employed methods are cost-effective and easier to carry out. 
However, for fiscal and monetary reasons, these applications remain a disadvantage 
in the case where the effluents or wastewaters can be recuperated for re-use.

Application of PES polymeric membranes for these procedures or the removal 
of POPs contains increased removal rates, and the choice of a membrane material 
becomes paramount important considering properties of PES like, permeability, 
selectivity, chemical and mechanical resistance. But PES also have some integral 
operational challenges, such as: fouling and concentration/polarization phenomena. 
This further leads to an unexpected decrease of the permeate flux, and the vital aspect 
in the operational procedure of PES membranes and the performance of the mem-
brane inevitably decrease. However, washing of membrane by the use of physical and 
chemical procedures could discreetly recover the permeate flux between the mem-
brane processes cycles, yet fundamentally irreversible fouling could possibly emerge.
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