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Chapter

The Role of Epigenetics in 
Psychosis
Esmaeil Shahsavand Ananloo

Abstract

Epigenetics (genome - environment interaction) is the study of mitotically 
heritable, but reversible changes in gene expression without any change in DNA 
modifications and the chromatin structure. Transition to psychosis is a complex and 
longitudinal process during which epigenetic changes have been hypothesized and 
investigated. This process is especially important in individuals at high/ultrahigh 
risk for psychosis, before the development of full-blown psychosis. Psychoses is a 
range of complex disorders, where genetic variants explain only a portion of risk. 
Neuro-epigenetic mechanisms may explain the remaining share of risk, as well as 
the transition from susceptibility to the actual disease. There is a need for computa-
tional model of psychosis integrating genetic risk with environmental factors (epi-
genetic) associated with the disorder to discover its pathophysiological pathways. 
Epigenetic dysregulation of many genes has been widely speculated that are impor-
tant factors involved in etiology, pathophysiology, and course of the psychoses, such 
as schizophrenia, and mood disorders with psychotic features. In addition, the role 
of epigenetic changes, including histone and DNA modifications and also targeting 
microRNAs in the treatment of psychoses is a new field of investigations.

Keywords: psychosis, epigenetic, etiology, pathophysiology

1. Introduction

Epigenetic mechanisms, link between the environment and the genome, are 
known to play a major role in the structure and also physiology of the human 
central nervous system (CNS), such as learning, memory, circadian clock and 
neural plasticity [1–4]. During the last decade, a huge amount of investigations in 
multi-omics era, including genomics, transcriptomics, proteomics, metabolomics, 
lipidomics, microbiomics, epigenomics, interactomics, and connectomics have 
pushed brain development into the “big data” era [5–10]. Multi-directional dif-
ferentiation ability and self-renewal are two primary properties that characterize 
embryonic stem cells [11, 12]. The major cell types in the CNS, including neurons, 
astrocytes, and oligodendrocytes are generated from common neural stem cells 
(NSC) [13, 14]. There is a large number of interdependent factors, such as epigen-
etic modifications, pro-inflammatory cytokines, intracellular signaling pathways, 
and protein complexes play important role in regulating the differentiation 
potential and fate specification of NSC [11, 15–17]. It is known that the epigenetic 
mechanisms play an important role, not only in neurogenesis during the periods of 
fetal life and childhood, but also in neurogenesis takes place during adulthood in 
the mammalian brain [18].
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Recent studies highlighted that microRNAs (miRNAs) as a type of epigenetic 
modifications, have the pivotal role in balancing the switch from self-renewal 
to differentiation of embryonic stem cells (ESCs) [19]. Evidence has shown that 
specific circular RNA (circRNA) expression patterns are significantly associated 
with adult stem cell self-renewal and differentiation [17]. Epitranscriptomics 
(chemical modifications on RNA), including N6-methyladenosine (m6A), 
2-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), 5-methylcytosine 
(m5C), and isomerization of uracil to pseudouridine (Ψ) has recently garnered 
attention, and has biological consequences, such as embryonic stem cell differen-
tiation, brain development, and neurodevelopmental disorders [20, 21].

In the field of mental disorders, epigenetic mechanisms are thought to play a 
major role in the pathogenesis of the psychoses, including schizophrenia (SCZ) and 
bipolar disorder (BD) [22–24].

In this review article, after a brief introduction, I will discuss around: 1) the 
concept of epigenetics, including its definition and applications, 2) epigenetics and 
psychosis, including an overview of psychosis, and short references to the roles of 
genetics, environment, and epigenetics in psychosis, 3) the epigenetics findings 
in psychosis, including a dynamic approach to psychosis, epigenetic findings in 
prodromal phase of psychosis, in first-episode psychosis, in overt psychosis, and in 
methamphetamine-induced psychosis.

2. The concept of epigenetics

2.1 Definition

In as early as 1942, Conrad Waddington (as an embryologist) first defined the 
field. Epigenetics means “above” or “on top of” genetics. Epigenetics is the study of 
mitotically heritable, but reversible, changes in gene expression that occur without 
a change in the genomic DNA or histone sequences, principally through modifica-
tions in chromatin structure, including DNA and histone. Epigenetics is the study 
of how our behaviors and environment can cause changes that affect the way our 
genes work.

The epigenome is a dynamic concept, and refers to the biological mechanisms, 
which regulate gene expression (such as DNA methylation). Although the epig-
enome can be altered by environmental factors, but it is stable overall [25].

2.2 Epigenetic mechanisms

These mechanisms are necessary for the regulation of gene expression and 
chromatin architecture at a genome-wide level in mammalian, including human 
cells, and play critical roles in both normal human development and disorders. 
Epigenetic modifications are tissue specific. There are several known mechanisms 
for epigenetic modification. These mechanisms are DNA and histone posttrans-
lational modifications, including methylation, acetylation, phosphorylation, and 
ubiquitination, and also non-coding RNAs regulation. The methylation of DNA 
cytosine residues at the carbon 5 position is a common epigenetic modification that 
is often found in the sequence context CpG [26].

2.3 Epigenetic applications

Interest in the field of epigenetics, as well as the usage of the term, have 
increased significantly over the last few years [27]. Up to the January of 2021, 



3

The Role of Epigenetics in Psychosis
DOI: http://dx.doi.org/10.5772/intechopen.99231

there are 102,898 citations (29,879 reviews, 424 systematic reviews, 328 meta-
analyses, and 72,267 other types of articles, including original articles) related to 
“epigenetics” in PubMed. In 2004, however, this number was 1017 (85 article every 
month), and rose to 13,125 in 2020 (1094 article every month; ~ 13 times more). In 
addition, there are 1,016 citations (116 reviews, 26 systematic reviews, 39 meta-
analyses, and 835 other types of articles, including original articles) related to 
“epigenome-wide association study”.

The concept of epigenetic has spread into different fields, that do not address 
just the genetics, such as neuroscience [28, 29], physiology [30, 31], psychiatry 
[32–34], addiction [35], stress [36–38], and aging [39, 40].

Complex disorders, such as endocrine, cardiovascular, skin, autoimmune, 
or mental disorders, result from complex interactions between genes and the 
environment. For example, increased DNA methylation variability may be 
involved in obesity [41], ischemic heart disease [42], or major depression disorder 
[43, 44]. Regarding the psychosis, there are 294 citations (118 reviews, 5 system-
atic reviews, 2 meta-analyses, and 169 other types of articles, including original 
articles) related to “epigenetic and psychosis”, and 1058 citations (416 reviews, 
13 systematic reviews, 7 meta-analyses, and 622 other types of articles, including 
original articles) related to “epigenetic and schizophrenia” in PubMed (accessed 
on January 2021).

3. Epigenetics and psychosis

3.1 An overview to psychosis

Psychotic disorders are among the frequent and disabling human disorders. 
In recent years, the concept of psychosis has moved from just a chronic disorder 
to a more dynamic paradigm. Psychosis is now conceptualized as a progressive 
mental disorder with transitions across several stages: early vulnerability, at-risk 
or ultra-high risk (UHR) mental state, first episode, and chronic disorder [25]. 
Schizophrenia and BD are chronic mental disorders, both considered as “major 
psychosis”; they are thought to share some pathogenetic factors involving dysfunc-
tional gene x environment interactions [45]. They have heterogeneous psychiatric 
phenotypes, and their etiology and physiopathology still remain largely unknown 
[24, 46]. Psychotic disorders are highly heritable, and have polygenic inheritance 
underlain by pleiotropic genes [34]. So, both the genetic and environmental fac-
tors are involved in the etiology and course of the major psychoses, such as major 
depressive disorder (MDD), BD, and SCZ [47, 48].

3.2 An overview to the role of genetics in psychosis

Although some progress has been made in the understanding of genetic phys-
iopathology of psychoses, and despite success in identifying cytogenetic deletions 
or insertions, and also genetic variants and polymorphisms associated with them, 
it seems that the molecular genetic findings could not yet to elucidate the exact 
molecular pathogenesis of different forms of psychoses [49]. Many candidate genes 
have been identified showing a very high genetic heterogeneity of psychoses. These 
genes are overrepresented in synaptic and neurotransmission pathways. Different 
types of common and rare genetic variants, including single nucleotide polymor-
phisms (SNPs) and copy number variations (CNVs) with small or large effects 
have also been identified in the last years. The genetic variations may impact on 
local DNA methylation patterns [50]. All of these findings are important in clinical 
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practice as they can lead to therapeutic challenge or genetic counseling, but only a 
small fraction of psychosis could be easily explained by genetics [24].

3.3 An overview to the role of environmental factors in psychosis

Regarding the role of environmental factors in psychosis, many stressful life 
events, including obstetric complications, mother tobacco use during the preg-
nancy, and her physical inactivity, childhood trauma, emotional abuse, physical 
neglect, heightened sensitivity to stressful events, childhood and adolescent low 
functioning, affective comorbidities, male gender, single status, unemployment 
and low educational level have been reported [23, 51]. Trauma during the childhood 
mediates the epigenome and gene expression profile, and could provide a mecha-
nism underling psychosis [22].

3.4 An overview to the role of epigenetics in psychosis

A large amount of epigenetic research in mental health was performed during 
the last decade. The results of these efforts have “revolutionary” potentials for the 
development of new interdisciplinary models of mental health [52]. Evidence show 
that the risk factors for psychosis were not solely due to the DNA sequence, but also 
abnormal epigenetic modifications have important role in the etiopathology of these 
disorders [53]. It has been widely speculated that a wide range of epigenetic modifi-
cations of the genome, such as DNA methylation, post-translational histone modifi-
cations (in particular the histone 3 lysine 4; H3L4), and non-coding RNAs (such as 
miRNAs) may mediate gene–environment interactions at the molecular level, and 
through transcription factors modulate the expression of psychiatric phenotypes, 
including the variability in symptom severity and family heritability [34, 46].

Several studies have investigated the epigenetic pattern, including DNA meth-
ylation pattern in patients with major psychosis in different tissues and associated 
this epigenetic modification with psychiatric phenotype [54–57]. The main hypoth-
esis for the development of psychotic disorders, proposes that a combination of 
genetic and environmental factors, during critical periods of brain development, 
including prenatal and postnatal periods increase the risk for these disorders [46]. 
The epigenetic mechanisms are important heritable and dynamic means of regu-
lating various genomic functions, including gene expression. These mechanisms 
orchestrate brain development, adult neurogenesis, and synaptic plasticity. These 
processes when perturbed are thought to contribute to psychosis, such as SCZ 
pathophysiology [58]. However, new epigenetic technologies may be able to uncover 
etiopathogenic mechanisms of major psychosis [59]. For example, There are 
significant differences were detected in both CpG and CpH modifications between 
patients with SCZ and healthy controls [59].

4. The epigenetics findings in psychosis

4.1 Epigenetics findings in prodromal phase of psychosis

The research about the complex interactions between the stressful life events 
with dysregulation of biological stress response systems (such as hypothalamic–
pituitary–adrenal [HPA] axis) and genes; epigenetic changes; in one hand, and 
the initial emergence of psychosis, on the other hand, has increasingly focused on 
the prodromal phase of psychosis, the period of functional decline that precedes 
clinical illness [51]. In comparison with general population, childhood adversity 
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rates would be higher in people at UHR of psychosis [60]. Several models, such as 
dysfunctional cognitive patterns, and epigenetic dysregulation have been cited to 
explain the link between trauma and the subsequent onset of psychosis [60].

It has been estimated that around 30 to 40% of UHR individuals convert to full-
blown psychosis in the following 24 to 36 months [61]. Conversion to psychosis, 
especially in high and/or UHR individuals is a longitudinal process during which 
several epigenetic changes have been described [25]. As a few examples, it has 
been reported that conversion to psychosis is associated with specific methylation 
changes in two regions, including 1q21.1 and a cluster of six CpG regions located 
in glutathione s-transferase mu 5 (GSTM5) gene (chr1p13.3) promoter [62]. Bang 
et al. [63] suggest that epigenetic alterations of oxytocin receptor (OXTR) gene, 
located on chromosome 3 (chr3p25.3) can be detected before the development of 
full-blown psychosis (Table 1).

4.2 Epigenetics findings in first-episode psychosis

The onset of psychosis is the result of complex interactions between genetic 
vulnerability to psychosis and response to environmental and/or developmental 
changes. Epigenetic modifications mediate the interplay between genes and envi-
ronment leading to the onset of psychosis [62]. It has been hypothesized that the 
neural diathesis-stress model proposes that different stressors act on a pre-exist-
ing vulnerability and thus triggers the presenting symptoms of psychosis [64].

The global DNA hypomethylation; increased methylation and reduced 
gene expression of GTP cyclohydrolase 1 (GCH1, located on chromosome 14 
[chr14q22.2]), hyperexpression of udE neurodevelopmental protein 1 like 1 
(NDEL1, located on chromosome 17 [chr17p13.1]), AKT serine/threonine kinase 
1 (AKT1, located on chromosome 14 [chr14q32.33]), DICER1 antisense RNA1 
(DICER1, located on chromosome 14 [chr14q32.13]), and hypoexpression of drosha 
ribonuclease III (DROSHA, located on chromosome 5 [chr5p13.3]), catechol-O-
methyltransferase (COMT, located on chromosome 22 [chr22q11.21]), and dis-
turbed in schizophrenia 1 (DISC1, located on chromosome 1 [chr1q42.2]) have all 
been reported in first-episode psychosis [22].

Hypomethylation has been founded among all CpGs analyzed within the promoter 
of glutamate ionotropic receptor NMDA type subunit 2B (GRIN2B) gene, located 
on chromosome 12 (chr12p13.1) in patients with first-episode patients with SCZ and 
greater LINE-1 type transposase domain-containing protein 1 (L1TD1P1) gene, located 
on chromosome 1 (chr1p31.3) methylation in patients and their siblings [65].

Human endogenous retroviruses (HERV) have been widely associated with the 
etiology of SCZ. The lower endogenous retroviral sequence K 2 (ERVK2, located on 
chromosome 19 [chr19q11]) methylation levels have been reported at early stages of 
SCZ [66].

Chromosomal region Gene Epigenetic 

modification

Reference

chr1p13.3 glutathione s-transferase mu 5 (GSTM5); 
six CpG regions

Methylation [62]

Two regions of 
chr1q21.1

Intergenic Methylation [62]

chr3p25.3 oxytocin receptor (OXTR) Methylation [63]

Table 1. 
An overview to the epigenetic studies in prodromal phase of psychosis.
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Working memory and executive functions impairments emerge in first-episode 
psychosis, and even prior to its onset. It has been reported that NMDA receptor 
hypofunction is a feature of early postnatal development, with epigenetic hyper-
repression of the glutamate ionotropic receptor NMDA type subunit 2B (GRIN2B), 
located on chromosome 12 (chr12p13.1) promoter being a contributing factor. This 
loss of NR2B protein may induce synaptic dysfunctions during development and 
may underlie early cognitive impairments in patients with SCZ (Table 2) [67].

4.3 Epigenetics findings in overt psychosis

Although numerous studies have examined psychosis-associated gene expression 
changes, epigenetic studies of psychosis are in their infancy [55]. For example, it seems 
that DNA methylation plays an important role in SCZ; directly as a mechanism of 
pathogenesis or as a risk biomarker [68]. Different epigenetic modifications have been 
reported in psychosis, genes implicated in dopaminergic, serotonergic, GABAergic and 
glutamatergic pathways [45, 46]. Specific changes in promoter DNA methylation activ-
ity of genes related to SCZ such as reelin, BDNF and GAD67, and altered expression 
and function of mGlu2/3 receptors in the frontal cortex have been reported [45].

Abnormal neuronal processes, including dopamine imbalance, may be the cen-
tral to the pathogenesis of major psychosis. DNA methylation, transcriptomic, and 
genetic-epigenetic interactions in major psychosis converged on pathways of neuro-
development, synaptic activity, and immune functions [69]. It has been suggested 
that hypomethylation of the enhancer at insulin-like growth factor 2 (IGF2, located 
on chromosome 11 [chr11p15.5]) may enhance dopamine synthesis associated 
with major psychosis. This enhancer targets the nearby tyrosine hydroxylase (TH, 
located on chromosome 11 [chr11p15.5]) responsible for dopamine synthesis [69].

Chromosomal region Gene Epigenetic 

modification

Reference

chr14q22.2 GTP cyclohydrolase 1 (GCH1) Hypermethylation [22]

chr17p13.1 udE neurodevelopmental protein 1 
like 1 (NDEL1)

Hyperexpression [22]

chr14q32.33 AKT serine/threonine kinase 1 
(AKT1)

Hyperexpression [22]

chr14q32.13 DICER1 antisense RNA1 (DICER1) Hyperexpression [22]

chr5p13.3 drosha ribonuclease III (DROSHA) Hypoexpression [22]

chr22q11.21 catechol-O-methyltransferase 
(COMT)

Hypoexpression [22]

chr13q33.1 disturbed in schizophrenia 1 
(DISC1)

Hypoexpression [22]

chr12p13.1 glutamate ionotropic receptor 
NMDA type subunit 2B (GRIN2B)

Hypomethylation [65]

chr1q42.2 LINE-1 type transposase domain-
containing protein 1 (L1TD1P1)

Hyperexpression [65]

chr19q11 endogenous retroviral sequence K 
2 (ERVK2)

Hypomethylation [66]

chr12p13.1 glutamate ionotropic receptor 
NMDA type subunit 2B (GRIN2B)

Hyperexpression [67]

Table 2. 
An overview to the epigenetic studies in first episode psychosis.
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Walton et al. [70] suggest that epigenetic alterations (DNA methylation) in 
genes implicated in neurodevelopment (such as Sp6 transcription factor; [SP6] 
gene, located on chromosome 17 [chr17q21.32]) may contribute to a brain-based 
biomarker (amygdala/hippocampal volume ratio) of psychotic psychopathology.

Reelin (RELN) is a large secreted extracellular matrix glycoprotein that helps 
regulate processes of neuronal migration and positioning in the developing brain by 
controlling cell–cell interactions [71]. Reelin located on chromosome 7 (chr7q22.1) 
is one of the most frequently studied candidates in methylation studies of SCZ [26]. 
Reelin is mostly synthesized in GABAergic neurons of corticolimbic structures. 
Reelin binds to AUP1 lipid droplet regulating VLDL assembly factor (AUP1, located 
on chromosome 2 [chr2p13.1]), apolipoprotein E (APOE, located on chromosome 19 
[chr19q13.32]), and α3β2 Integrin receptors located on dendritic shafts and spines 
of postsynaptic pyramidal neurons. It has been shown that altered RELN expression 
in patients with SCZ and BD patients is associated with altered epigenetic homeo-
stasis [72].

The loss of the human brain regions laterality (such as in temporal lobe, basal 
ganglia and white matter microstructure) is one of the most consistent modalities in 
SCZ and BD [73–75]. This loss of brain laterality corresponds to aberrant epigenetic 
regulation of transforming growth factor beta 2 (TGFB2, located on chromosome 
1 [chr1q41]) and changes in transforming growth factor beta superfamily (TGFβ) 
signaling [76]. These findings may be potential avenues for disorders prevention/
treatment.

In their metagenome-wide association study (MWAS), Aberg et al. [26] found 
that MINDY2 lysine 48 deubiquitinase 2 (MINDY2, located on chromosome 15 
[chr15q21.3-q22.1]), a part of the networks regulated by microRNA (as an epigen-
etic regulator), is linked to neuronal differentiation and dopaminergic gene expres-
sion [77–79], that has potential relevance to SCZ.

Epigenetic alterations of oxytocin receptor (OXTR) gene, (located on chromo-
some 3 [chr3p25.3]) occur across psychotic disorders. It has been reported that 
patients with SCZ (especially in women) show higher levels of DNA methylation. 
This pattern of OXTR methylation is associated with poorer emotion recognition, 
smaller volumes in temporal-limbic and prefrontal regions [80].

Discoidin domain receptor 1 (DDR1) gene is located on chromosome 6 
(chr6p21.33). DDR1 hypermethylation has been found in patients with psychosis. 
This hypermethylation is associated with mental stress, and neutrophil-to-lympho-
cyte ratios [81].

The brain parvalbumin deficits are a consistent finding in SCZ and models of 
psychosis. Greater methylation of parvalbumin (PVALB) gene, located on chro-
mosome 22 (chr22q12.3) is found in hippocampus of the patients with SCZ. The 
LINE-1 type transposase domain-containing protein 1 (L1TD1P1) gene methylation, 
as a measure of global methylation, is also elevated in both regions of hippocampus 
and prefrontal cortex in SCZ [82].

Associations between altered DNA methylation of the serotonin transporter-
encoding gene (SLC6A4, located on chromosome 17 [chr17q11.2]), and early life 
events, and mood disorders have been reported. Childhood trauma exposure may 
be a robust environmental risk factor for psychosis. However, not all exposed 
individuals develop psychotic symptoms later in life [83]. Hypermethylation of the 
CpG site in SLC6A4 is involved in the pathophysiology of SCZ, especially in male 
patients harboring low-activity 5-HTTLPR alleles [84].

Histone deacetylases (HDACs) are enzymes that regulate cognitive circuitry. 
HDAC expression positively correlate with cognitive performance scores [85]. 
Postmortem brain studies support dysregulated expression of the histone deacety-
lase enzymes, HDAC1 and HDAC2, as a central feature in disorders, including SCZ 
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and BD [86]. It has been reported that HDAC expression is lower in the dorsolateral 
prefrontal cortex (DLPFC) and orbitofrontal gyrus, and higher relative HDAC 
expression in the cerebral white matter, pons, and cerebellum of patients with SCZ 
(Table 3) [85].

In utero exposure to diethylstilbestrol (DES), psychosis is associated with 
specific methylomic modifications that could impact neurodevelopment and 
neuroplasticity [87].

It seems that the neuronal synapses are fundamental units of mental activities. 
Despite the diverse origins of specific molecular dysfunctions of mental disorders, 
disruption of synaptic regulation, which is fundamental to behavioral adaptation 
to the environment, is so important. A novel class of molecular regulators of fine 
synaptic tuning known as long non-coding RNA (lncRNA) operates as epigenetic 
modifiers and enhancers of proteome diversity [88]. Non-coding RNAs, includ-
ing specific microRNAs and lncRNAs provide a novel and complex mechanism 
of gene regulation [89]. Evidence shows remarkable alterations of the expression 
of lncRNAs in mental disorders, such as SCZ, suggesting the disruption of fine 
synaptic tuning underlying psychosis [88].

4.4 Epigenetics findings in methamphetamine-induced psychosis

Methamphetamine (MAP) causes severe substance dependence and psychosis, 
similar to SCZ, through the alterations in gene expression [90]. Evidence shows 
that epigenetic factors may play important role in methamphetamine psychosis. 
Nohesara et al. [91] found statistically significant DNA hypomethylation of the 
promoter regions of dopamine receptor D3 (DRD3, located on chromosome 
3 [chr3q13.31]), dopamine receptor D4 (DRD4, located on chromosome 11 
[chr11p15.5]), MB-COMT, and AKT1 associated with increased expression of the 
corresponding genes in patients with methamphetamine psychosis. It is suggested 

Chromosomal region Gene Epigenetic 

modification

Reference

chr11p15.5 insulin-like growth factor 2 (IGF2) Hypermethylation [69]

chr17q21.32 Sp6 transcription factor; (SP6) Hypermethylation [70]

chr7q22.1 Reelin (RELN) Hypoexpression [72]

chr1q41 transforming growth factor beta 2 
(TGFB2)

Hypoexpression [76]

chr15q21.3-q22.1 MINDY2 lysine 48 deubiquitinase 2 
(MINDY2)

Hypoexpression [77–79]

chr3p25.3 oxytocin receptor (OXTR) gene Hypermethylation [80]

chr6p21.33 discoidin domain receptor 1 
(DDR1)

Hypermethylation [81]

chr22q12.3 parvalbumin (PVALB) Hypermethylation [82]

chr1q42.2 LINE-1 type transposase domain-
containing protein 1 (L1TD1P1)

Hypermethylation [65]

chr17q11.2 serotonin transporter-encoding 
gene (SLC6A4)

Hypermethylation [83, 84]

chr1p35.2-p35.1 histone deacetylase 1 (HDAC1) Hypoexpression [85]

Chr6q21 histone deacetylase 2 (HDAC2) Hypoexpression [85]

Table 3. 
An overview to the epigenetic studies in overt psychosis.
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that MAP can alter DNA methylation of RELN and tRNA aspartic acid methyltrans-
ferase 1 (TRDMT1, located on chromosome 10 [chr10p13]) genes in hippocampus 
dentate gyrus, and decrease in RELN mRNA in the frontal cortex. These alterations 
might be related to SCZ-like psychotic symptoms of MAP psychosis (Table 4) [90].

5. Summary and future directions

5.1 Summary

In this review article, after a brief introduction, I discussed the concepts of 
psychosis and epigenetics, and also references to the roles of genetics, environment, 
and epigenetics in psychosis. In addition, I mentioned the epigenetics findings in 
prodromal phase of psychosis, first-episode psychosis, overt psychosis, and also in 
methamphetamine-induced psychosis.

Psychotic disorders, such as SCZ and BD are among the frequent, disabling, 
progressive, and chronic human mental disorders, and have heterogeneous psychi-
atric phenotypes. Psychosis has several stages, including early vulnerability, at-risk 
or ultra-high risk mental state, first episode, and chronic disorder. It seems that dys-
functional genes x environment interactions influence their pathogenesis. Psychotic 
disorders are highly heritable, and have a polygenic inheritance pattern. Despite 
success in identifying cytogenetic changes, many candidate genes in synaptic and 
neurotransmission pathways, and also genetic polymorphisms, including SNPs 
and CNVs associated with psychosis, the molecular genetic findings could not yet 
explain its exact molecular pathogenesis. Although all of these findings are impor-
tant in clinical practice, such as therapeutic challenge or genetic counseling, but 
only a small fraction of psychosis could be easily explained by genetics. However, 
the genetic variants explain only a portion of risk, and the epigenetic mechanisms 
may explain the remaining share of risk. In addition, many stressful environmental 
factors, such as obstetric complications, childhood trauma, different forms of 
child abuse or neglect have also been reported to play roles in the association with 
psychosis. These factors mediate the epigenetic modifications, and could provide a 
mechanism underling psychosis.

Epigenetics means “above” or “on top of” genetics. It refers to the biological 
mechanisms, which regulate gene expression. Epigenetics is the study of reversible 
changes in gene expression without any change in chromatin structure. The DNA 
methylation of cytosine residues at the carbon 5 position is a common epigenetic 
modification. Interest in the field of epigenetics has increased significantly over 
the last few years. It plays a key role in the structure and also physiology of the 

Chromosomal region Gene Epigenetic 

modification

Reference

chr3q13.31 dopamine receptor D3 (DRD3) Hypomethylation [90]

chr11p15.5 dopamine receptor D4 (DRD4) Hypomethylation [90]

chr22q11.21 catechol-O-methyltransferase (COMT) Hyperexpression [90]

chr14q32.33 AKT serine/threonine kinase 1 (AKT1) Hyperexpression [90]

chr7q22.1 Reelin (RELN) Hypoexpression [89]

chr10p13 tRNA aspartic acid methyltransferase 1 
(TRDMT1)

Hypoexpression [89]

Table 4. 
An overview to the epigenetic studies in methamphetamine-induced psychosis.
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human CNS, and also in the development of complex disorders, such as endocrine, 
cardiovascular, skin, autoimmune, and mental disorders. Epigenetic mechanisms, 
including DNA and histone modifications, and also non-coding RNAs are especially 
important mechanisms to detect the people with high/ultrahigh risk for psychosis.

A large amount of epigenetic research in mental health was performed during 
the last years, and these efforts have “revolutionary” potentials for the develop-
ment of new interdisciplinary models of mental health. The main hypothesis for 
the development of psychotic disorders, proposes that a combination of genetic, 
environmental, and developmental factors increase the risk for these disorders. 
It has been widely speculated that a wide range of epigenetic modifications of the 
genome may mediate gene–environment interactions and modulate the expression 
of psychiatric phenotypes. There are some epigenetic dysregulations in prodromal 
phase of psychosis, to find the people at UHR of psychosis. During the conversion 
to psychosis, especially in high and/or UHR individuals, several epigenetic changes 
have also been described. Epigenetics findings in first-episode psychosis shows that 
the epigenetic modifications of many genes lead to the onset of psychosis. In addi-
tion, numerous studies have examined many psychosis-associated gene expression 
changes in overt psychosis, including methamphetamine-induced psychosis. For 
example, several epigenetic modifications in genes implicated in dopaminergic, 
serotonergic, GABAergic and glutamatergic pathways, have been reported in 
psychosis.

5.2 Future directions

Attempting to predict future is so difficult. This is particularly true in the field 
of psychiatry. This in mainly due to essential deficiencies in understanding the etio-
pathogenesis of mental disorders. For example, mapping the relationship between 
human epigenetics and mental and psychiatric phenotypes is a challenging task. It 
is essential to shift paradigm in understanding the etiology and pathophysiology of 
different forms of psychosis.

During the last years, a large amount of studies in multi-omics era have pushed 
brain development into the “big data” era, and may promise to answer major ques-
tions of psychiatry [92]. Nowadays, there are available web-based tools for integra-
tion and interpretation of omics data. Although a large amount of studies has been 
performed and significant progress has been made in past years, different factors, 
including the high heritability, clinical heterogeneity (etiological and symptom-
atological), and genetic and epigenetic heterogeneity of psychosis still post as 
major challenges to the epigenetic dissection of this complex syndrome. However, 
understanding of epigenetic mechanisms is important to understand the pathogenic 
pathways in complex disorders, including psychosis [93]. The epigenetic studies 
could represent a promising approach to better understanding and treating mental 
disorders. The methylation modifications may be used as diagnostic markers of 
disorder phenotype and predict the progression and response to treatment. So, the 
targeted epigenetic pharmacotherapy, in combination with other types of effective 
interventions, will be effective for future personalized psychiatry for patients [94].

Despite significant progress in identifying the mechanisms underlying psycho-
sis, there are no valid biomarkers for both disorder phenotyping and treatment 
response. It seems that psychiatric diagnosis based on biomarkers will be more valid 
and reliable than symptoms-based diagnosis. The discovery of biomarkers, such as 
epigenetic biomarkers in mental disorders will help in the prevention, diagnosis, 
and treatment of patients with these disorders [95]. DNA methylation may play an 
important role in psychosis as a biomarker of risk. Blood DNA-methylation signa-
tures show promise of serving as a biomarker of SCZ [96]. However, the sensitivity 
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and stability of epigenetic alterations in specific genes make them promising 
candidates for robust biomarkers [94, 97].

Finally, there is a need for computational model of psychosis integrating genetic 
risk with environmental, and developmental factors associated with the disorder to 
discover its pathophysiological pathways, and more accurate treatment targets for 
psychosis. Hopefully, the epigenetics may provide new insights into a more compre-
hensive interpretation of mental disorders, such as psychosis and might eventually 
improve the nosology, treatment, and prevention of these complex disorders.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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