
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

142,000 180M

TOP 1%154

5,800



Chapter

Electromagnetism of Microwave
Heating
Rafael Zamorano Ulloa

Abstract

Detailed electrodynamic descriptions of the fundamental workings of
microwave heating devices are presented. We stress that all results come from
Maxwell equations and the boundary conditions (BC). We analyze one by one the
principal components of a microwave heater; the cooking chamber, the waveguide,
and the microwave sources, either klystron or magnetron. The boundary conditions
at the walls of the resonant cavity and at the interface air/surface of the food are
given and show how relevant the BC are to understand how the microwaves pene-
trate the nonconducting, electric polarizable specimen. We mention the application
of microwaving waste plastics to obtain a good H2 quantity that could be used as a
clean energy source for other machines. We obtained trapped stationary micro-
waves in the resonant cavity and traveling waves in the waveguides. We show 3D
plots of the mathematical solutions and agree quite well with experimental mea-
surements of hot/cold patterns. Simulations for cylindrical cavities are shown. The
radiation processes in klystrons and magnetrons are described with some detail in
terms of the accelerated electrons and their trajectories. These fields are sent to the
waveguides and feed the cooking chamber. Whence, we understand how a meal or
waste plastic, or an industrial sample is microwave heated.

Keywords: microwave heating, resonant cavity, cooking chamber, waveguide,
klystron, magnetron, boundary conditions, food-air interface, Lienard-Wiechert
potentials, Jefimenko fields

1. Introduction

Microwaves are everywhere and permeate the universe. They reach earth con-
stantly and we produce them in many medical, industrial, chemical, domestic, and
research on magnetic and dielectric materials and in devices and equipment [1–13].
The modern communications technology uses them intensely, Wi-Fi, all around the
world, every second, every day [14]. Many medical applications are concentrated in
cancer treatments by giving hyperthermia to the cancerous cells while avoiding to
damage healthy cells. Microwave ablation is widely used in many types of cancers,
bone, cardiac arrhythmic tissue, thyroid glands, skin cancer, and many other dam-
aged tissues [2, 3, 15, 16]. The apparatus is constituted basically by a microwave
source, a waveguide that ends in an antenna that, as a needle, penetrates the tissue
[2, 3, 15, 16]. Industrial applications go from thermally treating/curing polymers,
rubber, and plastics to quickly heat cement and minerals, and to assist vulcanization
[4, 5, 17, 18]. Chemical applications are mainly directed to organic and/or inorganic
synthesis and accelerating reactions, and to search for novel synthesis routes and
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novel products. Chemical microwave heating has been used for decades [6, 7].
Research in magnetics and in dielectrics includes heat transfer and/or electromag-
netic excitation of matter [10–13]. Domestic technology uses them to heat up
quickly and easily food, coffee, and water in microwave ovens (MWO) built for
such function, see Figure 1(D) [8, 9]. By far, the two most commonly used micro-
wave configurations include a source of microwaves, typically a klystron or a
magnetron, a waveguide for these microwaves, and a resonant chamber where the
microwaves are used to treat, to modify, to cure, to excite, or to heat up a sample
put in the microwave chamber. There are two most common geometries of micro-
wave chambers, cylindrical and rectangular [4–13]. Figure 1(A) shows an electric
field pattern simulated inside a typical cylindrical cavity (3.4 cm of radius and
4.22 cm of height) used in a research equipment, in which magnetic samples are
resonantly excited [19]. The magnetic field (not shown) is vertical (and orthogonal
to E) and mostly concentrated along the z-axis at r = 0 and to its close vicinity.
Figure 1(B) shows an electron paramagnetic resonance spectrometer that uses a
cylindrical microwave chamber feed by a rectangular waveguide that collects the
9.4-GHz low-power microwaves produced by a klystron inside the box-labeled
microwave bridge. Figure 1(C) is a calculated stationary electric field pattern from
the solutions to Maxwell equations found in this work for a rectangular cavity.
Figure 1(D) shows a typical domestic microwave oven of dimensions
26 cm � 30 cm � 34 cm.

A universal advantage of microwave heating in industrial, medical, chemical,
and domestic processes is that it does it quickly and efficiently. Yet, several investi-
gations are pursued to find even faster and better microwave heating schemes and
profiles [15–17].

The three main parts of these heating devices constitute a source, a waveguide,
and a heating chamber. Figure 2(A) shows the essential parts of a microwave oven
commonly used to heat food. In addition to the already large number of industrial
microwave heating applications, very recently, microwaving plastic waste
decomposition has been proposed as a central step in order to generate clean
hydrogen, H2, out of heating a one-to-one mixture of triturated waste plastics with
the catalyst FeAlOx [20]. Edwards et al. [21] have used microwaves to transform
waste plastic bags, milk empty bottles, and other supermarket waste plastics,
Figure 2(B), in a clean hydrogen energy source. A 1:1 mixture of the catalyst
FeAlOx and waste plastics heated up with microwaves in a cylindrical cavity

Figure 1.
Microwaves in cylindrical and rectangular geometries. (A) Simulation of the electric field, circular, pattern
formed inside a cylindrical microwave cavity. (B) The microwave bridge, the rectangular waveguide, and a
cylindrical cavity of a commercial electron paramagnetic resonance spectrometer used to excite magnetic
samples. Here, heating is not desired, and the microwave power used is 1 mW or less. (C) A stationary electric
field pattern calculated in this work from the solutions to Maxwell equations. The pattern is calculated for the
planes x and y with the coordinate z maintained fixed at an arbitrary height. (D) A typical domestic
microwave oven (MWO), open and showing its internal chamber height h = 38 cm, and width a = 32 cm and
b = depth, 30 cm.
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(as shown in Figure 2(C)) for 10, 30, and 60 s extracts 85–90% of molecular
hydrogen that is sent through a column to be stored in a separate chamber for its
eventual utilization as a clean energy source. The principle of operation is the same
for the domestic microwave oven with a rectangular heating chamber and for this
microwave heater that is used to transform waste plastics within a cylindrical
heating chamber. This transformation process is clean and fast and could help to
reduce drastically the world’s wide plastic contamination problem. Plastics invade
mountains [22], forests, lakes, oceans, and cities [20–22]. As the hydrogen density
content in plastic bags is around 14% per weight, its transformation into H2 and
multifaceted fullerenes might offer an opportunity of clean energy production for
the countries interested in producing clean H2 as a viable energy source for indus-
trial and domestic usage and contribute to slowing down the global climate change
[23]. Using tons and tons of garbage plastics, H2 can be produced in high quantities
and then used as a clean industry and house energy supply, this way contributing to
combat the global warming. We consider this kind of potential application relevant
for the plastic industry and pollution problems and much more relevant for its
contribution to a cleaner, greener planet. Microwave heating is used globally, also,
to cook or just heat up meals, water, coffee, and pizza. These microwave ovens
operate at a power of 1000 Watts; the meals are put into a rectangular resonant
cavity that is the cooking chamber that gives them their familiar “box” appearance.
In this box, microwaves are delivered unevenly (see uneven electric field pattern
calculated here and shown in Figure 1(C)), to the meals, and they readily penetrate
the matter, making electric dipoles (mainly from water and fatty molecules) to
oscillate frenetically; then, this excitation energy is passed to the rest of the speci-
men as heat.

In a few seconds or minutes, the specimen is hotter than at the start of the
microwaving [5–13]. The utility of microwaves is multiple and of large range. In
spite of the generalized use of microwave ovens, an informal survey has indicated to
us that more than 90% of our STEM students do not really know how MWOs
operate. The basic physics required to understand their workings is completed by
the end of the undergraduate class work. This is telling us the degree of sophistica-
tion and depth that this technology carries, just as many other modern technologies
do, as the Wi-Fi itself. A primal objective of this chapter is to describe its electro-
magnetic physics and to give the fundamentals. All comes from Maxwell equations.
We emphasize the fact that most of the microwave heating devices (as the two
devices shown in Figure 2) are composed of three essential electromagnetic parts:
the production of the microwaves, their wave-guided structure that brings the

Figure 2.
Microwave heating. (A) A typical 1000 Watts, 2.45-GHz domestic microwave oven (MWO) cooking a
chicken. (B) Plastic pollution derived from tons and tons of waste plastic bottles and supermarket bags. (C)
Clean production of H2 by microwaving waste plastic bags and bottles mixed 1:1 with the catalyst FeAlOx
within a cylindrical cavity, the input power is 1000 Watts, and H2 gas is liberated and carried toward a
separate container. The cylindrical cavity operates in the TM010 mode.
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microwaves from their origins toward the resonant cavity, being the third essential
component, that is, the cooking chamber. Aforesaid, some devices use rectangular
resonant cavities and others use cylindrical resonant cavities. We focus on rectan-
gular cavities and just mention some results for cylindrical cavities.

We want to emphasize that the study of the electromagnetic functioning of a
domestic, an industrial, or a laboratory MWO is an ideal technological case to see
how the whole of the theory is applied. These microwave “boxes” contain all of the
fundamental physics required to produce (in klystrons or magnetrons) microwaves,
then input them into a loss-less waveguide, and finally get them to bath a rectan-
gular heating chamber, or a cylindrical chamber, without appreciable microwave
radiation being absorbed at the metallic walls. Their absorption is mainly carried
out, precisely, by the specimen we want to heat up.

Our discussion has five parts: First, in Section 2, we deal qualitatively, in detail,
with the fundamental constituents of a microwave heating system and the physical
processes involved. Then, in Section 3, we analyze the boundary conditions, and in
Section 4, we treat mathematically the resonant cavity. A description of the physics
of this resonant cavity that keeps confined the microwaves all the time necessary for
the food to warm up, or even be cooked, is given. We show that standing wave
patterns are the solutions to Maxwell equations. Section 5 treats the rectangular
waveguide and the general form of the traveling waves in them is obtained. The
process of wave guiding the microwaves is the one that carries the microwaves from
its source to the heating chamber. Then, in Section 7, we treat the production of
microwaves in klystrons and/or magnetrons by radiating, accelerated, electrons
moving in straight lines, or curved trajectories.

2. Fundamental constituents of a microwave heater

In formal terms, a domestic microwave oven [8, 9], or an industrial system [4, 5]
or a laboratory prototype for clean extraction of H2 from microwaving waste plas-
tics [20, 21], is constituted by three fundamental parts shown in Figure 2(A) and
(C) and in Figure 3.

(A) The resonant cavity: Once the microwaves are inside the rectangular
cooking chamber, Figure 2(A), or inside a cylindrical resonant cavity, Figure 2(C),
these microwaves display themselves stationary wave patterns since they are con-
fined within good conducting walls, see Figure 1(A) and (C). These waves rebound
incessantly from these metallic walls without, practically, any energy loss. These
wave patterns are specific for each geometry and each set of dimensions and the
boundary conditions at the walls, as we show below.

In MWOs, the sixth wall is the see-through door that allows access to the interior
of the chamber. The see-through window is covered by a metallic mesh with many

Figure 3.
Food being cooked in a microwave oven. (A) The meal is already hot and steam is actually getting out of the
meat, and the green wavy arrow is pointing to the possibility that some microwaves get out of the oven. (B) The
microwaves rebound from all six metallic surfaces of the “box” (yellow) and are reflected and transmitted from
the surface of the specimen been heated (blue and red).
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small holes of r ≈ 1 mm radius that does not allow microwaves to escape; the
condition λ > > r holds and, hence, it functions as a continuous metallic, highly
reflecting, surface. The receptacle we see when we introduce the meal to be
microwaved is the resonant cavity as shown in Figure 3. Electromagnetically, a
rectangular resonant cavity, beneath the plastic covers, conforms to a metallic box
of about 30 � 32 � 38 cm3 dimensions. A 3D standing wave pattern is self-
established due to the boundary conditions that have to be fulfilled at the walls, see
Figure 1(C).

Hence, maxima and minima and zeroes of the electric field E
!� �

and magnetic

field B
!� �

appear at different locations, x, y, z, inside the cooking chamber. These

microwaves bouncing continuously from the six walls bath constantly and heat
our meal.

Can the microwaves, green wavy arrows in Figure 3, escape from the cooking
chamber? Not in principle, unless some malalignment, or broken piece is there.
Within the resonant cavity, the microwaves bounce back and forth from the metal-
lic walls (yellow in Figure 3(B)) without any loss of electromagnetic energy.

Then, the microwaves hit the chicken at multiple points (blue-green wavy
arrows), at the interface between food and air, reflection and refraction take place,
and Snell’s law and Fresnel equations have to be fulfilled [24–29]. Some microwaves
are reflected (blue-green lines), and others are transmitted inside the chicken body
(red wavy arrows). These red microwaves are responsible for heating, and they are
the ones that transmit, quite efficiently, vertiginous motions vibrations, at
2.45 GHz, to the electric dipoles that are part of the meal (mostly water, but also
some fatty molecules). These red microwaves penetrate several centimeters
through the specimen. The electromagnetic energy carried out by the Poynting

vector of these red microwaves, S
!

r, tð Þ ¼ E
!

r, tð Þ �H
!

r, tð Þ, is converted into frenetic
Jiggling of these polar molecules and then converted into heat by their interactions
with surrounding, neighboring molecules. Heat can be so high that some steam
(water vapor) can be seen through the window in just a few seconds, see Figure 3
(A). This process is the moment of energy conversion: from electromagnetic energy
with 1000 Watts of power to motion, vibrations, mechanical energy. But that
excited motion starts, rapidly, to pass to neighboring nonpolar atoms and molecules
and locally, all the surrounding matter, starts jiggling more and more, which is heat.
Microwave energy has been transformed into heat inside our meal being microwaved. In
Figure 3, the wavy red lines represent the microwaves that get into the specimen
and excite the electric dipoles within it. We show that at multiple points of
incidence-reflection-transmission on the food-air interface, this bathing is by no
means uniform since the microwaves distribute inhomogeneously inside the reso-
nant cavity, see Figure 1(C). This is the reason why the specimen is placed on a
rotating plate, so some homogeneous heating is achieved.

Normally, it is expected that the ceramic (or the plastic), from which the cup for
coffee or water is made, does not get heated while the liquid inside it. In order to get
such result, it is necessary to minimize the composition of electric dipoles in the
structure of the ceramics, glass, or plastic that makes the cup or the dish, effectively
rendering this object transparent to the microwaves.

(B) The metallic waveguide: The microwave radiation from the source is imme-
diately channeled through a horn-like metallic collector toward a rectangular wave-
guide through multiple reflections on its conducting metallic walls, and the
radiation is guided almost without attenuation to the resonant cavity of the MWO.
A rectangular waveguide is shown in Figures 1(B) and 4(C). The good conductor
quality of the waveguide is the responsible for no-attenuation microwaves at the
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waveguide walls even after multiple reflections. More detail on waveguides can be
found in Refs. [24-29]. The waveguide terminates in a “mouth” that connects with
the cooking chamber. This way both parts are coupled.

(C) The source of microwaves: For low-power applications, 1 mW or less, a
klystron is used as the source of microwaves. For higher-power applications of
microwave heating, around 1000 Watts, a magnetron is used. In both cases, it is a
tube in which electrons are ejected from a hot cathode to a space where they get
immediately accelerated and precisely, this acceleration produces electric and mag-
netic radiation fields, orthogonal to each other and to the propagation direction. Its
power is proportional to the acceleration squared, Prad α a2, and is schematically
depicted in Figure 4(A) and (B). Those accelerated electrons emit radiation at the
same frequency of the acceleration that in this case is in the 2–3 GHz range.

Now let us be more quantitative. We start with the electromagnetic boundary
conditions.

3. Microwave heating of food or of an industrial sample

When microwave radiation hits the surface of a specimen, what we have is
incidence of electromagnetic fields on the interface between meal and air, two
nonmagnetic, nonconducting media, and the laws of Snell and Fresnel of reflection
and refraction have to be fulfilled. But, they will be obeyed once the boundary

conditions for E
!
and D

!
and for H

!
and B

!
are fulfilled. Let us see what they are as

follows:

3.1 Continuity of the normal component of the displacement field, D

Let us suppose we have the interface between any two media such as water-air,
plastic-metal, raw meat-hot air, a catalyst-plastic, ceramic-coffee, and so on as

shown in Figure 5, that is, the boundary. The boundary condition on D
!
is obtained

from applying Gauss law to a very small cylinder (purple) of differential area and
differential high that crosses the boundary as shown in Figure 5(A). Then, the

Gauss integral ∮ E
!

� n
!
da on the closed surface is decomposed into three integrals,

one on S1 within medium 1, another one on surface S2 within medium 2, and a third
integral on the lateral surface, which goes to zero because the high of the cylinder is
as small as we wish; then after integrating the only two integrals we are left with

Figure 4.
Constituent parts of a microwave oven, or a laboratory microwave heater. (A) A magnetron typically used to
generate microwaves in a domestic MWO. (B) A microwave generator, klystron, that is frequently used in
microwave laboratory equipment where low power is required. (C) A hollow rectangular waveguide of a, b
cross section and coupled to another waveguide, of the same dimensions, from aforesaid (taken from Feynman
Phys. Lectures, vol. II. [24]) both microwave trains join and interfere at the union of the metallic structures.
(D) An example of microwaving solids and trapping gasses that are detached, from the specimen, in the process.
Microwaving plastic waste mixed 1:1 with FeAlOx inside the transformation chamber, which is an aluminum
TM010 resonant cavity (it is the analog of the microwave oven chamber). Principle of operation was modified
from [21], not the actual experimental setup.
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produce (Dn1 � Dn2)S = σƒS [25–29]. When the interface carries no electric charge,
as is usually the case with microwave heating, then σƒ = 0. Hence, (Dn1 = Dn2). And
so, the normal component of the displacement vector is continuous through the
interface of air-chicken!, or air-plastic, or air-ceramic, and so on.

Only in the case of the boundary between a conductor and a dielectric Dn = σƒ,
being σƒ the free charge density on the interface as represented with the “+” signs in
Figure 5(A). For the cases we are interested here, all the metallic walls in the
cooking chamber (resonant cavity) and the waveguide are not charged, then σƒ = 0
and so Dn1 = Dn2.

On the other hand, when the D
!
, field of the microwaves in the cooking chamber

enters the surface, Dn2, of the piece of food (sample, specimen, system), as shown
in Figure 5(B), it travels much more distance inside (several centimeters.) the
sample and in its way excites electric dipoles (mostly water molecules and fat
dipolar and other organic dipolar moieties) and gradually, but fast, transfers most
of its energy to them. After a relaxation time period, ≈ 10�6 sec, the dipoles
transfer all that juggling energy to vibrations of the bulk and appear as heat
(measured as kBT).

3.2 Continuity of the tangential component of the electric field intensity

Consider the blue, rectangular, path shown in Figure 6(A) and (B) with two
sides parallel to the boundary and arbitrarily close to it. The two vertical sides are

infinitesimal. Stokes theorem states that ∮ ∇� E
!� �

� da
!
¼ ∮ E

!
� d l

!
. If the vertical

paths are as short as we wish, Et does not vary significantly over them and their

integrals are zero. And the line integral of E
!
� d l

!
is Et1L–Et2L. By Stokes’s Theorem,

this line integral is equal to the integral of ∇� E
!
over the surface enclosed by the

path C [25–29].
By definition, the enclosed area is zero. So, Et1L–Et2L = 0, hence Et1 = Et2. The

tangential component of E
!
is therefore continuous across the boundary. Applying

this reasoning to the interface of a piece of food and the air in a microwave oven, as

shown in Figure 6(B), everything follows and the tangential component of E
!
in the

cooking chamber just above the surface of that matter is continuous with the

tangential component of E
!
just inside “the chicken.”

Figure 5.

Boundary conditions on D
!
. (A) Gaussian, very small, cylinder on the interface between two different media 1

and 2. The difference Dn1 � Dn2 between the normal components of D
!
is equal to the surface charge density σƒ.

When surface charge is zero, then Dn1 = Dn2, the normal components of the displacement field are continuous.

(B) The same condition applies on the surface of meat when field D
!
hits its surface inside a microwave oven, in

this case σƒ = 0 and Dn1 = Dn2. In (B) the boundary interface is the skin of a chicken being microwaved.
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For the case of the metallic walls of the heating chamber and the walls of the
waveguide, we have the case of a boundary between a dielectric (hot air) and a

conductor, then E
!
¼ 0 in the conductor and Et = 0 in both media. The magnetic part

of the microwaves also obeys corresponding boundary conditions, namely: B1n = B2n

and H1t = H2t, and B2n is quite capable of exciting magnetic dipoles inside the
specimen, but food, beverages, water, and coffee do not possess magnetic
moments, which are not magnetic. So, we do not treat here magnetic heating, even
though it is a very active field of research [10, 11]. We concentrate on heating
through electric dipoles inside the cooking chamber, as shown in Figures 3, 5, and
6. Next, we describe more quantitatively the electromagnetics in the cooking
chamber.

4. Microwave cooking chamber as a resonant cavity

Aforesaid, the empty cooking chamber in a microwave oven (MWO) is a closed
rectangular space where, once microwaves are input, they bounce back and forth
from metallic walls on the six sides and confine the electromagnetic waves in such
space. This is an electromagnetic resonant cavity (ERC) in which electromagnetic
waves (EMW) move in space and time periodically and, very importantly, forming
standing wave patterns with nodes and anti-nodes. The cooking chamber is then
electromagnetically a resonant cavity that imposes on the microwaves boundary

conditions at the six walls. The E
!
field, just outside and parallel to each wall, Et,

must be zero and the normal component of B
!
must be continuous [25–29]. When

food, water, coffee, cheese, or any other food are introduced in it, a dielectric
medium with ε 6¼ ε0 and air with ≈ ε0 are now the composite dielectric that fills the
resonant cavity, as shown in Figure 3. Dielectrics do not perturb considerably the
standing wave patterns that form the microwaves inside the MWO.

Let us be more quantitative, and take a standard microwave oven of dimensions
a = 30 cm, b = 32 cm, and c = 38 cm as shown in Figure 1(D). We will take the walls
as perfect conductors as first approximation, boundary conditions on the six walls
have to be fulfilled, and there will be multiple reflections at the metallic boundary
surfaces. Figure 7 shows how a sinusoidal electromagnetic field wave bounces back
from a perfect conducting surface [25–29].

Figure 6.

Boundary condition on E
!
. (A) Closed path of integration crossing the interface between two different media 1

and 2. Whatever be the surface charge density σf, the tangential components of E
!
on both sides of the interface

are equal: Et1 = Et2. The tangential components of E
!
field are continuous no matter what medium 1 is and what

medium 2 is. (B) The same analysis for a piece of chicken, or a cup of coffee, or melting cheese in a microwave

oven follows: The tangential components of E
!
are continuous. Et2 contributes, at most, to some heating on the

surface of the meal.
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An arbitrary standing wave pattern in the resonant cavity can then be obtained as
an appropriate superposition of these standingwaves. Let us consider the closed region
(cooking chamber) with walls of sides a, b, and c, and with the origin at one corner as
shown in Figure 3. The cavity is filled with a linear dielectric, food (material described

by μ0 and ε). Both fields, E
!
andH

!
, inside should obeyMaxwell equations and each field

component satisfies the wave equation; the solutions are stationary, confined, trapped
microwaves. Applying separation of variables first to the time variable, it results in a
solution of the form e�iωt. Therefore, we have now, let us say, for

x r
!
, t

� �

¼ ψ0 ¼ E0xX xð ÞY yð ÞZ zð Þe�iωt (1)

which, when substituted into the wave equation, leads to the Helmholtz equa-

tion ∇2ψ0 þ k20ψ0 ¼ 0 where k20 ¼ ω=υð Þ2. This result is actually valid for any kind
of coordinate system. Helmholtz equation is readily solved in rectangular coordi-
nates by separation of variables. If we write, ψ0 ¼ X xð ÞY yð ÞZ zð Þ and proceed with
the standard separations, we obtain [28, 29].

Ψ0 r
!

� �

¼ C1 sin k1xþ C2 cos k1xð Þ C3 sin k2yþ C4 cos k2y
� �

� C5 sin k3zþ C6 cos k3zð Þ (2)

where k1, k2, and k3 are the wave numbers in the x, y, z dimensions and are

related to the frequency ω of the microwave field by the dispersion relation k21 þ

k22 þ k23 ¼ k20 ¼ ω=υð Þ2. Combining this ψ0 r
!

� �

with the temporal solution T(t), we

get any one of the components of the E
!
and H

!
field as

Ex ¼ C1 sin k1xþ C2 cos k1xð Þ C3 sin k2yþ C4 cos k2y
� �

� C5 sin k3zþ C6 cos k3zð Þe�iωt (3)

The boundary conditions that obey each E
!
and H

!
field component are going to

make the difference of the fields through the fact that the constants, C1, C2, … , C6, of

Figure 7.
The standing wave pattern resulting from the reflection of a microwave at the surface of a good conductor wall

of the cooking chamber. The curvy lines show the standing waves of E
!
and H

!
at some particular time. The nodes

E
!
and of H

!
are not coincident but are spaced λ/4 apart as shown. Modified from [25].
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each component will take different values, including zero. The boundary condition
E1t = E2t at any metallic wall (Emetal = 0) makes for tangential components to be zero.
Hence, Ex will be a tangential component and must therefore vanish at the faces y = 0
and b and z = 0 and c. We see that this requires that C4 = C6 = 0 and that k2 ¼ nπ=b
and k3 ¼ pπ=c for sin k2bð Þ ¼ 0 and sin k3cð Þ ¼ 0, and where n and p are integers.

Then we have for Ex:

Ex ¼ C0
1 sin k1xþ C0

2 cos k1x
� �

sin k2y sin k3ze
�iωt (4)

where C0
1 ¼ C1C3C5 and C0

2 ¼ C2C3C5. Repeating this whole procedure for Ey

and its boundary conditions and for Ez and its boundary conditions we get

Ey ¼ sin k1x C0
3 sin k2yþ C0

4 cos k2y
� �

sin k3ze
�iωt (5)

Ez ¼ sin k1x sin k2y C0
5 sin k3zþ C0

6 cos k3z
� �

e�iωt (6)

and k1 ¼ mπ=a. Substituting the expressions of k1, k2, k3 into the dispersion
relation, we obtain all the possible frequencies of oscillation in this cooking chamber
of a, b, c dimensions

ω

ν

� �2
¼ k21 þ k22 þ k23

� �

¼ π2
m

a

� �2
þ

n

b

� �2
þ

p

c

� �2
� �

(7)

Notice that k1 = km, k2 = kn, and k3 = kp. Each set of integers (n, m, p) define a

mode of E
!
field. From this relation aforesaid, we see that frequency ω takes only

particular values determined by m/a, n/b, and p/c. There are many combinations of
(n, m, p) called modes and then corresponding k values and “mode” frequencies

ωnmp. Each ωnmp is a mode of vibration of the electric field and of the H
!

field (that
we obtain below).

It is important to note that if any two of the integers m, n, p are zero, then the
other corresponding two k1, k2, k3 are zero, and from the expressions for Ex, Ey, Ez

we see then that all three components of E
!
are zero. Hence, as a consequence all

components of H
!

become zero since H
!

¼ ξk
!
�E

!
and no standing wave pattern is

sustained in the cooking chamber. We define the vector wave number k
!
with

components k1 = kn, k2 = km, and k3 = kp. The vector electric field must satisfy
Maxwell’s equations and, in particular, the first Maxwell equation (Gauss Law in

differential form) with ρƒ = 0. We must have ε∇ � E
!
¼ 0. To apply divergence we

construct ∂Ex/∂x, ∂Ey/∂y, ∂Ez/∂z with the field components above, we obtain

� k1C
0
2 þ k2C

0
4 þ k3C

0
6

� �

sin k1x sin k2y sin k3z

þ k1C
0
1 cos k1x sin k2y sin k3z

� �

þ k2C
0
3 sin k1x cos k2y sin k3z

� ��

þ k3C
0
3 sin k1x sin k2y cos k3z

� �

� ¼ 0 (8)

The three terms on the left must sum up to zero. One way to have this zero is to
ask for each term individually be zero, then we set k1C’2 þ k2C’4 þ k3C’6 ¼ 0 and
also C’1 ¼ C’3 ¼ C’5 ¼ 0. The only surviving constants are C0

2, C
0
4, and C0

6 and the
resulting field components are now

Ex ¼ C0
2 cos k1x

� �

sin k2y sin k3ze
�iωt (9)

Ey ¼ sin k1x C0
4 cos k2y

� �

sin k3ze
�iωt (10)
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Ez ¼ sin k1x sin k2y C0
6 cos k3z

� �

e�iωt (11)

The amplitude of each of these waves is C0
2, C

0
4, and C0

6. So, let us rename them as
C0
2 ¼ E1, C

0
4 ¼ E2, and C0

6 ¼ E3, we find that the last conditions can be written as
[28, 29].

k1E1 þ k2E2 þ k3E3 ¼ k
!
� E
!
¼ 0 (12)

The expressions for the field components finally become

Ex x, y, z; tð Þ ¼ E1 cos k1x sin k2y sin k3ze
�iωt (13)

Ey x, y, z; tð Þ ¼ E2 sin k1x cos k2y sin k3ze
�iωt (14)

Ez x, y, z; tð Þ ¼ E3 sin k1x sin k2y cos k3ze
�iωt (15)

So that E1, E2, and E3 are the amplitudes of the respective components.
We now show, in Figure 8, a 3D plot of the Ey component for the mode n = 2,

m = 4, p = 3, and a 3D plot of the Ez component for the mode n = 3, m = 5, p = 2. It is
immediately apparent that the number of maxima, minima, and nodes increases as
the mode number (n, m, p) increases. Both plots show in the horizontal plane the
projections of these maxima and minima. When thinking in the rectangular micro-
wave cavity, this 2D plot represents the heating power at different spots at a
z = constant plane (height in the microwave oven). This is just a very simplified
picture of what the hot and cold spots are inside the 3D microwave chamber. The
whole hot/cold distribution spots are the superpositions of many (n, m, p) electro-
magnetic standing wave patterns.

The color code used in Figure 8(A) and (B) represents maxima (red) and
minima (blue) of the electric field of the microwaves. Since the energy delivered to

Figure 8.
Calculated and experimental electric field stationary wave patterns inside a rectangular cavity. (A) 3D plot of
the Ey stationary pattern for the mode n = 2,m = 1, p = 3, evaluated from Eq. (14) at an arbitrary z fixed value.
(B) 3D plot of the Ez stationary pattern for the mode n = 2,m = 1, p = 3, evaluated from Eq. (15) at an
arbitrary z fixed value. In both cases, the projection in the x–y plane of the maxima, minima, and nodes is shown.
(C) The experimental determination of the hot/cold spots in a rectangular chamber, a = 36 cm, b = 24 cm, and
c = 26.5 cm. Note the alternating pattern of hot/cold spots in the stationary pattern (adapted from [30]).
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the sample goes as the square of the electric field, then red and blue extrema become
hot spots and the nodes become cold spots and are located between the red and blue
spots. In the 2D projection, the regions between the blue and red zones are the cold
spots. Experimental measurements on the standing wave patterns in microwave
ovens have been reported and nicely agree with the theoretical calculations [30, 31].
In Figure 8(C), we show one of those measurements carried out on three perpen-
dicular planes, x–z, y–z, and x–y. The agreement between our calculations, planar
2D plots, and the experimental hot/cold spots in Figure 8 is very satisfactory. The
general pattern calculated and measured in the three planes consists of alternating
maxima, minima, and nodes for each mode (n,m, p) as given by formulas (12)–(15).

The results in Eqs. (12)–(15) are very much like that one found for a plane wave

[25–29]. Thus, for a given mode, a particular set (n,m, p), E
!

0 must be perpendicular

to the vector k
!
¼ mπ=að Þx̂þ nπ=bð Þŷþ pπ=cð Þẑ.

For cylindrical cavities, stationary electromagnetic wave patterns are also
obtained. Cylindrical cavities are very frequently used in research and in industrial
applications as we showed above in Figure 2(C) for decomposition of waste plastics
into H2 and a set of fullerene solid compounds. Here, without any calculations, we
show in Figure 9 the electric field stationary wave pattern that we simulated from
the cylindrical solutions for the TM010 mode. It is shown as a manner of contrast
with the stationary pattern that results in rectangular geometry.

Calculating the magnetic field, we start from our knowledge of E
!
and of the

vector wave number k
!
. From the third Maxwell equation, we have ∇� E

!
¼

�μ ∂H
!

∂t

� �

¼ iωμH
!
. For example, using the expressions for Ex, Ey, Ez just found above,

we have

iωμHx ¼
∂Ez

∂y
�

∂Ey

∂z
¼ k2E3 � k3E2ð Þ sin k1x cos k2y cos k3ze

�iωt: (16)

Since k2E3–k3E2 is the x component of k
!
� E0

	!
, it is desirable to define a vector

H0
	!

by H0
	!

¼ 1
ωμ

k
!
� E0

	!
for, if we let its rectangular components be H1, H2, and H3,

then we can write Hx as

Figure 9.
Simulation of the stationary pattern of the electric field inside a cylindrical resonant cavity,TM010 mode. (A)

The electric field is concentric with minima close to r = 0, and E
!
= 0 exactly at r = 0. The field is tangent to the

metallic wall and very small at R = r. (B) A top view of the same electric field stationary pattern [19]. This
stationary field configuration is established in cylindrical cavities,TM010 mode, used for research at low
microwave powers to excite magnetic specimens.
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Hx ¼ �iH1 sin k1xð Þ cos k2yð Þ cos k3zð Þe�iωt (17)

Similarly, we find the other two components of H
!

to be

Hy ¼ �iH2 cos k1xð Þ sin k2yð Þ cos k3zð Þe�iωt (18)

and

Hz ¼ �iH3 cos k1xð Þ cos k2yð Þ sin k3zð Þe�iωt (19)

We see that Hx = 0 at x = 0 and x = a, that is, at the walls for which it is a normal
component; similarly, Hy and Hz vanish at y = 0 and b and z = 0 and c, respectively.

Thus, the boundary conditions on H
!

have been automatically satisfied once E
!
was

made to satisfy its own boundary conditions. Furthermore, it is easily verified that
the two remaining Maxwell equations that we have not yet used are satisfied, that

is, ∇ �H
!

¼ 0 and ∇� E
!
¼ � ∂B

!
=∂t

� �

One needs to use k
!

� H0
	!

¼ 0, as well as HxEz

and the relation dispersion in its form k
!
� k
!
¼ k20 ¼ ω2

ν2
¼ ω2με: Each component of E

!

varies as e�iωt, while the components of H
!

are proportional to �ie�iωt ¼ e�i ωtþ 1
2ð Þπ½ �:

Thus, the electric and magnetic fields are not in phase in these standing waves but

instead H
!

leads E
!
by 90° as shown in Figure 7. A given k

!
corresponds to a given

mode, that is, a given set of integersm, n, p in k aforesaid. Now k
!
� E
!

tell us that the

vector E0 must be chosen to be perpendicular to k
!
. However, there are two

independent mutually perpendicular directions along which E0
	!

can be chosen and

still be perpendicular to a k
!
.

Thus, for each possible value of k
!
, there are two possible independent

directions of polarization of E0
	!

, so that there are two distinct modes for each
allowed frequency given by ωnmp. This property is known as degeneracy and is a
fundamental and important feature of electromagnetic standing waves. If a, b, c
are all different, then the various frequencies given by ωnmp will generally be
different. However, if there are simple relations among the dimensions, it is
possible that different choices of the integers will give the same frequency so
that we will also have degeneracy, but arising in a different manner. As an
extreme example, consider a cube for which a = b = c, so that ωnmp reduces to
ω
υ

� �2
¼ π

a

� �2
m2 þ n2 þ p2ð Þ. Thus, all combinations of integers that have the same

value of m2 þ n2 þ p2 will have the same frequency and the modes will be
degenerate.

5. The Poynting vector of the microwave fields inside the cooking
chamber

Remembering that S
!

r, tð Þ ¼ E
!

r, tð Þ �H
!

r, tð Þ, taking the expressions of E
!
and H

!

Inside the cooking chamber, then we obtain S
!

r, tð Þ ¼ ∣EkH∣k̂ ¼ ξ � υ � ε=2ð ÞE2k̂ ¼

ξ � υuk̂ [25–29]. This result is the general one obtained in any electrodynamic cir-
cumstance, of course, and microwave ovens fulfill it. And the average Poynting
vector is Sav ¼ Power=Area ¼ Energy=Area � time. What these expressions tell us is
that microwave energy and microwave power inside the cooking chamber are
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traveling-moving, yes energy, and power, between the six walls in stationary wave

patterns and in accord with the propagation vector k
!
and carrying perpendicular to

it the E
!
and H

!
fields. The microwave power deposited on a surface area of 1 mm2 is

then Pav = Sav.A. Since E
!
and H

!
inside the microwave oven have nodes and

anti-nodes, then S
!

r, tð Þ and consequently microwave power, P r, tð Þ have nodes and
anti-nodes at some positions along x, y, and z, and the heating is not uniform due to
this standing wave feature of the microwave fields inside the cavity. Experimental
results on the standing wave patterns have been reported and nicely agree with the
theoretical calculations [30, 31]. Theoretically and experimentally standing micro-
wave patterns are obtained. The reason of the rotating plate is to move in circular
fashion the food to be heated and reach a more uniform microwave bathing on the
food. Most of the time it is accomplished, but not always, as pizza fans report.

Now that we have a detailed treatment of the electromagnetic fields inside

the cooking chamber, we want to develop some expressions for the E
!
and H

!

fields traveling on the waveguide from the magnetron toward the resonant cavity.

6. The waveguide in microwave heating systems, TE and TM modes

In research and technologically bound situations, the resonant cavities we saw
above are feed with microwaves by means of waveguides connecting the source to
the microwave cavity, see Figures 2 and 4. We can think of a waveguide as
constructed from a cavity by taking the � z walls to infinity; then, the trapped
stationary waves in the cavity can now travel indefinitely toward � infinity as plane
waves. As soon as we start taking the �z walls to infinity, we start liberating
boundary conditions and in that dimension we are allowing free traveling waves.
The remaining walls at x = 0, a, and y = 0, b continue limiting our bouncing waves
along these dimensions. We will continue taking the bounding surfaces as perfect
conductors. A question to ask at this point is; Is it possible to transfer electromag-
netic energy along a waveguide, that is, a tube with open ends? From everyday
experience, we already know that this is possible from the simple fact that we can
see through long straight pipes. So, the answer is yes, but: How is this carried out?
Solutions to the wave equations have the answer, but first we review quickly
boundary conditions on perfect conductors.

7. Boundary conditions at the surface of a perfect conductor

We recall that a perfect conductor is one for which σ!∞, more precisely, one for
which the ratio Q = εω/σ ! 0. Q ≤ 1=50ð Þ≪ 1 for common metals even at very high
frequencies so that Q = 0 should be a good first approximation for metallic bound-
aries. Plane waves traveling freely along the z direction take the form
E x, yð Þ exp i ωt� kzð Þ½ �, where the E x, yð Þ part has to be found but we already know
that fulfills boundary conditions at the metallic walls. We remember that δ = (2/
μσω)1/2 for a good conductor so that δ ! 0 as σ ! ∞. Therefore, the electric field is
zero at any point in a perfect conductor since the skin depth is zero. Since the

tangential components of E
!
are always continuous, we see that E

!

tang ¼ 0 just

outside of the surface. In other words, E
!
has no tangential component at the surface

of a perfect conductor so that E
!
must be normal to the surface [25–29]. B

!
inside the
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conductor is B
!
¼ k=ωð Þk

!
� Eτ

!
so that B

!
will also be transverse. Consequently, the

transverse component of B
!
inside will also vanish as σ ! ∞. Since B

!
has no normal

component, the boundary condition B1n = B2n implies that B
!

norm ¼ 0 just outside the

conductor. Thus, at the surface of a perfect conductor and outside of it, B
!
has no

normal component; that is, it must be tangential to the surface. We see that all of
the field vectors will be zero inside a perfect conductor. This simplifies greatly the

general boundary conditions. To repeat: At the surface of a perfect conductor, E
!
is

normal to the surface and B
!
is tangential to the surface. To put it another way, E

!
has

no tangential component while B
!
has no normal component.

8. Propagation characteristics of waveguides

Figure 10 shows a waveguide that extends indefinitely in the z direction
and of arbitrary and constant cross section in the xy plane. We take the boundary
walls as perfect conductors and the interior of the cavity is filled with a linear

nonconducting medium described by μ0 and ɛ. If ψ is any component of E
!
or B

!
, we

know that it satisfies the scalar wave equation ∇2ψ � 1
υ2

∂
2ψ

∂t2 ¼ 0 where υ² = l/μɛ and υ

would be the speed of a plane wave in the medium. Again, by separation of

variables we easily find ψ x, y, z, tð Þ ¼ ψ0 x, yð Þei kgz�ωtð Þ.
We note that this is not a plane wave since the amplitude ψ0 is not a constant but

depends on x and y, the cross section [28, 29]. The quantity kg is the guide propaga-
tion constant, or simply the kz constant of separation of the Z(z) component of the whole
solution and can be written as kg = 2π/λg here λg is the guide wavelength, that is, the
spatial period along the guide, the z axis.

Figure 10.
A waveguide made of a perfect conductor with arbitrary and constant cross section. A set of propagation vectors
k1, k2, k3, etc., are shown to impinge on different points on the metallic walls and reflect back following Snell
law. Transmission is not depicted since perfect conducting walls are considered, and hence, the skin depth tends
to zero, which implies zero transmission.
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Continuing with the separation of variables now for the x and y variables, we

obtain again a Helmholtz equation in 2D ∂
2ψ0

∂x2 þ ∂
2ψ0

∂y2 þ k2cψ0 ¼ 0, where k2c ¼ k20 � k2g

and k0 ¼ ω
υ
¼ 2π

λ0
. Writing kc ¼

2π
λc
we obtain a wavelength relation 1

λ2c
¼ 1

λ20
� 1

λ2g
. There-

fore, we have found for a waveguide that we will get wave propagation only if
k0 > kc, or λ0 < λc. For this reason, λc is called the cutoff wavelength. It is very
common to state this result in terms of a cutoff frequency ωc defined by kc ¼

ωc

υ
so

that kg2 can also be written as k2g ¼
1
υ2

ω2 � ω2
c

� �

: Then, wave propagation is possible

only if ω > ω
2, that is, if the applied frequency is greater than the cutoff frequency.

9. Rectangular guide

This guide has a rectangular cross section of sides a and b, which we take to be
located in the xy plane. It is relevant to mention that for either type of mode, TE or
TM, we have to solve an Helmholtz equation and apply boundary conditions as
aforesaid. We continue using separation of variables and write ψ0(x, у) = X(x)Y(y);
then, the same arguments as used in resonant cavity section above lead us to the
separated equations

1

X

∂
2X

∂x2
¼ �

1

Y

∂
2Y

∂y2
� k2c ¼ const: ¼ �k21 (20)

so that, (d2X/d x2) + k21X = 0 and (d2Y/d y2) + k22Y = 0 the separation constants
have been selected with minus sign since the solutions should be periodic. Hence,

k21 þ k22 ¼ k2c is the dispersion relation in terms of the constants of separation for this
2D differential equation. Solving these in terms of sine and cosine functions, we
find that ψ0 x, yð Þ ¼ C1 sin k1xþ C2 cos k1xð Þ C3 sin k2yþ C4 cos k2yð Þ, where the C’s
are constants of integration. This expression for ψ0 contains a total of four
constants.

Let us calculate for ТЕ modes. Here, we set Ez ¼ 0 and write

Hz ¼ C1 sin k1xþ C2 cos k1xð Þ C3 sin k2yþ C4 cos k2yð Þ (21)

With Ez ¼ 0, and with ∇� E
!
¼ �∂B

!
=∂t, we find that when we substitute Hz

into Ex and Ey coming from ∇� E
!

and after some algebra [28].

Ex ¼
iωμk2

k2c
C1 sin k1xþ C2 cos k1xð Þ C3 sin k2y� C4 cos k2yð Þ (22)

Ey ¼
iωμk1

k2c
C1 cos k1x� C2 sin k1xð Þ C3 sin k2yþ C4 cos k2yð Þ (23)

From the boundary conditions Ex у ¼ 0ð Þ ¼ 0 and Ex у ¼ bð Þ ¼ 0 and similarly,
from the boundary conditions that Ey xð Þ ¼ 0 must satisfy at x = 0 and x = a, then
evaluating first for the zero values of x and у, we get

Ex x, 0ð Þ ¼ 0 ¼
iωμk2C3

k2c
C1 sin k1xþ C2 cos k1xð Þ (24)

Ey 0, yð Þ ¼ 0 ¼ �
iωμk1C1

k2c
C3 sin k2yþ C4 cos k2yð Þ (25)
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Notice that we have here established a 2D homogeneous Sturm-Liuville problem
and we expect to obtain as solutions eigenvalues and eigenfunctions. From the
aforesaid boundary conditions, we must have C1 = 0 and C3 = 0. Therefore, at this
stage, Ex, Ey, Hz have simplified to

Hz ¼ C2C4 cos k1x cos k2y (26)

Ex ¼ �
iωμk2C3

k2c
C2C4 cos k1x sin k2y (27)

Ey ¼
iωμk1C1

k2c
C2C4 sin k1x cos k2y (28)

We still have boundary conditions to satisfy at the two remaining faces. We see
that the requirement Ex x, bð Þ ¼ 0 leads to sin k2b = 0 so that k2b = nπ where n is an
integer. Similarly, Ey a, yð Þ ¼ 0 gives the condition that k1a = mπ with m an integer.
Thus, we have found the eigenvalues k1 ¼ mπ

a and k2 ¼
nπ
b , these are the eigenvalues

of the solution. So that k21 þ k22 ¼ k2c shows that the allowed values of kc
2 are k2c ¼

k2c mnπ
2 m

a

� �2
þ n

b

� �2
h i

. The cutoff wavelengths and frequencies can now be found by

using kc
2 above into our λc

2 and ωc
2 equations. The corresponding guide propagation

constants are

k2g ¼
2π

λg


 �2

¼ k20 � π2
m

a

� �2
þ

n

b

� �2
� �

(29)

The only quantity left undetermined is the arbitrary amplitude C2C4 ofHz. If we
set C2C4 = H0, then we find that the amplitudes of a general ТЕ mode in a
rectangular guide are as follows:

Ex ¼ � iωμ

k2c

nπ
b

� �

H0 cos mπx
a

� �

sin nπy
b

� �

Hx ¼ �
ikg

k2c

mπ
a

� �

H0 sin mπx
a

� �

cos nπy
b

� �

Ey ¼
iωμ

k2c

mπ
a

� �

H0 sin mπx
a

� �

cos nπy
b

� �

Hy ¼ �
ikg

k2c

nπ
b

� �

H0 cos mπx
a

� �

sin nπy
b

� �

Ez ¼ 0 Hz ¼ H0 cos mπx
a

� �

sin nπy
b

� �

where kc and kg are as above. Multiplying each of these amplitude factors by the
wave propagation term we get, for example, for the Ex field

Ex ¼ �
iωμ

k2c

nπ

b

� �

H0 cos
mπx

a

� �

sin
nπy

b

� �

ei kgz�ωtð Þ (30)

Since �i ¼ e�i 1=2ð Þπ, the exponential factor can be written exp i kgz� ωtþ 1
2 π

� �� �

,
which shows that Ex leads Hz in time by 90°. Similarly, Hx and Hy lead Hz by 90°
while Ey lag Hz by this same amount.

We now particularize to the simplest case which is also the most used. The TE10

mode, we set m = 1 and n = 0 and we particularize the above equations for these
particular values of m and n, we show now without calculations that:

kg ¼
ω

υ

� �2
�

π

a

� �2
� �1=2

:
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The field amplitudes are

Ey ¼ iωμ
a

π

� �

H0 sin
πx

a

� �

(31)

Hx ¼ �ikg
a

π

� �

H0 sin
πx

a

� �

(32)

Hz ¼ H0 cos
πx

a

� �

(33)

While Ex ¼ Ez ¼ 0 and Hy ¼ 0. Inserting these amplitudes into the complete E
!

and H
!
field expressions above and taking the real parts of the resulting expressions,

we find the only nonzero field components to be

Ey ¼ �H0ωμ
a

π

� �

sin
πx

a

� �

sin kgz� ωt
� �

(34)

Hx ¼ H0kg
a

π

� �

sin
πx

a

� �

sin kgz� ωt
� �

(35)

Hz ¼ H0 cos
πx

a

� �

cos kgz� ωt
� �

(36)

We see that the values of the Ey are independent of y; hence, the electric field lines
are straight lines with constant magnitude at a given value of x but with a magnitude
that does vary with x and is a maximum at the center where x = (a/2). The lines ofHx

are straight with their maximum value at the center as well. The value of Hz, on the
other hand, is zero in the center as has opposite signs on the two sides of the center.

TM modes. In this case, we set Hz ¼ 0 and set Ez equal to the expression for ψ0

given above; hence, ∇� E
!
¼ �∂B

!
=∂t is again applicable. This case is actually sim-

pler because Ez can be a tangential component and must vanish for x ¼ 0 and a and
y ¼ and b. We have again an homogeneous Sturm-Liouville problem and expect
eigenvalues and eigenfunctions. Proceeding in the same manner as before, we see
that we must now have C2 = C4 = 0, while k1, k2, and kc are given, again as above.
Thus, the TE and TM modes of a rectangular waveguide have the same set of cutoff
wavelengths, the same eigenfrequencies, and cutoff frequencies; the field configu-
rations can be expected to be different however. Setting C1C3 = E0, we find that (21)
gives the starting point for the TM calculation to be Ez ¼ E0 sin mπx

a

� �

sin nπy
b

� �

. We

now use this Ez to calculate the rest of the field amplitudes following the above
procedure. We note that m = n = 0 makes Ez and then all the other field compo-
nents, zero; thus, there is no TM00 mode. Furthermore, ifm = 0 or n = 0, Ez ¼ 0 and
all of the fields are zero. Thus, it is not possible to have a TMm0 or TM0n mode, in
contrast to the TE case.

We have now calculated in detail the electric and magnetic fields that propagate
in rectangular waveguides as the ones shown in Figures 1(B), 2(A), and 3(C). The
field patterns are stationary wave patterns in the x–y direction and traveling waves
along the z direction as given by Eqs. (30)–(36).

Let us proceed now to the last of the physical components of a microwave
heater, the very source of 1000 Watts microwaves.

10. Radiation of accelerated point charges in klystrons and magnetrons

Klystrons and magnetrons produce microwaves that carry power; typically,
klystrons are used when little power is needed, from 1 watt to milliwatts and even
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microwatts. Magnetrons are used in higher-power applications, 1000 Watts, or
more. Clearly, magnetrons are better suited for microwave heating. Both rely on
electrons being accelerated (these electrons are labeled em) and made move in
periodic trajectories inside cylindrical chambers. Both devices are shown in
Figure 11. Notice the motion of electrons in them. Straight trajectories in klystrons,
w(t), Figure 11(A), and curved trajectories, Ç(t), in magnetrons, see Figure 11(B).
To expose relevant physics of accelerated electrons, em, produced in klystrons and

Magnetrons is to describe the E
!

rad and B
!

rad microwave radiation fields produced

inside their structures and from these, the Poynting vector, S
!

r
!
, t

� �

¼ E
!

rad �H
!

rad

that describes flux of such energy through space.

A microwave power, Prad ¼ S
!






 � Area, comes with this traveling energy. For

klystrons, the accelerated electrons travel along straight lines, inside vacuum tubes,
back and forth, due to voltage differences, ΔV12 ≥ 860 Volts, applied at the ends of
the cylindrical tube (chamber), see Figure 11(A). So acceleration is linear and is

a
!

z, tð Þ ¼ dv
!

zð Þ=dt ¼
d2w

!
z, tð Þ

dt2
¼ €w

!
z, tð Þ, in which a

!
¼ €w

!
is parallel to v

!
and parallel to

the tube axis, z
!
, see Figure 11(A), and the acting force producing such acceleration

is F
!
¼ eE

!
¼ e �∇V12ð Þ: For magnetrons, the trajectories of the accelerated electrons

are wavy circular with average radius a ≤ r ≤ b, as shown in Figure 11(B) and (C).

The wavy ç
!

r
!
, t

� �

trajectories of the accelerated electrons in magnetrons are the

effect of a combined magnetic force F
!

mag ¼ q
_
ç
!

tð ÞxBêz and the total electric force
between these electrons and the charges located in pairs along the b radius,
σ � and � Q at the cathode. What we have now is, charged particles, em, moving

along trajectories, w
!

z, tð Þ, in klystrons, and ç
!

z, tð Þ, in magnetrons, both have veloc-

ities
_
w
!

z, tð Þ,
_
ç
!

z, tð Þ, and accelerations, €w
!

z, tð Þ,
€
ç
!

z, tð Þ. Charged particles in motion
produce electric potentials and electromagnetic fields just as static charges do,

Figure 11.
Microwave sources, reflex klystron, and magnetron. (A) The basics of a klystron that produces accelerated
electrons through an alternating electric potential difference ΔV12(ωt), these em travel the distance d; then, the
acceleration is reversed, em travel to the left now, and this repeats thousands of times at a GHz frequency. (B) In
a magnetron hot electrons ejected from a central cathode, travel in circular-wavy trajectories inside a cylinder

due to the Lorentz force F
!
¼ e E

!
þ υ

!
tð ÞxBêz

� �

, where υ
!

tð Þ ¼ ∂ ç
!

r
!
, t

� �

=∂t ¼
_
ç
!

r
!
, t

� �

is the velocity of the em

electrons, E
!
is the total electric field due to the perimetral charges (+, �), (+, �), (+, �), and the central �Q

charge. B
!
is a constant magnetic field (from a magnet) applied along the êz axis. These two forces combined

produce the curved-wave trajectory ç
!

r
!
, t

� �

. (C) A complete diagram of the magnetron structure with the

constant magnetic field Bêz, the charge distribution (proper of magnetrons) that produces a total E
!
field and the

curved electron trajectories ç
!

r
!
, t

� �

.
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except that here we have to calculate retarded potentials and retarded fields. For
single charged particles, the resulting potentials are the well-known Lienard-
Wiechert potentials [26–29, 32]. We present them here now.We take an accelerated

electron moving in a general trajectory given by ç
!

r
!
, t

� �

, or w(r,t) � position of q at

time t. Now, V r
!
, t

� �

¼ 1
4πϵ0

Ð ρ r
!0
, tr

� �

?
dτ0 gives the electric potential at r at time t

(Figure 12) [2, 26–29].
The retarded integration is not trivial, and the retardation in the q=? term in the

potential aforesaid throws in a factor q

1�s
!
�v
!
=c
, where v

!
is the velocity of the charge at

the retarded time, and s
!
is the vector from the retarded position to the point r

!
where

we are standing and measuring [24, 26–29, 32]. Then,
Ð

ρ r
!0
, tr

� �

dτ0 ¼ q

1�s
!
�v
!
=c
. It

follows, then, that V r
!
, t

� �

¼ 1
4πϵ0

qc

sc�s
!
�v
!ð Þ
. Meanwhile, since the current density of a

rigid object is J
!
¼ ρυ

!
, we also have A

!
r
!
, t

� �

¼ μ0
4π

Ð ρ r
!0
, tr

� �

v
!

trð Þ

s
dτ0 ¼ μ0

4π
v
!

?

Ð

ρ r
!0
, tr

� �

dτ0.

Or A
!

r
!
, t

� �

¼ μ0
4π

qcv
!

?c�?
!
�v
! ¼ v

!

c2 V r
!
, t

� �

. These are the famous Lienard-Wiechert

potentials for a moving point charge. By using E
!
¼ �∇V� ∂A

!
=∂t and B

!
¼ ∇� A

!
,

the corresponding fields are evaluated. It seems to us that only two authors,
Jefimenko and Griffiths, give detailed derivation of these fields. The differential
operations should be carried out with great care as these authors do, and we refer to
those calculations and just take their results here:

E
!

r
!
, t

� �

¼
q

4πϵ0

?

?
!
� u
!

� �3 c2 � υ3
� �

u
!
þ ?

!
� u

!
� a

!
� �h i

¼ E
!

vel þ E
!

accl (37)

where u
!
¼ c

^
s
!

� v
!
, and, very importantly, E

!

vel α 1=?2 and E
!

accel α ?. And the
magnetic field is

Figure 12.

A moving charged particle following a trajectory w(tr). ∣ r!‐w! trð Þ∣ is the distance the “radiated field” from the

moving electron must travel, and (t � tr) is the time it takes to make the trip, we shall call w
!

trð Þ the retarded

position of the charge, s
!
is the vector distance from the retarded position to the point the radiated

electromagnetic wave arrived “to us” (now, at our time t2), which is at r
!
, clearly s

!
¼ r

!
‐w
!

trð Þ.
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B
!

r
!
, t

� �

¼
1

c
s
!
� E

!
r
!
, t

� �

(38)

B
!
follows the same time dependence as E

!
: The first term in E

!
( r
!
, t) is called the

velocity field, and the triple cross-product is called the acceleration field. With
these potentials and Jefimenko fields, we are now in the position to describe more
quantitatively the radiation produced in klystrons and magnetrons. Hence, the

accelerated electrons, em, inside these devices produce V and A
!
potentials and E

!
and

B
!
fields. In klystrons, the radiation fields are, as they are, captured by the mouth of

a waveguide and send to a resonant cavity in which they produce standing patterns
of stationary microwaves for their use.

Finally, in magnetrons, the perimetral charges, σ � experience Lorentz forces

due to these Jefimenko fields, F
!
¼ q∓ E

!

J þ
_
ç
!

tð ÞxB
!

J

� �

; hence, these charges move

inside the conducting core behind radius b and around the cylindrical cavities, see
Figure 9(C), and cut from the solid metal (usually copper). These moving charges,

in turn, produce their own retarded potentials, Vσ(wt), A
!

σ wtð Þ and fields, E
!

σ wtð Þ

and B
!

σ wtð Þ. We end up with total fields, E
!

t wtð Þ and B
!

t wtð Þ, inside the magnetron
space, including the cylindrical cavities (eight of them most of the time) behind the
radius b. These cylindrical cavities are there, precisely, to trap microwaves in them

and due to their perfect conducting walls, E
!

tot wtð Þ and B
!

tot wtð Þ reflected from them
with almost no losses, and so these cavities sustain stationary microwave patterns of
cylindrical geometry. The same process takes place in the eight cylindrical cavities
distributed along the perimeter of radius b. With a simple wire antenna, micro-
waves are taken out of these cavities and sent to the entrance of the waveguide;
then, these microwaves travel the short distance inside the waveguide and end up in
the cooking chamber of the microwave oven; hence, our coffee absorbs so much the
energy of these microwaves; the electric dipoles in the water vibrate and jiggle;
frenetically, at 2.45 GHz, in a few seconds our coffee is hot and ready to drink.

11. Conclusions

In this chapter, detailed electrodynamic descriptions of the fundamental
workings of microwave heating devices were given. We analyzed one by one the
principal components of a microwave heater; the cooking chamber, the waveguide,
and the microwave sources, either klystron or magnetron. The boundary conditions
at the walls of the resonant cavity and at the interface between air and the surface of
the food were stressed. It was shown how relevant the boundary conditions are to
understand how the microwaves penetrate the nonconducting, electric polarizable
specimen. In addition to microwave food, we mentioned the important application
of microwaving waste plastics to obtain a good H2 quantity that could be used as a
clean energy source for other machines and so contributing to a cleaner planet. We
did use Maxwell equations to obtain trapped stationary microwaves in the resonant
cavity and traveling waves in the waveguides. We showed 3D plots of a few lower
Ex, Ey, Ez modes calculated directly from the solutions obtained here and compared
the general trend with experimentally obtained microwave heated patters inside
rectangular cavities. The agreement is very good. We did simulate a single
electro-magnetic field mode inside a cylindrical cavity in order to contrast with the
stationary patterns obtained in rectangular cavities. The radiation processes in
klystrons and magnetrons were stated in terms of the accelerated electrons
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produced. Then, using the Lienard-Wiechert potentials produced by these elec-
trons, the Jefimenko fields were written. When all these are put together, we
understand how a meal or a waste plastic, or an industrial sample, is microwave
heated.
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