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Abstract Building predictive models for human-interactive systems is a chal-
lenging task. Every individual has unique characteristics and behaviors. A
generic human-machine system will not perform equally well for each user
given the between-users differences. Alternatively, a system built specifically
for each particular user will perform closer to the optimum. However, such
a system would require more training data for every specific user, thus, hin-
dering its applicability for real world scenarios. Collecting training data can
be time consuming and expensive. For example, in clinical applications it can
take weeks or months until enough data is collected to start training ma-
chine learning models. End users expect to start receiving quality feedback
from a given system as soon as possible without having to rely on time con-
suming calibration and training procedures. In this work we build and test
user adaptive models (UAM) which are predictive models that adapt to each
users’ characteristics and behaviors with reduced training data. Our UAMs are
trained using deep transfer learning and data augmentation and were tested
on two public datasets. The first one, is an activity recognition dataset from
accelerometer data. The second one, is an emotion recognition dataset from
speech recordings. Our results show that the UAMs have a significant increase
in recognition performance with reduced training data with respect to a general
model. Furthermore, we show that individual characteristics such as gender
can influence the models’ performance.
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1 Introduction

The automatic monitoring of human behavior using multimedia data, such as
speech, videos or sensor information, has gathered a lot of interest in recent
years since it is able to provide contextual information about a user. Being
able to monitor human behavior in a continuous and unobtrusive manner, is of
special interest for applications in sports (Mitchell et al., 2013), recommenda-
tion systems (Soleymani et al., 2018) and health care (Garcia-Ceja et al., 2018;
Avci et al., 2010), to name a few. By knowing the current state of a user, per-
sonalized assistance and services can be delivered when required. For example,
appropriate music play lists can be recommended based on the user’s current
activity (exercising, walking, working, etc.) (Wang et al., 2012). Elderly peo-
ple at an early stage of dementia could also benefit from this type of system,
e.g., by monitoring their hygiene related activities (wash hands, shower, brush
teeth, etc.) and sending reminder messages when appropriate (Richter et al.,
2016). The increasing popularity of wearable devices such as smartphones and
smartwatches makes them an ideal platform for continuous support and in-
terventions. These devices have several types of sensors like accelerometers,
microphones, Wifi, temperature, light, etc. Previous work has shown that ma-
chine learning methods can be used to analyze the generated sensor data to
infer users’ behaviors and mood states (Zenonos et al., 2016; Grünerbl et al.,
2015; Sanchez et al., 2015). One of the challenges in automatic behavior mon-
itoring systems is that each person is different and possesses distinct charac-
teristics, thus, a single machine learning general model (GM) will not perform
optimally on all users. The solution to this is to have specific machine learning
models for each person, also called user-dependent models (UDMs). A chal-
lenge with this approach is that UDMs require a lot of training data for the
given user. In some settings, e.g., in the medical field, collecting training data
is expensive and time consuming. Therefore, the need for models that do not
require too much training data for each specific user becomes important.

An important aspect of interactive and behavior monitoring systems is
model personalization. Model personalization/adaptation refers to training
and adapting predictive models (e.g., classifiers) for a specific user accord-
ing to his/her own attributes. Building a model with data from many users
and using it to predict behaviors for a target user will introduce noise due to
the diversity among users. For example, Lane et al. (2011) showed that there
is a significant difference for the walking activity between two different groups
of people (20-40 and > 65 years old). Lockhart and Weiss (2014) showed that
there are large differences in performance between GMs and UDMs (GMs
perform worse compared to UDMs).

Our main goal is to have accurate models adapted to each users’ char-
acteristics that can be trained with limited amounts of labeled data. In this
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work we propose the use of deep transfer learning and data augmentation via
random oversampling to train models that adapt to each user as more data
becomes available over time. Our research question is: Is it possible to adapt a
general model to a particular user for activity and mood recognition using deep
transfer learning and data augmentation?. Thus, we aim to test the following
main hypothesis for the selected datasets for activity and emotion recognition
tasks:

H: For the selected activity and emotion recognition datasets, an adapted
model for a particular user using deep transfer learning and data augmentation
will perform better than a general model when labeled data is limited.

We start by building a GM, which is then adapted to each user by refining
the last neural network layers using small amounts of training data for that
particular user. Furthermore, we generated more training data by augmen-
tation using random oversampling. For our experiments, we used two public
available datasets. The first one is for activity recognition tasks and the sec-
ond one is for emotion recognition from speech audio files. We chose those two
domains since they exemplify common situations where there is user diversity.
Furthermore, these application domains have gained a lot of attention in re-
cent years but limited attention has been paid to user adaptation issues. In
both cases, we assume that the within-user data distribution does not change
over time, i.e., there is no concept drift (Gama et al., 2014). This assumption
is particularly true for the two tested datasets since they were collected within
small periods of time. For the activity dataset, each user’s data was collected
on one day, usually within 1-2 hours. For the emotion dataset, there was a
single recording session with every individual for about 2 hours. We also as-
sume that all users have labeled data for all possible classes. For the activity
recognition case, we only considered users (18 of them) from the database
that performed all activities since some users collected data only for a subset
of activities.

The main contribution of this paper is a method based on the combination
of deep transfer learning and data augmentation to build user adaptive models
for activity and emotion recognition. These two domains represent common
multi-user scenarios with different sensor modalities. Even though we demon-
strated the applicability of the method on two specific datasets, we believe
that this approach can be used for other use cases and types of sensors.

This paper is organized as follows. Section 2 presents the background about
different types of models and an overview of transfer learning. In section 3,
we present the related work about activity/emotion recognition and adaptive
models. Next, in section 4, we describe the approach used to build the UAMs.
Section 5 presents the datasets used in our experiments and the details of the
preprocessing and feature extraction. In section 6, we explain our experiments
and the obtained results and provide a discussion in section 7. Finally, in
section 8 we draw the conclusions.
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2 Background

When training predictive models that depend on user behavior, there are dif-
ferent strategies: general models, user-dependent models, mixed models and
user adaptive models. In the following subsections we will introduce the char-
acteristics of those types of models. Then, we present the background of what
transfer learning is and its implementation within the context of deep learning.

2.1 Model Types

For interactive systems that involve making predictions based on user be-
havior, four different types of models can be identified: 1) General, 2) User-
Dependent, 3) Mixed and 4) User-Adaptive models.

General Models (GM): Also known as User-Independent Models, Imper-
sonal Models, etc. The advantage of these models is that they do not require
data from the target user and can be used ’out of the box’. Given a set of
users in a database, the GM is built by using all the aggregated data from all
users to train a predictive model. When a new target user (not in the original
database) needs a prediction, it can use the GM. The procedure to validate
this type of model is as follows: for each target user ut the data from all other
users ui, i 6= t are used as the training set and the data from user ut is used
as the testing set. GMs usually perform worse than UDMs because there are
some users with far from average behaviour.

User-Dependent Models (UDM): Also called User-Specific Models or per-
sonal models. These types of models are trained using just data from the
target user. To estimate their performance, usually k-fold cross validation is
performed on each user with her/his own data. Often, UDMs offer the best
performance for a specific user, since they capture the specific characteristics
of each user. However, they require a lot of training data for each user and
in some domains, collecting training data is expensive and time consuming.
Apart from that, in the training process overfitting can easily happen and
distort the results if not accounted for.

Mixed Models (MM): This type of model does not make any distinction
between users. That is, all the data is aggregated without distinguishing users
and then, k-fold cross validation is performed. This means that some data
points from the same user can end up in both, the training and testing sets.
The performance results of MMs may not be representative of how a system
will behave or generalize to new observations when different users are involved.
This type of setting is common when the data does not depend on human
behavior like in object recognition from images, weather prediction, and so
on.

User Adaptive Models (UAM): These models are intended to be used by
specific users, just as the UDM, but they require less training data. UAMs
try to combine the best characteristics of GMs and UDMs. Usually, a GM
is first trained and when there are more available training data, it is refined
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incrementally to increase its performance over time. Section 3 will present the
adaptation techniques that have been previously used.

2.2 Artificial Neural Networks

Artificial neural networks (ANNs) are connectionist models mainly composed
of nodes (neurons) and edges between them. Neurons receive input signals,
process them and produce an output that can serve as the input for other
neurons. Usually, a neuron’s output is computed using a non-linear function of
the sum of its inputs called an activation function. Typical activation functions
are: sigmoid, hyperbolic tangent, ReLU, gaussian, etc. Edges have associated
weights that are learned during the training process. Neurons are grouped into
layers and signals propagate from the input layer to the last layer. Deep neural
networks consist of multiple layers of neurons Haykin (1994).

2.3 Transfer learning

Transfer learning is a technique for training machine learning models. The
basic idea is based on the concept that humans acquire knowledge and learn
new things constantly. People can apply their previous experiences to learn new
things and adapt to new situations. The goal of transfer learning therefore is
to transfer the knowledge obtained by one task to another task (also through
different domains) (Bengio, 2012). Transfer learning is very popular in the
domain of image classification and robotics (Alnujaim et al., 2018; Sevakula
et al., 2018; Peng et al., 2017; Devin et al., 2017). These methods try to
transfer the knowledge from previous tasks to a new task. Often, the new task
has fewer high-quality training data (Pan and Yang, 2010). For example, given
a classifier trained with reviews for certain products, we may want to build
a new classifier based on the previous one in order to use it in new products
while there is still not enough labeled data for those new products (Blitzer
et al., 2007).

Transfer learning with convolutional neural networks (CNNs) (LeCun et al.,
1998; Shin et al., 2016) has become very popular for image classification. Since
training CNNs can be a computationally intensive task, the idea is to train a
big CNN once and then just fine tune the last layers for specific applications.

The advantage of using transfer learning is related to generalization and
the size of the datasets used for training. The training technique is useful for
the problem of having small datasets. When training deep learning models,
the difficulty lies in achieving good results, while at the same time being able
to generalize over different, but similar inputs. In this context, it means that
a neural network should be able to achieve good results on similar data (e.g.,
different users or images) even though it has never seen this data before. For
example, a neural network using a dataset of hand gestures from a limited
set of users to train should after training be able to detect other, similar
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gestures from different users. The aim of the training is to go from a state of
undergeneralization to a state of generalization. The issue of a small dataset
for training is that there are too few samples to be able to reach a good rate
of generalization, and the algorithm tends to overfit.

Another advantage of using transfer learning is that training from scratch
is very costly in terms of data required and resources to be used. Not only does
it require hardware to keep it in memory, but even with powerful hardware
the training can take several weeks for big datasets. On the other hand, using
transfer learning can reduce the time aspect and the needed data to a small
proportion.

3 Related work

In this section we present related work about activity recognition, emotion
recognition and finally, model adaptation.

3.1 Activity recognition

In recent years, Human Activity Recognition has become an important re-
search area because of the potential range of applications in different domains
such as health care, mental health care, elder care, sports monitoring systems,
etc. (Mart́ınez-Pérez et al., 2012; Garcia-Ceja et al., 2018).

Monitoring user activities and assisting them in their everyday lives has
great potential in pervasive and health care applications, thus, allowing people
to keep living independently and with healthy lifestyles. The objective of these
types of systems is to monitor and provide opportunistic assistance automat-
ically. This is of special importance for groups of people who require constant
assistance such as elderly people, persons with chronic diseases, mental disor-
ders, etc.

Recently, accelerometers have become very common for activity recogni-
tion because its small size and they can be found in many devices such as
smartphones, watches, etc. For example, Brezmes et al. (2009) implemented
a real time activity recognizer on a mobile phone. This was one of the first
works to take advantage of a mobile’s phone accelerometer without the need
of attaching several sensors to the body. Mannini and Sabatini (2010) used
five bi-axial accelerometers located at the hip, wrist, arm, ankle, and thigh
and they reported accuracies between 93% and 98.5% for seven different ac-
tivities (sitting, lying, standing, walking, stair climbing, running and cycling).
Mitchell et al. (2013) used smartphone accelerometers to recognize sporting
activities. Shoaib et al. (2014) made an extensive analysis of the impact of us-
ing just an accelerometer or gyroscope or a combination of both when placing
sensors in different parts of the user’s body. More recently, López-Nava and
Muñoz-Meléndez (2018) used captured motion from upper and lower limbs for
daily living action recognition.
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3.2 Emotion recognition

Emotion recognition is the task of identifying human emotions. In the machine
learning field, this process is usually conducted by analyzing facial expressions
and/or speech patterns (Tarnowski et al., 2017; Ayadi et al., 2011).

One of the motivations that has driven a lot of research within this field is
human-machine interaction, as pointed out by Chatterjee et al. (2018). Given
the potential of these types of technologies, different approaches have been
proposed. For example, Lalitha et al. (2014) they recognized seven different
emotions based on speech signals by extracting mainly time domain features.
The authors use a Support Vector Machine with a Radial Basis Function for
the classification achieving a recognition rate of 81%. Lin and Wei (2005) used
a Hidden Markov Model which is capable of modeling temporal dependencies.
They trained their model to classify five emotions including anger, happi-
ness, sadness, surprise and a neutral state. Their reported recognition rate
was 99.5% for the gender independent case. An interesting approach using
image representations was recently proposed by Badshah et al. (2017). They
extracted image spectrograms and use them to train a Convolutional Neu-
ral Network, thus, avoiding the need to generate handcrafted features. They
achieved an accuracy of 61.7% per spectrogram for seven emotions and 84.3%
per speaker.

Recently, emotion recognition has also been used in the mental health
care domain. Given the popularity of smartphones, several authors have pro-
posed speech analysis from phone calls for detecting the mental state of users.
Grünerbl et al. (2015) analyzed phone calls from bipolar disorder patients to
detect depressive, normal and manic states. They achieved an average recog-
nition accuracy of 70% using a Naive Bayes classifier. Other similar work is
by Karam et al. (2014) in which they used a Support Vector Machine. They
achieved an Area Under the Curve (AUC) of 0.81 for hypomania and 0.67
for depression. As can be seen, emotion recognition systems are important in
many real world use cases.

3.3 Model adaptation

Given the importance of adapting systems to each user’s needs, previous au-
thors have proposed different methods in different domains and with different
sensors. Table 1 presents a list of previous research that aim to adapt predic-
tive models with reduced training data. From this table, it can be observed
that several of them are based on clustering.

For example, Xu et al. (2015) and Garcia-Ceja et al. (2016) used a simi-
lar approach based on clustering for stress detection with sensor data. They
aimed to find clusters of similar users and train a model with the data just
from users within the same cluster. The rationale behind this is that users in
different clusters are very different and thus, their data will have a negative
impact on the final model. In the former work (Xu et al., 2015), they extracted
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Table 1 Related works on user adaptation methods.

Work Method Domain Sensors

Vo et al. (2013)
k-medoids
clustering

activity
recognition

accelerometer

Abdallah et al. (2012)
incremental and
active learning

activity
recognition

accelerometer

Fallahzadeh and
Ghasemzadeh (2017)

Uninformed
cross-subject

transfer learning

sports
activities

recognition

3D motion
tracker

Rokni et al. (2018)
CNN transfer

learning
activity

recognition
accelerometer

Lane et al. (2011)
Community

similarity networks

activities,
transporta-

tion

GPS, phone
usage, audio,
acceleration,

Wifi, etc.
Garcia-Ceja and Brena

(2015)
Class similarities

clustering
activity

recognition
accelerome-

ters

Parviainen et al.
(2014)

likelihood
distributions

activity and
environment
recognition

acceleration,
GPS, WLAN,

Bluetooth,
GSM, audio

Xu et al. (2015) Cluster users
stress

detection
EEG, ECG,
EMG, GSR

Garcia-Ceja et al.
(2016)

Cluster behavioral
vectors

stress
detection

smartphone’s
accelerometer

Maxhuni et al. (2016)
Decision tree

transfer learning
stress

detection
smartphones

Lu et al. (2012)
Maximum A

Posteriori
stress

detection
audio

Vildjiounaite et al.
(2017)

Hidden Markov
Models

stress
detection

mobile
phones and

wrist
bracelets

statistical features from physiological signals such as electrocardiography, gal-
vanic skin response, electroencephalography, electromyography and saturation
of peripheral oxygen. In this case, they got a maximum performance of 0.852
with two clusters. In the later work (Garcia-Ceja et al., 2016), they used the
silhouette index to find the optimum number of clusters instead of defining
them manually. Instead of physiological signals, they extracted features from
accelerometer data collected with a smartphone and trained Decision Trees
and a Naive Bayes classifier. The maximum accuracy was 60% with the Naive
Bayes adapted classifier trained only with data from similar users. Garcia-Ceja
and Brena (2015) also used a clustering approach for activity recognition but
the difference is that they performed the grouping in a per class basis rather
than clustering users. In their experiments, the authors used a decision tree
as classifier and for the same dataset used in the present work (WISDM) they
reported an accuracy of around 80% with 30% of adaptation data. Vo et al.
(2013) proposed an adaptation algorithm for activity recognition that pro-
duced an 11% accuracy increase compared to a general model. Their method
relies on k-medoids clustering and a Support Vector Machine that first trains
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a model using data from user A and then personalizes it for another person B;
however they did not specify how should user A be chosen. This can be seen
as a 1 → n relationship in the sense that the base model is built using data
from a specific user A and the adaptation of all other users is based solely on
A. The drawback of this approach is that user A may be very different from
all other users which could lead to poor final models. One of the disadvantages
of clustering is that as the dimension increases, the notion of distances is lost
which will result in poor groupings. Furthermore, when clustering users, one
needs to specify how each user will be represented in a feature vector format
which requires some expertise, testing and will depend on the dataset.

Lu et al. (2012) proposed an adaptive system for stress recognition from
audio data based on Maximum a posteriori. They start with a general model
and as more data is available, they update it accordingly. They used two differ-
ent adaptation schemes, supervised and unsupervised adaptation. In the first
one, the new data is explicitly labeled whereas in the latter case, self-training
(Yarowsky, 1995) is used to generate the new labels. Their adaptation method
was able to achieve better performance (82.9%) compared to the general model
(71.3% in indoor settings). Vildjiounaite et al. (2017) proposed a method to
build stress detectors with Hidden Markov Models and Maximum a posteriori.
They achieved an accuracy of 75% which is similar to the state of the art but
only using unlabeled data. Parviainen et al. (2014) also proposed a method
based on Maximum a posteriori but for activity recognition. Their system asks
the users to only provide binary feedback to indicate if the system’s prediction
was correct or not, reducing annotation effort considerably. Based on this feed-
back, their algorithm adapts the classifier parameters to each particular user
over time. The precision before adaptation was 50% and after adaptation, it
increased to 68%. One of the limitations of Maximum a posteriori approaches
is that they are tied to a particular classifier. Abdallah et al. (2012) proposed
an incremental and active learning approach for activity recognition to adapt
a classification model as new sensory data arrives. The novelty of their method
is that when the system is not sure about a prediction it asks the users for
the correct label. Lane et al. (2011) built adapted models for activity recog-
nition for each user by first building Community Similarity Networks (CSN)
for different data dimensions such as: anatomical similarity, lifestyle similarity
and sensor-data similarity. The method consists of finding similarities between
users based on different attributes and then weighting them to train a boosting
classifier. Their method produced accuracy increases between 9.1% and 46.8%
for different datasets. One of the limitations of this approach is that it requires
someone to specify similarity functions for each type of attribute.

Transfer learning has been applied in the literature to reduce the amount
of labeled data required by a machine learning model. For example, Maxhuni
et al. (2016) used decision tree transfer learning for stress detection which
consists of building a decision tree for all users and finding the most similar
trees for the target user. Then, the users’ data corresponding to those trees
are transferred to build the final model. Their maximum accuracy was 71.58%.
The limitation of this type of transfer learning is that it would require con-
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siderable effort to be implemented with another type of classifier. Fallahzadeh
and Ghasemzadeh (2017) developed a cross-subject transfer learning algorithm
for activity recognition. Their method uses the similarity between the train-
ing data and new observations from the target user to adapt and retrain the
model. They achieved an accuracy of 87%. Recently, deep learning methods
have been demonstrated to produce outstanding results in different tasks such
as computer vision, speech recognition, text analysis, to name a few. In this
work, we used deep transfer learning for model adaptation. One of the ad-
vantages of this approach is that it does not require explicit modeling of the
users. Also, deep learning provides flexibility on architectural choices depend-
ing on the application while keeping the main training process unchanged.
This means that different architectures can be used such as fully connected
neural networks, convolutional neural networks, etc. Rokni et al. (2018) have
already applied deep transfer learning on a convolutional neural network to
personalize human activity recognition models getting an approximate overall
accuracy of 95%. This research differs from previous work in the following
ways:

1. We conducted several experiments on two different domains: activity recog-
nition from inertial sensors and mood recognition from audio. Most of the
works in Table 1 tested their methods on a single task, either activities or
emotion with the exception of (Lane et al., 2011; Parviainen et al., 2014).

2. We compared five different types of models for validation and completeness
(see section 6). This allowed us to measure the effect of adaptation data in
different scenarios as opposed to (Rokni et al., 2018) where they trained
different models but all of them already including adaptation data.

3. We tested the effect of using adapted models on other users (which resulted
in poor accuracies). This type of evaluation was not conducted in any of
the reviewed works (Table 1).

4. We evaluated the impact of training general models by pre-selecting users
(same and different gender). This type of analysis was not conducted in
any of the reviewed works (Table 1).

5. We evaluated the impact of training user adaptive models with all the data
and just data from users with the same gender. This type of analysis was
not conducted in any of the reviewed works (Table 1).

6. We evaluated the impact of generating synthetic data via random oversam-
pling and combining it with transfer learning. This type of analysis was not
conducted in any of the reviewed works (Table 1).

4 Deep transfer learning for user adaptive models

In this section, we describe how the UAMs are built. As mentioned before, deep
transfer learning approaches are commonly used with CNNs for image recog-
nition tasks. Commonly, transfer learning is used to train models to recognize
new categories of images. In the present work, we apply transfer learning for
user adaptation purposes instead of learning new categories but the idea is
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the same. The approach consists of having a deep neural network with two
types of layers: fixed layers and adaptive layers (see Figure 1). Fixed layers’
parameters are learned once and remain the same throughout the network’s
lifetime. Adaptive layers’ parameters can change after the entire network has
being trained.

The process of building a UAM for a target user ut consists of training the
entire network with all the available data from all other users different from
ut, i.e., a general model. As more data (adaptation data) for the target user
ut is available, it is used to fine tune the adaptive layers of the network. This
is done by training the network through more epochs but without modifying
the fixed layers.

Sometimes, even the adaptation data may not be enough. An approach to
compensate for this is to generate new synthetic data. A UAM with data aug-
mentation consists of expanding or generating new synthetic instances from
the adaptation data. In this work we used random oversampling as augmenta-
tion technique which consists of copying n instances from the adaptation data
with replacement.

Fig. 1 A general overview of deep transfer learning. Fixed layers do not change during the
transfer learning step, whereas adaptive layers do.
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5 Datasets and preprocessing

For our experiments, we used two public available datasets: An activity recog-
nition dataset from accelerometer data and, an emotion recognition dataset
from speech. The criteria for selecting the datasets were:

1. The domain is representative for user adaptation, i.e, there are user varia-
tions that impact the performance.

2. It must contain data collected from several users.
3. The information of which user generated each instance must be included.
4. Each class has sufficient examples per user.

Given these constraints, the following public datasets were found.

5.1 Activity recognition dataset

This dataset was collected by 36 subjects while performing 6 different activities
(Kwapisz et al., 2011; Wisdm, 2012). We included only users who performed
all 6 activities (18). The data was recorded using the accelerometer in a smart-
phone with a sampling rate of 20 Hz. The dataset contains 43 features which
were extracted from fixed length windows of 10 seconds each. Some of the
features are: average, standard deviation, average absolute difference, average
resultant acceleration, time between peaks, binned distribution, etc. For the
complete list please see (Kwapisz et al., 2011; Wisdm, 2012). One of the fea-
tures only had zeros and three features had missing values, thus, those four
features were discarded. The features were normalized between 0 and 1. The
activities include: 1) walking downstairs, 2) jogging, 3) sitting, 4) standing,
5) walking upstairs and 6) walking on flat ground. In this dataset not all the
users performed all the activities. We considered only the users that performed
all activities (18 users). The total number of instances is 3,153. Table 2 shows
the class count.

Table 2 Count of activity classes.

Class Count

Downstairs 326

Jogging 950

Sitting 254

Standing 183

Upstairs 358

Walking 1082
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5.2 Emotion recognition dataset

This database consists of audio recorded emotional utterances spoken by 10 ac-
tors (Burkhardt et al., 2005; EmotionDB, 1999). The emotions are: happy, an-
gry, anxious, sad, bored and disgusted as well as neutral. The participants were
five males and five females. Their age range is 21-35. The database contains
about 500 utterances and ten different texts. For the audio feature extraction,
we used a python library called pyAudioAnalysis developed by Giannakopou-
los (Giannakopoulos, 2015, 2016). The feature extraction process consists of
two steps: short-term feature extraction and mid-term feature extraction. The
first, splits the input signal into short-term windows and computes a set of fea-
tures for each frame. In total, 34 short-term features were computed. Some of
the features are zero crossing rate, energy, entropy of energy, spectral centroid,
spectral spread, MFCCs, chroma deviation, etc. For the full list of features and
their description please refer to the work of Giannakopoulos (2015). This pro-
cess will produce a sequence of short-term feature vectors for the whole signal.
Then, mid-term features are extracted from those sequences. The mid-term
features were the mean and standard deviation. This resulted in 68 features
(mean and standard deviation for each of the 34 short-term features). The
features were normalized between 0 and 1. The total number of resulting in-
stances after feature extraction was 3,188. Table 3 shows the class count.

Table 3 Count of speech emotion classes.

Class Count

Anxiety 335

Disgust 327

Happy 387

Bored 480

Sad 524

Anger 724

Neutral 411

6 Experiments and Results

Our experiments were performed for five iterations to account for variability
and the average results are reported here. For each iteration, the first 50% of
each users’ data is used as the test set. The remaining 50% of the data points
are used to build the adaptation set, i.e., the data points used to adapt the
model to a particular user. The reason for choosing the first 50% as the test
set was to avoid overfitting since contiguous data points are expected to be
very similar. We tested different percentages for the adaptation set. From 10%
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to 40% relative to the total number of data points for each particular user
with increments of 10 (e.g., see Figure 14). The adaptation data points were
chosen at random from the remaining 50% of the total users data. The rest
of the points, (from 40% to 10%, respectively) were discarded. The reported
accuracies and F-scores were computed by averaging them over all users and
iterations. The accuracy is the percentage of correctly classified instances. The
F-score is the harmonic mean of precision and recall.

For comparison purposes and as a baseline, we trained five types of models:

1. GM: General Model.
2. UAM: User Adaptive Model.
3. GM all: Similar to the General Model but updated with additional epochs

using all the training data (excluding data from the user under considera-
tion). The purpose of this is to validate whether the performance difference
with respect to the UAM is just due to additional epochs.

4. GM rand: Similar to the User Adaptive Model (just the adaptive layers
are updated) but the adaptation data is chosen at random from all other
users different than the target user. The purpose of this model is to validate
whether the performance difference with respect to the UAM is just due
to fine tuning the adaptive layers through additional epochs.

5. RF: Random Forest. This model was trained only with the adaptation
data. The purpose of this is to show if the data from other users provides
useful information or if the adaptation data is enough to build good models.
The reason for choosing a Random Forest is because it is one of the more
powerful models and does not require a lot of data. A deep neural network
requires more data but the adaptation data is very limited and not sufficient
to train such a model.

Figure 2 depicts the first four types of models tested for a particular user
un+1. First, the GM is trained and three different copies of it are used to build
the GM all, GM rand and UAM. The small circles mean that random samples
of the data are used for training. No circles mean that the entire data is used
for training.

In order to assess how a UAM of a particular user performs on a different
user, we held out n users (5 for the activity and 3 for the emotions dataset)
and tested each of the UAMs of all other users on them. One possible approach
to compensate for the lack of labelled training data is to generate synthetic
labelled data. Thus, we used random oversampling on the adaptation data
to generate more labeled examples. Oversampling is the process of randomly
choosing and copying data points from a set. In machine learning, this is
typically used to generate more instances of the minority class in imbalanced
datasets (Kotsiantis et al., 2006). Specifically, we over-sampled at 50% relative
to the whole training data from all other users. We used the over-sampled
instances to train two additional user adapted models:

User adaptive model with random oversampling (UAM+RO). This is the
same as the UAM but the adaptive layers are updated using the over-sampled
instances.
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Fig. 2 The four types of models tested on a particular user un+1.

Complete user adaptive model with random oversampling (CUAM+RO).
This model is a copy of the General model and then, the complete set of layers
(fixed and adaptive layers) are updated with additional training epochs using
the over-sampled instances.

In the following subsections we present the experiments and results for
each of the two datasets.

6.1 Activity recognition dataset

For the activity recognition task, the fully connected deep neural network
consisted of the following elements:

– An input layer consisting of 39 units corresponding to the 39 features.
– A fixed dense hidden layer consisting of 512 units with a RELU activation

function and with a dropout rate of 0.2.
– An adaptive dense hidden layer consisting of 128 units with a RELU acti-

vation function and a dropout rate of 0.2.
– An adaptive dense output layer of 6 units (number of activity classes) with

a softmax activation function.

This is a typical simple common network architecture. The parameters
and architecture were empirically determined by using one of the hold-out
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users to test a GM. The general model was trained with an Adam optimizer
(Kingma and Ba, 2014) with the default parameters provided in the original
paper: learning rate = 0.001, beta1 = 0.9, beta2 = 0.999 and ε = 1e− 08. At
training time, the network was fed with batches of size 16 and for 50 epochs.
100 additional epochs were performed on copies of the GM in order to obtain
the GM all, the GM rand and the UAM. Figure 3 shows the resulting average
F-score with standard deviation bars for different percentages of adaptation
data. For completeness, the respective accuracy plots are included in Appendix
A.
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Fig. 3 Activity dataset F-score with 10%-40% adaptation data. The UAM performs better
compared to the other models.

It can be clearly seen that the UAM performs better than the other mod-
els and that the performance increases as more adaptation data is added. As
expected, the GM remains almost constant (with some variations due to ran-
dom initialization). The GM rand performed very similarly to the GM which
supports the idea that the UAM performed much better because of the adap-
tation data used for each particular user. With just 10% of adaptation data,
the F-score increased approximately 14% (from 70% of the GM to 84% for the
UAM). The Random Forest increased its performance very quickly as more
adaptation data was available. This was expected since this model is built
specifically with only data from the target user, however the UAM performs
better since it complements the lack of sufficient adaptation data.

Figure 4 shows the resulting confusion matrices for the GM and UAM of the
aggregated predictions of all users for the 5 iterations. Here, it can be seen that
the recall (diagonal) for all activities increased when using the UAM. Walking
up and downstairs are the two most confused classes. They are confused against
each other but in addition also with walking. This makes sense since all classes
in one or another way include similar movements. Nevertheless, we can observe
that the confusion is reduced significantly from GM to UAM.
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Fig. 4 Activity dataset confusion matrices with 40% adaptation data.
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Table 4 Performance on the hold-out users for the activity dataset.

Model Accuracy F-score
GM 80.0% 77.5%
GM all 78.5% 76.8%
GM rand 77.9% 75.7%
UAM 71.5% 71.9%
RF 54.4% 46.8%

Figure 5 shows the paired-boxplots for the accuracy and F-score between
the GM and the UAM. Here, we can see that for all users the accuracy and
F-score increased when adding adaptation data via deep transfer learning ex-
cept for one. The median accuracy increase was 7.8% whereas the median
F-score increase was 12.7%. The Cohen’s d effect size for the accuracy was
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0.75 (medium) and for the F-socre it was 1.2 (large). This error reduction is
significant, specially if the system is intended to be used for prolonged periods
of time because it could alleviate the accumulated error effect in the long term.

To investigate how the UAM performs on different users, 5 users were held
out and the UAM from all other users were tested on those 5. Table 4 shows
the average results. Interestingly, when a UAM is used on a user it was not
intended for, the accuracy drops even below the general model. In this case
the UAM accuracy was 71.5% and for the general model it was 80.0%. The F-
score was also lower for the UAM. The performance of the Random Forest was
the lowest one since it was trained with just adaptation from a different user.
This suggests that once a UAM is built for a specific user, it should not be
used on other users. This results also support the idea that data from users are
very different from each other. This will be further investigated in the emotion
recognition dataset since it also includes some demographic information about
the participants like gender and age.

Figure 6 shows the results with random oversampling. From this figure,
it can be seen that the CUAM+RO performed better than the plain UAM
without data augmentation, however, the UAM combined with random over-
sampling (UAM+RO) achieved the best F-score results.
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Fig. 6 Activity dataset F-score with random oversampling.

6.2 Speech emotion dataset

For the emotion recognition task, the deep neural network consisted of the
following elements:

– An input layer with 68 units corresponding to the 68 audio features.
– A fixed dense hidden layer with 128 units with a RELU activation function

and with a dropout rate of 0.2.
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– An adaptive dense hidden layer with 64 units with a RELU activation
function and a dropout rate of 0.2.

– An adaptive dense output layer of 7 units (number of emotions classes)
with a softmax activation function.

As in the activity recognition task, the parameters and architecture were
empirically determined by using one of the hold-out users. At training time,
the network was fed with batches of size 16 and for 100 epochs. 100 additional
epochs were performed on copies of the GM in order to obtain the GM all,
the GM rand and the UAM.

Figure 7 shows the resulting average F-score with standard deviation bars
for different percentages of adaptation data.
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Fig. 7 Speech emotion dataset F-score with 10%-40% adaptation data. UAM achieves the
highest F-score.

Again, the UAM performed better than the other approaches, and the
performance increased as more adaptation data was added. All the general
models performed very similar. With 10% of adaptation data, the F-score
increased approximately 5% (from 50% of the GM to 55% for the UAM).
Figure 8 shows the confusion matrices when the adaptation data is 40%. As
with the activity task, here, all emotions experienced an increase in terms of
recall. Anger and disgust were often confused which makes sense since they
are even difficult to differentiate for a human Aviezer et al. (2008); Hutcherson
and Gross (2011).

Figure 9 shows the paired-boxplots for the accuracy and F-score between
the GM and the UAM. Here, the UAM was better for all users. In this case,
the median accuracy increase was 9.5% and the median F-score increase was
7.0%. The accuracy Cohen’s d effect size was 3.0 (large) and the F-score effect
size was 1.9 (large). Table 5 shows the average results when testing the UAM
on 3 hold-out users. The UAM had a lower accuracy and F-score compared
with the general models which is consistent with the results from the activ-
ity recognition dataset. Again, Random Forest had the lowest accuracy. To
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Fig. 8 Speech emotion dataset confusion matrices with 40% adaptation data.

understand this behavior, we first plotted the accuracies of the UAMs tested
with one of the hold-out users (see Figure 10). Here, we can see that the best
performing UAMs were trained with male users which is the same gender of
the hold-out user. UAMs of female users performed worse when tested on a
male user.
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Fig. 9 Speech emotion dataset paired-boxplots between the general model and the user
adaptive model. a) Accuracy. GM median: 0.535, UAM median: 0.630. b) F-score GM
median: 0.500, UAM median: 0.570.

To further analyze this, we performed a leave-one-user-out evaluation. For
each user we trained three models: One with data from all other users, another
one with data from users of the same gender and another one with data from
users of different gender.

Figure 11 shows the F-score. The median F-score for the model trained
with the same gender was the highest one, however, the differences were not
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Table 5 Performance on the hold-out users for the speech emotion dataset.

Model Accuracy F-score
GM 45.4% 45.3%
GM all 45.1% 45.0%
GM rand 44.6% 44.5%
UAM 43.5% 42.9%
RF 33.1% 28.8%
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Fig. 10 Speech emotion dataset user-10 tested with all other users adapted models.

significant compared to training with all users. On the other hand, the models
trained with data from users of different genders performed much worse, and
the differences were significant. The statistical significance was assessed with
a paired Wilcoxon signed rank test.

From these results, we can see that the particular characteristics of each
user had a high impact, thus, the need to build models that adapt to the
attributes of each person becomes very important.

Given the previous results, we hypothesized that deriving a UAM from a
GM that only includes information from similar users would produce better
results than deriving a UAM from a GM that includes information from all
users. To test this, we performed a leave one user out validation and for each,
we built two types of UAMs:

1. UAM all : This is a UAM adapted from a GM trained with all the data.
2. UAM same: This is a UAM adapted from a GM trained with data just

from participants with the same gender.
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Fig. 11 Speech emotion dataset boxplots F-score.

As in previous experiments, the percent of adaptation data was from 10%
to 40% with increments of 10 and five iterations were performed for each.
Table 6 shows the average accuracy results across iterations. The accuracy
for both models looks very similar and the differences were not statistically
significant. Thus, there is not enough evidence to support our hypothesis that
adapting a model from a general one that was trained with data from the
same gender produces better results. The reason for this may be that the
fixed layers act as feature extractors and by updating the adaptation layers
differences between genders are automatically taken care of. These preliminary
results suggest that building a UAM from a GM with all the data is sufficient
to produce good adapted models. By adding a data pre-selection step, e.g., to
just include similar users (same gender in this case) in the GM does not seem
to provide additional benefits to the final UAM. The emotions dataset also
contains age information about the participants. Given that the age between
participants is very similar, we did not conducted experiments based on age.
The age range is 21-35 years with most of the participants being between 31
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and 35 years old. For the activities dataset we could not test the effect of
gender or age since the database does not contain demographic information.

Table 6 Average accuracy for different percent of adaptation data.

model / % adaptation data 10% 20% 30% 40%
UAM all 0.635 0.651 0.652 0.656

UAM same 0.636 0.653 0.661 0.668

Figure 12 shows the F-score with random oversampling. Contrary to the ac-
tivity dataset, here, the CUAM+RO model performed better than the UAM+RO.
This may be due the fact that the emotion dataset has fewer users. To test
this, we randomly selected only 7 users from the activity dataset. We chose 7
to make it the same as the emotion dataset (10 users minus 3 holdout users).
Results are shown in Figure 13. We can see that the UAM+RO is better. It
can also be seen that when the initial number of users in the training data is
low, the UAM method tends to be better than CUAM+RO.
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Fig. 12 Emotion dataset F-score with random oversampling.

7 Discussion

From our experiments and results, we can see that the average performance
increase of the adapted model with respect to the general one was significant
for both datasets. It was around 5%-14% with the additional 10% of data
from the target user. For the data augmentation case (with random oversam-
pling) the F-score of the UAM+RO performed the best with the activities
dataset. With the emotion dataset, the best model was CUAM+RO. In both
datasets, the use of data augmentation produced better results than the plain
user adapted model (UAM). Even though the datasets used in this work are
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Fig. 13 Activity dataset F-score with random oversampling with only 7 users.

from very different domains, our method achieved significant performance im-
provements on both of them. We believe that the proposed approach could
work on other datasets within the same domains but also for other tasks such
as gesture recognition, stress detection, etc.

The extent to which the prediction performance of a system is useful or
comparable to humans is very dependant on each application. For instance, a
true positive rate of 0.2 may seem very low but if it is for predicting suicides,
then it is worth it since it means saving human lives. On the other hand, the
same performance is not acceptable for an activity recognition system that
computes number of steps since it will provide very misleading results.

Another thing to note is that reported performance metrics across different
studies vary a lot even when using the same datasets. In part, this is influenced
by the type of pre-processing, feature extraction, algorithms, random initial-
ization, and so on. Another important factor that influences the result is the
validation method. In many cases, cross-validation is performed on the entire
dataset without user distinction. This for example, will produce a higher ac-
curacy compared to a leave-one-user out validation approach. In this work we
tried to compensate for that by: 1) performing several iterations to account for
variability. 2) Use the original features provided in the activity dataset or in
the case of emotion recognition, extracting standard sound features. 3) Split
train and test sets such that the train set contains the first n observations
chronologically to avoid overfitting because contiguous observations may be
highly correlated.

In this study, we also identified some of the limitations of our proposed
method: I) Our method assumes that users’ behavior do not change over time,
i.e., there exist only between-user differences and not within-user differences.
The datasets used in this study were collected on the same day by each par-
ticipant. In real life, users also change behaviors over time. This needs to be
further evaluated with longer-term datasets. II) In our current experiments,
the UAMs were derived by just updating the wights of the adaptive layers or all
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layers (CUAM+RO). For future work, it would be interesting to explore more
dynamical network architectures, i.e., instead of just updating the weights, the
number of units in each layer could be adjusted or new adaptive layers could
be added or removed in a per user basis. III) For data augmentation, we ex-
plored the use of random oversampling that just duplicates data points which
can lead to overfitting. It would be worth exploring the use of other methods
to generate synthetic data such as SMOTE (Chawla et al., 2002) and Genera-
tive Adversarial Networks (Goodfellow et al., 2014). IV) Another limitation of
our approach is that it requires at least some amount of labeled data for the
target user. We believe it is also worth exploring new methods of adaptation
that would not require any labeled data at all for a particular user, e.g., by
using semi-supervised learning methods (Chapelle et al., 2006) to generate the
adaptation data set without any user intervention. A possible semi-supervised
approach could be self-learning (Scudder, 1965) as used by Garcia-Ceja and
Brena (2016) to build adaptive models requiring zero labeling from the user.

8 Conclusions

In this work we used deep transfer learning and data augmentation to build
UAMs with small amounts of training data. We showed that with just 10% of
additional labeled data, the performance of the UAM increased from 5%-14%
with respect to the GM. We conducted experiments to find whether individual
characteristics affect model performance. Our results on the emotion dataset
showed that models built with participants of different genders had significant
lower accuracies. However, when building a UAM, gender differences did not
have any significant impact on the final model. Thus, our results showed that
the adapted models trained with deep transfer learning methods were robust to
the differences in underlying characteristics of the users (gender, in this case).
Furthermore, we conducted experiments to evaluate the effect of adapting a
model via data augmentation using random oversampling. The results showed
that random oversampling outperformed the plain UAM. We also evaluated
a combination of UAMs with random oversampling which obtained the best
results on the activity recognition dataset. For the emotion recognition task,
the CUAM+RO in which all layers are updated achieved better results than
the UAM+RO. For future work, we would also like to analyze the impact of
different features and explore whether or not some features are more important
for some users. In our experiments, we did not use demographic information
as features. For future directions we would also like to evaluate the impact of
incorporating this type of information into the models.

In summary, we proposed a method that based on the results on two
datasets, demonstrated to be effective for increasing the prediction perfor-
mance when limited training data is available. The method was tested on two
distinct tasks (activity and emotion recognition) and proved to be reliable on
both of them. We believe this method can be used for other use cases such as
gesture recognition or health monitoring systems but additional experiments
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are required including datasets collected during longer periods of time to test
the effects of within-user variance.
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Fig. 14 Activity dataset accuracy with 10%-40% adaptation data. The UAM performs
better compared to the other models.
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performs the other approaches.
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