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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract. In this paper, we introduce Constraint Programming (CP)
models to solve a cryptanalytic problem: the chosen key differential at-
tack against the standard block cipher AES. The problem is solved in two
steps: In Step 1, bytes are abstracted by binary values; In Step 2, byte
values are searched. We introduce two CP models for Step 1: Model 1 is
derived from AES rules in a straightforward way; Model 2 contains new
constraints that remove invalid solutions filtered out in Step 2. We also
introduce a CP model for Step 2. We evaluate scale-up properties of two
classical CP solvers (Gecode and Choco) and a hybrid SAT/CP solver
(Chuffed). We show that Model 2 is much more efficient than Model 1,
and that Chuffed is faster than Choco which is faster than Gecode on the
hardest instances of this problem. Furthermore, we prove that a solution
claimed to be optimal in two recent cryptanalysis papers is not optimal
by providing a better solution.

1 Introduction

Cryptography ensures properties such as confidentiality, integrity and signature
of communications. Cryptanalysis aims at testing whether these properties are
actually guaranteed. Whereas public key cryptography relies on hard problems,
symmetric key cryptography relies on simple operations that are iterated many
times to speed up encryption/decryption. The most important symmetric key
primitives are hash functions and ciphers.

Hash functions guarantee integrity by creating a fixed size fingerprint of mes-
sages. Many cryptanalytic results have completely broken the standards MD5,
SHA-0 and SHA-1 [23, 24, 11] by finding collisions, i.e., messages with a same fin-
gerprint. SAT solvers have been used to find collisions [15, 6, 12] and also against
the future hash standard Keccak [16].

Ciphers guarantee confidentiality by encoding the original message into a dif-
ferent message, using a key, in such a way that the encoded message can further
be decoded into the original one. Stream ciphers encode streams "on the fly",
whereas block ciphers split the text in blocks which are encoded separately. Dif-
ferent approaches have been proposed for applying CP to cryptanalysing stream
ciphers: [20] proposes to solve algebraic systems of equations that link together



keys and encoded streams; [17] uses mixed integer linear programming to com-
pute bounds for the Enocove-128v2 stream cipher. Since the seminal works of
[3, 9], several results appeared on block cipher cryptanalysis [17, 21, 22], mostly
based on Mixed-Integer Programming.

Overview of the paper. In this paper, we focus on the cryptanalysis against
block ciphers proposed in [3, 9] and described in Section 2. The problem is usually
solved in 2 steps: In Step 1, bytes are abstracted by binary values; In Step 2, byte
values are searched. In Section 3, we describe a first CP model for Step 1, initially
proposed in [14]. This model generates many invalid solutions that are filtered
out in Step 2 (as initially proposed in [3, 9]). In Section 4, we introduce new
constraints that remove most of these invalid solutions. In Section 5, we briefly
describe a CP model for Step 2. In Section 6, we evaluate scale-up properties
of two classical CP solvers (Choco and Gecode) and a hybrid CP/SAT solver
(Chuffed). We show that the new model for Step 1 is much more efficient than
the initial model, and that Chuffed is faster than Choco which is faster than
Gecode on the hardest instances of the problem. Furthermore, we prove that
a solution claimed to be optimal in [3, 9] is not optimal by providing a better
solution. Actually, CP allows us not only to solve cryptanalysis problems more
efficiently than the dedicated approaches of [3, 9], but also in a safer way as it is
easier to check the correctness of a CP model than the correctness of a dedicated
program.

2 Problem Statement

In this Section, we detail the general structure of the AES (Advanced Encryption
Standard) block cipher [8]. We then describe what a differential attack is and
finally introduce the chosen key differential attack model.

2.1 AES block cipher

A block cipher is a function E : {0, 1}n×{0, 1}l → {0, 1}n which, given a binary
block X (called plaintext) of length n and a binary key K of length l, outputs a
binary ciphered text E(X,K) of length n such that X = E−1(E(X,K),K).

Most of today’s block ciphers have an iterated structure: They apply a round
function f r times so that E(X,K) = Xr with X0 = X and Xi+1 = f(Xi,Ki+1)
for all i ∈ [0; r − 1].

Two famous examples of block ciphers are DES (Data Encryption Standard),
which was the encryption standard between 1977 and 2000, and AES [8] which
is the actual standard since 2001. AES ciphers blocks of length n = 128 bits,
where each block is seen as a 4× 4 matrix of bytes, where a byte is a sequence
of 8 bits.

Given a 4×4matrix of bytesM , we noteM [j] the 4 bytes at column j ∈ [0, 3],
and M [j][k] the byte at column j ∈ [0, 3] and row k ∈ [0, 3].
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Fig. 1. AES ciphering process with r = 2 rounds. Each 4× 4 array represents a group
of 16 bytes. Before the first round, X0 is obtained by applying ARK on the initial text
X and the initial key K = K0. Then, for each round i ∈ [1, 2], S, SR and MC are
applied on Xi to obtain Yi, KS is applied on Ki−1 to obtain Ki, and ARK is applied
on Ki and Yi−1 to obtain Xi. Bytes that pass through the S-box are signaled by an S.

The length of keys is l ∈ {128, 192, 256}. The number of rounds depends on
the key length: r = 10 (resp. 12 and 14) for l = 128 (resp. 192 and 256). In this
Section, we describe AES for l = 128.

The round function f of AES uses an SPN (Substitution-Permutation Net-
work) structure and is described in Fig. 1 for r = 2 rounds. Before the first
round, AddRoundKey is applied on the original plaintext X and the initial key
K0 = K to obtain X0 = ARK(X,K0). Then, for each round i ∈ [0, r − 1]:

– SubBytes, ShiftRows and MixColumns are applied on Xi to obtain
Yi =MC(SR(S(Xi))),

– KeySchedule is applied on Ki to obtain Ki+1 = KS(Ki),
– AddRoundKey is applied on Yi and Ki+1 to obtain Xi+1 = ARK(Yi,Ki+1).

These different operations are described below.

SubBytes S. The S operation, also called S-box, is a non-linear permutation
which is applied on each byte of Xi separately, i.e., for each j, k ∈ [0, 3], S
substitutes Xi[j][k] by S(Xi[j][k]), according to a lookup table.

ShiftRows SR. SR is a linear mapping that rotates on the left by one byte
position (resp. 2 and 3 byte positions) the second row (resp. third and fourth
rows) of the current matrix S(Xi), i.e., for each j, k ∈ [0, 3]:

SR(S(Xi))[j][k] = S(Xi)[(k + j)%4][k]

MixColumns MC. MC is a linear mapping that multiplies each column of the
input matrix SR(S(Xi)) by a 4×4 fixed matrix chosen for its good properties of
diffusion (see [5]). In particular, it has the Maximum Distance Separable (MDS)
property: For each column j ∈ [0, 3], it ensures:

w(SR(S(Xi))[j]) + w(MC(SR(S(Xi)))[j]) ∈ {0, 5, 6, 7, 8}

where w is a function which returns the number of bytes different from 08 (we
note 08 the byte composed of 8 bits equal to 0).



AddRoundKey ARK. ARK performs a xor operation (noted ⊕) between Yi and
subkey Ki+1, i.e., for each column and row j, k ∈ [0, 3],

ARK(Yi[j][k],Ki+1[j][k]) = Yi[j][k]⊕Ki+1[j][k]

KeySchedule KS. The subkey at round 0 is the initial key, i.e., K0 = K. For
each round i ∈ [1, r], the subkey Ki is generated from the previous subkey Ki−1
by applying the key schedule, i.e., Ki = KS(Ki−1). For keys of length l = 128
bits, each subkey Ki is a 4× 4 byte matrix. KS operates on columns:

– It first computes the first column Ki[0] from Ki−1 as follows:

∀k ∈ [0; 3],Ki[0][k] = Ki−1[0][k]⊕ S(Ki−1[3][(k + 1)%4])

where S is the SubBytes operation. Moreover, r+1 predefined constants are
added to Ki[0][0].

– For the last 3 columns j ∈ {1, 2, 3}, we have: Ki[j] = Ki[j − 1]⊕Ki−1[j]

2.2 Differential Cryptanalysis

Differential cryptanalysis was introduced in 1991 [2], and aims at evaluating
confidentiality by testing whether it is possible to find the secret key within a
reasonable number of trials. The idea is to consider plaintext pairs (X,X ′) and
to study the propagation of the initial difference between X and X ′ while going
through the successive rounds. We note δXi the xor difference between the two
plaintexts Xi and X ′i obtained after the ith round of the ciphering of X and
X ′, i.e., δXi = Xi ⊕ X ′i, and we say that δXi[j][k] = Xi[j][k] ⊕ X ′i[j][k] is a
differential byte (for each column and row j, k ∈ [0, 3]).

Let us keep in mind that the round function f is composed of a set of linear
operations (SR, MC, ARK) and a non linear operation (S). The linear oper-
ations only move differences to other places. Indeed, for every linear operation
l ∈ {SR,MC,ARK}, we have l(A⊕B) = l(A)⊕ l(B). So, we can easily predict
how differences are propagated from δXi to δXi+1 by these operations.

The non linear operation S has to be studied more carefully. As said before,
S operates on each byte Xi[j][k] separately. Therefore, we need to study how the
S-box propagates differences for a pair (A,B) of bytes. To this aim, we evaluate
the probability that the output difference S(A) ⊕ S(B) is equal to β when the
input difference A⊕B is equal to α, where α and β are bytes. This probability
is denoted Dα,β and is defined by

Dα,β =
#{(A,B)∈{0, 1}8×{0, 1}8 | (A⊕B = α) ∧ (S(A)⊕S(B) = β)}

256

For example, let us consider an input difference α = 00000001 and an output
difference β = 00100000. For the AES S-box, the transition from 00000001 to
00100000 only occurs for 4 couples of inputs, among the 256 possible couples so
thatD00000001,00100000 = 4

256 . For the AES S-box, most of the times the transition



probability is equal to 0
256 or 2

256 , and rarely to 4
256 . Note that S is a bijection so

that A ⊕ B = 08 ⇔ S(A) ⊕ S(B) = 08. As a consequence, D08,08 = 1. In other
words, if there is no difference in the input A⊕B, then there is no difference in
the output S(A)⊕ S(B).

Then, for each round i ∈ [0; r], we study difference propagation when the
16 bytes of Xi and X ′i pass through the S-box. For each column j ∈ [0; 3] and
each row k ∈ [0; 3], we note δXi[j][k] = Xi[j][k] ⊕ X ′i[j][k] and δSXi[j][k] =
S(Xi[j][k]) ⊕ S(X ′i[j][k]) the difference for the byte at column j and row k
before and after passing the S-box, respectively. The probability of obtaining
the output difference δSXi[j][k] when the input difference is δXi[j][k] is given
by DδXi[j][k],δSXi[j][k]. Hence, the probability of obtaining the output difference
δXr = Xr ⊕X ′r after r rounds given an input difference δX = X ⊕X ′ is:

p1(δXr|δX) =

r∏
i=0

3∏
j=0

3∏
k=0

DδXi[j][k],δSXi[j][k] (1)

We refer the reader to [2] for more details.
A first goal of the attacker is to find the values of δXi for i ∈ {0, . . . r} which

maximize the probability p1. Once done, the attacker retrieves some partial
information on the secret key K from the next subkey Kr+1 = KS(Kr). To do
so, the attacker has to cipher M chosen plaintext pairs (X,X ′) to obtain M
ciphered pairs (C,C ′). From those pairs (C,C ′), the attacker deciphers the last
round to partially retrieve δXr according to all possible values of some bits of
Kr+1. The correct key will be the one for which the optimal value of δXr (that
maximizes p1) appears the most frequently. The number M of plaintext pairs
required for the success of the attack may be directly computed from p1 and is
equal to c/p1 for c a small constant as shown in [2].

2.3 Chosen Key Differential Cryptanalysis

Today, differential cryptanalysis is public knowledge, so modern block ciphers
such as AES have been designed to have proven bounds against differential
attacks. However, in 1993, E. Biham proposed a new type of attack called related
key attack [1] that allows an attacker to inject differences not only between the
plaintexts X and X ′ but also between the keys K and K ′ (even if the secret
key K stays unknown from the attacker) to try to mount more powerful attacks.
The goal of the attack stays the same as previously, i.e., try to find some partial
information on the secret key K by testing some bits of the last subkey Kr on
the veracity of the differential relation which happens with probability p1.

We note Ki[j][k] and K ′i[j][k] the bytes at column j and row k in the subkeys
ofK andK ′ at round i, δKi[j][k] the difference betweenKi[j][k] andK ′i[j][k], i.e.,
δKi[j][k] = Ki[j][k]⊕K ′i[j][k], and δSKi[j][k] the difference between S(Ki[j][k])
and S(K ′i[j][k]), i.e., δSKi[j][k] = S(Ki[j][k]) ⊕ S(K ′i[j][k]). As the only bytes
of the subkeys that pass through the S-box are those that are at column j = 3,
equation (1) is modified by multiplying it by DδKi[3][k],δSKi[3][k], for each round



i and each line k, i.e., the goal of the attacker is to find the values of δXi and
δKi for i ∈ {0, . . . r} which maximize the probability p2 defined by equation (2).

p2(δXr, δKr|δX, δK) = p1(δXr|δX) ∗
r∏
i=0

3∏
k=0

DδKi[3][k],δSKi[3][k] (2)

2.4 Two step solving process for chosen key differential
cryptanalysis

Two main papers [3, 9] describe results for the chosen key differential cryptanal-
ysis of the AES and propose algorithms for finding initial pairs of plain texts and
keys which maximize the probability p2. In both papers, the problem is solved
in two steps.

First step: Search of binary solutions. In the first step, each unknown δXi is
modeled with a 4× 4 byte matrix, and a binary variable ∆Xi[j][k] is associated
with every differential byte δXi[j][k]. These binary variables are equal to 0 if
their associated differential bytes are equal to 08, i.e.,

∆Xi[j][k] = 0⇔ Xi[j][k] = X ′i[j][k]⇔ δXi[j][k] = 08

and they are equal to 1 otherwise. We also associate binary variables ∆Ki[j][k]
and ∆Yi[j][k] with every differential byte δKi[j][k] = Ki[j][k] ⊕ K ′i[j][k] and
δY [j][k] = Yi[j][k]⊕ Y ′i [j][k], respectively.

The operations that transform δX into δXr (described in Section 2.1 and
Fig. 1), are translated into constraints between these binary variables. In this
first step, the goal is to find solutions which satisfy these constraints. Solutions
of this first step are called binary solutions. Note that during this first step, the
SubBytes operation S is not considered. Indeed, the S-box does not introduce nor
remove differences, i.e., for all bytes A and B, (A⊕B=08)⇔ (S(A)⊕S(B)=08).

Second step: Search of byte solutions. In the second step, we try to transform
binary solutions found in the first step into byte solutions. More precisely, for
each binary variable ∆Xi[j][k], ∆Yi[j][k] or ∆Ki[j][k] set to 1 in the binary
solution, we search for a byte value δXi[j][k], δYi[j][k] or δKi[j][k] different from
08 so that the AES transformation rules are satisfied. Note that some binary
solutions may not be transformable into byte solutions. These binary solutions
are called byte-inconsistent binary solution, whereas binary solutions that can be
transformed into byte solutions are called byte-consistent binary solutions. Note
also that a byte-consistent binary solution may be transformable into more than
one byte solution.

Objective function. The goal is to find a byte solution that maximizes probability
p2 of equation (2), while being strictly lower than 1 (i.e., there must be at least
one difference between the initial plain texts and keys). It has been shown that
a byte solution that maximizes probability p2 also maximizes the number of



factors Dα,β of equation (2) for which α = β = 0 (because D08,08 = 1 whereas
Dα,β ≤ 4

256 if (α, β) 6= (08, 08)). Therefore, we introduce a variable obj which is
equal to the number of ∆Xi[j][k] and ∆Ki[3][k] variables of equation (2) which
are set to 1:

obj =

r∑
i=0

3∑
j=0

3∑
k=0

∆Xi[j][k] +

r∑
i=0

3∑
k=0

∆Ki[3][k]

We add the constraint obj ≥ 1, to ensure that probability p2 is strictly lower than
1. To find a byte solution that maximizes p2, we first have to find byte-consistent
binary solutions that minimize the value of obj. Note that there may exist byte-
inconsistent binary solutions that have a smaller obj value. However, these binary
solutions must be discarded as it is not possible to transform them into byte
solutions. Finally, among all byte-consistent binary solutions that minimize obj,
we have to search for the one that maximizes the actual probability p2 associated
with its best byte solution.

Existing approaches to solve the problem. In [3], step 1 is solved with a dedicated
Branch & Bound approach. In a preliminary study, we have implemented this
approach in C programming language. For r = 3 (resp. r = 4), we found the
optimal binary solution in about one hour (resp. 24 hours) on a single core PC.
In [9], step 1 is solved by performing a breadth-first traversal of a state-transition
graph that has about 233.6 nodes for a 128 bit key length. The graph needs 60GB
of memory and it is pre-computed in 30 minutes on a 12-core computer for r = 5.
Using this graph, binary solutions are found in a few seconds. Both in [3] and
[9], it is claimed that the optimal solution for r = 4 rounds has an objective
value obj = 13. We shall see in Section 6 that there exists a better solution.

3 First CP Model for Step 1

In this section, we describe a CP model for the first step described in Section
2.4. This model was initially introduced in [14].

3.1 Variables

Let r be the number of rounds, and let l = 128 be the length of the key. We
define the following binary variables (see Fig. 1 for an overview of the bytes
associated with these variables):

– For each column and row j, k ∈ [0; 3], ∆X[j][k] is the variable associated
with the differential byte δX[j][k] = X[j][k]⊕X ′[j][k].

– For each round i ∈ [0; r] and for each column and row j, k ∈ [0; 3], ∆Xi[j][k]
and ∆Ki[j][k] are variables associated with differential bytes δXi[j][k] =
Xi[j][k]⊕X ′i[j][k] and δKi[j][k] = Ki[j][k]⊕K ′i[j][k], respectively.



– For each round i ∈ [0; r − 1] and for each column and row j, k ∈ [0; 3],
∆Yi[j][k] is the variable associated with the differential byte δYi[j][k] =
Yi[j][k]⊕ Y ′i [j][k].

All these variables are binary variables, which are set to 0 when the associated
differential byte is 08 and to 1 otherwise.

3.2 Constraints

Constraints correspond to the propagation of differences by operations of the
round function f . As said before, the non linear operation S does not imply any
constraint as it neither introduces nor removes differences. The linear ARK and
KS operations involve xor operations. Therefore, we first define a xor constraint.
Then, we define constraints implied by the SR, MC, ARK and KS operations.

xor. Let us consider three differential bytes δA, δB and δC such that δA⊕δB =
δC. If δA = δB = 08, then δC = 08. If (δA = 08 and δB 6= 08) or (δA 6= 08 and
δB = 08) then δC 6= 08. However, if δA 6= 08 and δB 6= 08, then we cannot know
if δC is equal to 08 or not. When abstracting differential bytes δA, δB and δC
with binary variables ∆A, ∆B and ∆C (which only model the fact that there is
a difference or not), we obtain the following definition of the xor constraint:

xor(∆A,∆B,∆C)⇔ ∆A+∆B +∆C 6= 1

AddRoundKey. At the beginning of the ciphering process, ARK performs xor
operations on ∆X and ∆K0 to obtain ∆X0, i.e.,

∀(j, k) ∈ [0; 3]2, xor(∆X[j][k], ∆K0[j][k], ∆X0[j][k])

Then, for each round i ∈ [1, r], ARK performs xor operations on ∆Yi−1 and
∆Ki to obtain ∆Xi, i.e.,

∀i ∈ [1, r],∀(j, k) ∈ [0; 3]2, xor(∆Yi−1[j][k], ∆Ki[j][k], ∆Xi[j][k])

ShiftRows and MixColumns. For each round i ∈ [0, r−1], SR and MC are applied
on ∆Xi to obtain ∆Yi, and MC ensures MDS (see Section 2.1), i.e.,

∀i ∈ [0, r − 1],∀j ∈ [0; 3],

3∑
k=0

∆Xi[(k + j)%4][k] +∆Yi[j][k] ∈ {0, 5, 6, 7, 8}

KeySchedule. KS is applied at each round i to compute ∆Ki from ∆Ki−1, and
it is composed of xor operations between some columns of the key, i.e.,

∀i ∈ [1, r],∀k ∈ [0; 3], xor(∆Ki−1[0][k], ∆Ki−1[3][(k + 1)%4], ∆Ki[0][k])

∀i∈ [1, r],∀j∈ [1; 3],∀k∈ [0; 3], xor(∆Ki[j − 1][k], ∆Ki−1[j][k], ∆Ki[j][k])



3.3 Objective Variable

Finally, we introduce an integer variable obj, whose domain is [1, l6 ]
5, and we de-

fine obj as the number of differential variables on which a non linear S operation
is performed, i.e.,

obj =

r∑
i=0

3∑
j=0

3∑
k=0

∆Xi[j][k] +

r∑
i=0

3∑
k=0

∆Ki[3][k]

3.4 Ordering heuristics

As we want to minimize the number of ∆Xi[j][k] and ∆Ki[j][3] variables set to
1, we add a variable ordering heuristic that first assigns these variables, and a
value ordering heuristic that first tries to assign them to 0.

3.5 Limitations of the first CP model for Step 1

In [14], we evaluated the CP model described in Section 3 (implemented with
Choco 3 [19]) on two problems: the optimization problem, the goal of which is
to find a binary solution that minimizes the value of obj, and the enumeration
problem, the goal of which is to find all binary solutions for a given value of obj
(corresponding to the optimal one). These very first experimental results showed
us that Choco is able to solve these problems up to r = 5 rounds in a reasonable
amount of time. Note that it has been shown in [3] that it is useless to try to
solve these problems for more than 5 rounds because no valid characteristics
exist beyond this limit. However, solutions for low values of r are used as a basis
to build attacks with larger values of r. For example, [3] shows how to build an
attack for r = 12 and l = 192 by combining 2 solutions with r = 4. Hence, it is
very useful to find solutions with lower values of r.

For these two problems, binary solutions are not necessarily byte-consistent.
In particular, it may happen that the binary solution of the optimization problem
is byte-inconsistent. For instance, for r = 3 rounds, the optimal binary solution
has a cost of obj = 3 and there exist 512 binary solutions with this cost. However,
none of these solutions are byte-consistent: The optimal byte-consistent binary
solution has a cost of obj = 5. When solving the enumeration problem with this
cost, we find 21, 504 solutions, among which only 2 are byte-consistent. This
means that we spend most of the time at generating useless binary solutions
which are discarded in the second step because they are byte-inconsistent. Note
that approaches proposed by [3, 9] also suffer from the same problem.

5 The upper bound l
6
comes from the fact that Dα,β ≤ 2−6,∀(α, β) 6= (08, 08), and

probability p2 must be larger than 2−l which corresponds to a probability with
uniform distribution of the 2l possible keys.



4 Additional constraints for step 1

In this section, we introduce new variables and constraints that are added to the
first CP model described in Section 3. They are used to infer equality relations
between differential bytes, and these relations are used to propagate the MDS
property of MixColumns at the byte level. They remove most binary solutions
that cannot be transformed into byte solutions, thus speeding up the solution
process.

4.1 Propagation of MDS at the byte level

For each round i ∈ [0, r − 1] and each column j ∈ [0, 3], the MDS property of
MixColumns (introduced in Section 2.1) ensures:

3∑
k=0

w(Xi[(k + j)%4][k]) + w(Yi[j][k]) ∈ {0, 5, 6, 7, 8}

At differential byte level, this property still holds:

3∑
k=0

w(δXi[(k + j)%4][k]) + w(δYi[j][k]) ∈ {0, 5, 6, 7, 8}

In the first model, this property is ensured by the constraint:

3∑
k=0

∆Xi[(k + j)%4][k] +∆Yi[j][k] ∈ {0, 5, 6, 7, 8}

However, the MDS property also holds for any xor difference between two dif-
ferent columns in two different rounds of the differential byte model: ∀i1, i2 ∈
[0, r − 1],∀j1, j2 ∈ [0, 3],

3∑
k=0

w(δXi1 [(k+j1)%4][k]⊕ δXi2 [(k+j2)%4][k])

+ w(δYi1 [j1][k]⊕ δYi2 [j2][k]) ∈ {0, 5, 6, 7, 8}

To ensure this property (that removes most byte-inconsistent boolean solu-
tions), we introduce new boolean variables, called equality variables: For each
pair of differential bytes δA and δB (in δXi, δYi, and δKi matrices), we introduce
the boolean equality variable EQδA,δB which is equal to 1 if δA = δB, and to
0 otherwise. Using these differential byte equality variables, the MDS property
between different columns is ensured by the following constraint:
∀j1, j2 ∈ [0, 3],∀i1, i2 ∈ [0, r − 1],

3∑
k=0

EQδXi1
[(k+j1)%4][k],δXi2

[(k+j2)%4][k] + EQδYi1
[j1][k],δYi2

[j2][k] ∈ {0, 1, 2, 3, 8}



4.2 Constraints on equality variables

In this section, we define constraints that hold on equality variables.

Constraints derived from xor constraints. As pointed out in Section 3.2 when
defining the constraint xor(∆A,∆B,∆C) (where ∆A, ∆B and ∆C are binary
variables associated with differential bytes δA, δB and δC, respectively), if∆A =
∆B = 1, then we cannot know if ∆C is equal to 0 or 1. However, whenever
∆C = 0 (resp. ∆C = 1), we know for sure that the corresponding byte δC is
equal to 08 (resp. different from 08), meaning that the two bytes δA and δB are
equal (resp. different), i.e., that EQδA,δB = 1 (resp. EQδA,δB = 0). The same
reasoning may be done for ∆A and ∆B because (δA⊕ δB = δC)⇔ (δB⊕ δC =
δA)⇔ (δA⊕ δC = δB). Therefore, we redefine the xor constraint as follows:

xor(∆A,∆B,∆C)⇔ ((∆A+∆B +∆C 6= 1)

∧ (EQδA,δB = 1−∆C)
∧ (EQδA,δC = 1−∆B)

∧ (EQδB,δC = 1−∆A))

Constraints to ensure that equality variables define an equivalence relation. Sym-
metry is ensured by

∀δA, δB,EQδA,δB = EQδB ,δA

and transitivity by

∀δA, δB, δC, (EQδA,δB = EQδB,δC = 1)⇒ (EQδA,δC = 1)

Constraints that relate equality variables with binary differential variables. For
each pair of differential bytes δA, δB such that the corresponding binary variables
are ∆A and ∆B, respectively, we have:

(EQδA,δB = 1)⇒ (∆A = ∆B)

EQδA,δB +∆A+∆B 6= 0

4.3 Constraints derived from KS

The KeySchedule (described in Section 2.1) mainly performs xor operations: At
each round i, the first column Ki[0] is obtained by performing a xor between
bytes of Ki−1[0] and Ki−1[3]; for the last three columns j ∈ {1, 2, 3}, Ki[j] is
obtained by performing a xor between Ki−1[j] and Ki[j − 1]. Besides these xor
operations, all bytes of Ki−1[3] pass through the S-box before xoring them with
Ki−1[0] to obtain Ki[0]. Therefore, each byte of Ki, for each round i ∈ [1, r]
may be expressed as a combination of xor operations between bytes of the initial
key K0, and bytes obtained by applying the S operation on column 3 of rounds
j < i. For example (recall that A⊕A = 08 and 08 ⊕A = A):

K2[1][1] = K2[0][1]⊕K1[1][1]

= K1[0][1]⊕ S(K1[3][2])⊕K1[0][1]⊕K0[1][1]

= S(K1[3][2])⊕K0[1][1]



When reasoning at the differential byte levels, we have

δK2[1][1] = δSK1[3][2]⊕ δK0[1][1]

where δSK1[3][2] = S(K1[3][2])⊕S(K ′1[3][2]). As S is a non linear operation, we
cannot assume that δSK1[3][2] = S(δK1[3][2]). Therefore, δSK1[3][2] is a new
differential byte. However, there is a finite number of such new differential bytes:
for each round i ∈ [0, r] and each line k ∈ [0, 3], we introduce a new differential
byte

δSKi[3][k] = S(Ki[3][k])⊕ S(K ′i[3][k])
and a new binary variable ∆SKi[3][k] which is equal to 0 if δSKi[3][k] = 08, and
to 1 otherwise. Note that ∆SKi[3][k] is a redundant variable which is equal to
∆Ki[3][k]. So, we add the constraint

∀i ∈ [1, r],∀k ∈ [0, 3], ∆Ki[3][k] = ∆SKi[3][k]

We introduce this redundant variable because at the byte level this equality no
longer holds, i.e., δKi[3][k] = A 6⇒ δSKi[3][k] = S(A) (because S is a non linear
operator such that S(A⊕ B) 6= S(A)⊕ S(B) except when A = B), and for the
V sets defined below we reason at the byte level.

We propose to exploit the fact that each differential byte of Ki is the result of
a xor between a finite set of bytes. We first use the KS rules defined in Section
2.1 to build, for each i ∈ [1, r], and j, k ∈ [0, 3], the set V (i, j, k) of all differential
bytes (coming either from δK0 or from the set of new differential bytes δSKi),
such that:

δKi[j][k] =
⊕

δA∈V (i,j,k)

δA

For example, V (1, 0, 0) = {δK0[0][0], δSK0[3][1]}.
Note that these sets are computed before the search and do not depend on

the initial values of plaintexts and keys.
For each of these sets, we introduce a set variable which contains the corre-

sponding binary differential variables which are equal to 1:

V1(i, j, k) = {∆A | δA ∈ V (i, j, k) ∧∆A = 1}

For example, if∆K0[1][1] = 1 and∆SK1[3][2] = 0, then V1(2, 1, 1) = {∆K0[1][1]}.
Whenever two differential key bytes δKi1[j1][k1] and δKi2[j2][k2] have the

same V1 sets, then we may infer that δKi1[j1][k1] = δKi2[j2][k2]. More precisely,
we define the constraint: ∀i1, i2 ∈ [1, r],∀j1, j2, k1, k2 ∈ [0, 3],

(V1(i1, j1, k1) = V1(i2, j2, k2))⇒ (EQδKi1
[j1][k1],δKi2

[j2][k2] = 1)

Also, if V1(i, j, k) is empty (resp. contains one or two elements), we infer that
∆Ki[j][k] is equal to 0 (resp. a variable, or a xor between 2 variables). More
precisely, we define the constraints: ∀i ∈ [1, r],∀j, k ∈ [0, 3],

V1(i, j, k) = ∅ ⇒ ∆Ki[j][k] = 0

V1(i, j, k) = {∆A} ⇒ ∆Ki[j][k] = 1 ∧ EQδKi[j][k],δA = 1

V1(i, j, k) = {∆A,∆B} ⇒ xor(∆A,∆B,∆Ki[j][k])



From a practical point of view, V1 variables are not modeled with set vari-
ables, but with vectors of boolean variables. The dimension of these vectors is
equal to the number of possible elements in these sets, i.e., 16 + 4(r + 1) (the
16 bytes of K0 plus the four bytes that pass through an S-box at each round).
Each boolean variable V [p] is equal to 1 if the pth element belongs to V1 (i.e., if
the variable associated with the pth element is equal to 1), and to 0 otherwise.
For each of these vectors, we introduce an integer variable which is constrained
to be equal to the sum of the variables of the vector.

5 CP model for Step 2

We have implemented in Choco 3 [19] the second step that, given a binary solu-
tion, searches for the byte-consistent solution with the highest p2 value (or prove
that there is no byte-consistent solution). The CP model for this second step is
rather straightforward and mainly uses table constraints to define relations be-
tween the input and the output of the S-box function. The key point is to use
a variable ordering that first chooses variables associated with the matrix ∆Xi

such that
∑
j,k∆Xi[j][k] is minimal.

The second step is not a bottleneck and is rather quickly solved by Choco.
For example, when l = 128, it is solved in 0.41 (resp. 0.42 and 1.26) seconds, on
average, when the number of rounds is r = 3 (resp. r = 4 and r = 5), whereas it
is solved in 2.26 seconds when l = 192 and r = 8. Therefore, we have not tried
to use other solvers for this step.

6 Experimental evaluation

In this section, we experimentally compare our two CP models for Step 1: Model
1 refers to the first model introduced in Section 3; Model 2 refers to the first
model plus the additional constraints introduced in Section 4. These two models
are defined with the MiniZinc modelling language [18]. Model 2 is available at
http : //gerault.net/resources/CP_AES.tar.gz.

We compare three solvers on these models: Gecode [10] and Choco 4 [19],
which are classical CP solvers, and Chuffed [4], which is a lazy clause hybrid
solver that combines features of finite domain propagation and Boolean satisfia-
bility. All solvers are run on a single core and with default parameters6, except
option -f for Choco 4 (to break ties of the heuristic described in Section 3.4
with the last conflict heuristic). All runs are limited to one hour of CPU time
on a 2.5 - 3.5 GHz i7-4710MQ processor with 8 GB of memory.

Table 1 sums up the results for a number of rounds r ∈ {3, 4, 5}7. For each
round, the objective value obj ranges from the largest value such that Model 1
finds no solution to the smallest value such that there exists a byte-consistent
6 We tried other parameter settings. The best results were obtained with default ones.
7 Let us recall that it has been shown in [3] that it is useless to try to solve the problem
for more than 5 rounds when the key length is l = 128.



Model 1 Model 2
r obj S bin Gecode Choco 4 Chuffed bin Gecode Choco 4 Chuffed

Time CP Time CP Time CP Time CP Time CP Time CP
3 2 0 0 0.0 9E1 0.0 4E1 0.0 5E1 0 0.0 9E1 0.1 4E1 0.0 5E1
3 3 0 5E2 0.1 2E3 0.4 2E3 0.0 7E2 0 0.0 3E2 0.3 2E2 0.1 2E2
3 4 0 5E3 1.3 2E4 1.8 1E4 0.2 5E3 0 0.2 9E2 0.5 4E2 0.2 4E2
3 5 2 2E4 6.0 6E4 5.1 5E4 0.9 2E4 4 0.4 2E3 0.6 1E3 0.6 1E3
4 8 0 0 0.2 2E4 0.6 1E4 0.3 8E3 0 4.6 1E4 4.9 5E3 6.2 4E3
4 9 0 2E4 7.1 1E5 5.4 7E4 1.4 4E4 0 8.1 2E4 7.8 8E3 10.7 7E3
4 10 0 6E6 - - 1161.2 2E7 113.5 6E6 0 14.2 3E4 12.8 1E4 16.2 1E4
4 11 0 9E7 - - - - 1974.5 9E7 0 24.4 5E4 15.5 2E4 25.2 2E4
4 12 2 - - - - - - - 8 44.7 1E5 28.4 5E4 35.7 3E4
5 10 0 0 1.1 1E5 1.4 5E4 2.3 4E4 0 39.2 3E4 26.8 2E4 37.3 1E4
5 11 0 3E1 2.0 2E5 2.4 1E5 5.0 7E4 0 63.0 5E4 46.4 3E4 61.5 2E4
5 12 0 5E5 998.0 4E6 98.3 2E6 48.4 7E5 0 110.0 9E4 74.6 5E4 97.9 3E4
5 13 0 4E7 - - - - 1246.5 5E7 0 187.4 2E5 142.1 9E4 157.6 5E4
5 14 0 - - - - - - - 0 321.7 3E5 247.4 2E5 246.5 8E4
5 15 0 - - - - - - - 10 586.7 5E5 448.2 3E5 408.1 1E5
5 16 0 - - - - - - - 35 1175.8 1E6 770.1 6E5 593.5 2E5
5 17 6 - - - - - - - 50 2879.0 5E6 1524.9 1E6 885.1 4E5

Table 1. Comparison of models and solvers, on the enumeration problem. Each line
displays: The number of rounds r, the objective function value obj, the number of
byte-consistent binary solutions (S), and the results with models 1 and 2 (number of
binary solutions (bin), CPU time in seconds (Time) and number of choice points (CP)
for Gecode, Choco 4 and Chuffed). We report ’-’ when Time is greater than 3600.

binary solution. Table 1 shows us that Model 2 drastically reduces the number
of byte-inconsistent solutions: For example, there are more than 9 ∗ 107 byte-
inconsistent solutions with Model 1 when r=4 and obj=11, whereas there is no
solution with Model 2. Hence, Model 2 is much more efficient than Model 1.

For both models, the number of choice points is greater for Gecode than for
Choco, and for Choco than for Chuffed. However, choices points are handled
faster by Gecode than by Choco (probably because Choco is implemented in
Java and Gecode in C++), and faster by Choco than by Chuffed (probably due
to lazy clause generation overhead). Therefore, Choco is not faster than Gecode
on small instances, and Chuffed is not faster than Choco on small or medium-
size instances. For the hardest instance (r=5; obj=17), Chuffed is nearly twice
as fast as Choco, which is nearly twice as fast as Gecode.

All solvers are much faster than the Branch & Bound approach of [3]: Our
C implementation of this approach needs 24 hours to find an optimal binary
solution when r = 4. They are also faster and much less memory consuming than
the approach of [9], that needs 60GB and 30 minutes on a 12-core computer to
pre-compute the graph. For example, for r = 5 and obj = 17, Choco and Chuffed
need 400MB and 88MB, respectively.

New results for differential cryptanalysis. We have found two byte-consistent bi-
nary solutions with obj = 12 for r = 4 rounds, and we have proven the optimality
of these solutions by showing that there does not exist another byte-consistent



binary solution with an obj value strictly lower than 12. The optimal byte so-
lution (computed in Step 2) when obj = 12 has a probability p2 = 2−79. The
optimal byte solution and its associated binary solution are given in Appendix
A. This solution is better than the solution claimed to be optimal in [3] and [9]:
In these papers, authors say that the best byte-consistent binary solution for
r = 4 has an obj value equal to 13, and that the optimal byte solution has a
probability p2 = 2−81.

7 Discussion and Conclusion

We have introduced a CP model for solving a problem related to the chosen key
differential cryptanalysis of AES with keys of length l = 128. This model follows
the classical two step solving process of [3, 9]. In Step 1, we abstract bytes with
binary values that indicate whether the byte is equal to 08. In Step 2, we search
for non null byte values, for each binary value equal to 1. We have defined new
constraints (not used in [3, 9]) which allow us to dramatically reduce the number
of binary solutions that cannot be transformed into byte solutions. The idea is
to keep track of equalities at the byte level to remove byte-inconsistent solutions
at the binary level.

In this paper, we have described models for AES-128, with key length l=128.
We have also defined MiniZinc models for AES-192, with l=192. At this time,
the best solution we obtained for AES-192 concerns 8 rounds and has obj = 19
active S-boxes. We also plan to extend this work to other families of block ciphers,
such as Rijndael [5] for which the approach of [9] cannot be used because of its
exponential memory complexity.

In our model, we use boolean variables to represent equivalence classes de-
fined by byte equalities: For each pair of bytes, we introduce a boolean variable
which is set to 1 if the two bytes are equal, and we explicitly add constraints
to ensure symmetry and transitivity of the equality relation. Another possibility
would have been to use a graph variable (whose nodes are differential bytes, and
edges are byte equality relations), and to post an n-clique global constraint on
it, as proposed by Fages [7]: This constraint ensures that the graph is composed
of n disjoint cliques, where each clique corresponds to an equivalence class. We
have not used this constraint in our model, as it is not available in MiniZinc. We
plan to investigate the interest of this constraint using Choco.

Finally, the CP model for Step 2 mainly uses table constraints. Some AES
operations operate at the bit level (mostly xor operations), and we plan to im-
prove our model by using bit-vector variables and channeling them with integer
variables used to model bytes, as proposed in [13].

Acknowledgements. Many thanks to Jean-Guillaume Fages, for sending us Choco
4 before the official public release, and to Yves Deville, Pierre Schaus and
François-Xavier Standaert for enriching discussions on this work.
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A Solution with obj = 12 active S-boxes for AES with
r = 4 rounds and l = 128 bits

The byte-consistent binary solution is displayed below. Each binary variable
assigned to 1 is colored in blue, and is surrounded in red when it belongs to the
objective function (i.e., it passes through an S-box).

The optimal byte solution is displayed below, in hexadecimal notation.

Round δX = X ⊕X ′ δK = K ⊕K ′
Init. 0d151846 0dacf2f2 0dfff2f2 0dacf2f2
0 00000000 00ac0000 00000000 00ac0000 0d151846 0d00f2f2 0dfff2f2 0d00f2f2
1 00000000 00ff0000 00ff0000 00000000 0dfff2f2 00ff0000 0dfff2f2 00000000
2 00000000 00ff0000 00000000 00000000 0dfff2f2 0d00f2f2 00000000 00000000
3 00000000 00ff0000 00ff0000 00ff0000 0dfff2f2 00ff0000 00ff0000 00ff0000

End/4 fa000000 faff0000 fa000000 f700f2f2 f7fff2f2 f700f2f2 f7fff2f2 f700f2f2

The corresponding plaintexts X and X ′ and keys K and K ′ are displayed below,
in hexadecimal notation. The probability p2 associated with these plaintexts and
keys is p2 = 2−79 whereas it is equal to p2 = 2−81 in the solution given in [3]
and [9] (solution with obj = 13 active S-boxes).

Round K K ′

0 00000000 00000000 00000000 00000000 0d151846 0d00f2f2 0dfff2f2 0d00f2f2
1 62636363 62636363 62636363 62636363 6f9c9191 629C6363 6f639191 62636363
2 9b9898c9 f9fbfbaa 9b9898c9 f9fbfbaa 96676a3b f4fb0958 9b9898c9 f9fbfbaa
3 90973450 696ccffa f2f45733 0b0fac99 9d68c6a2 6993cffa f2b5733 0bf0ac99
4 ee60da7b 876a1581 759e42b2 7e91ee2b 19f92889 706ae773 8261b040 89911cd9

Round X X ′

Init. 6b291f8d a800d3d7 f239d5a4 510035ef 663c07cb a5ac2125 ffc62756 5cacc71d
0 6b291f8d a800d3d7 f239d5a4 510035ef 6b291f8d a8acd3d7 f239d5a4 51ac35ef
1 e5000327 00796300 0079005c 0000005a e5000327 00866300 0086005c 0000005a
2 2e2de80b 5186a759 e0d3cbb2 2b02c803 2e2de80b 5179a759 e0d3cbb2 2b02c803
3 5a74f2ae b979ce4a e286aa6a ea86647b 5a74f2ae b986ce4a e279aa6a ea79647b

End c501f2fa 4095b6af cdd8f67b 4fadf0a4 3f01f2fa ba6ab6af 37d8f67b b8ad0256


