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Abstract During the working of electrical fuses, inside the fuse element the silver ribbon first
begins to melt, to vaporize and then a fuse arc appears between the two separated parts of the
element. Second, the electrodes are struck and the burn-back phenomenon takes place. Usually,
the silver ribbon is enclosed inside a cavity filled with silica sand. During the vaporization of
the fuse element, one can consider that the volume is fixed so that the pressure increase appears
to reach pressures higher than atmospheric pressure. Thus, in this paper two pressures, 1 atm
and 10 atm, are considered. The electrical field inside the plasma can reach high values since the
distance between the cathode surface and the anode surface varies with time. That is to say from
zero cm to one cm order. So we consider various electrical fields: 102 V/m, 103 V/m, 5×103 V/m,
104 V/m at atmospheric pressure and 105 V/m at a pressure of 10 atm. This study is made in
heavy species temperature range from 2,400 K to 10,000 K. To study the plasma created inside the
electric fuse, we first need to determine some characteristics in order to justify some hypotheses.
That is to say: are the classical approximations of the thermal plasmas physics justified? In other
words: plasma frequency, the ideality of the plasma, the Debye-Hückel approximation and the
drift velocity versus thermal velocity. These characteristics and assumptions are discussed and
commented on in this paper. Then, an evaluation of non-thermal equilibrium versus considered
electrical fields is given. Finally, considering the high mobility of electrons, we evaluate the
electrical conductivities.
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1 Introduction

Electric fuses are a powerful set up to interrupt
a fault current [1,2]. For several years, researchers
and industrial partners have been trying to elaborate
a physical model of the (working) operation of a
fuse [3,4] in order to upgrade them and to extend
their application domains. All fuses have a metallic
notched ribbon [5,6] which is surrounded by silica sand
as filler and arc quenching material. After a period
of current flow the notch melts and then there is a
pre-arcing period [7,8] constituting a plasma first of
metal and second of fused silica and metal [6,9,10] after
the electric fuse arc ignition (typically considered as
the cathode anode voltage drop occurrence). Silver
is widely used for the ribbon or fuse element.
From a previous work [11] we have shown that the

vaporisation temperature of liquid silver is made
at atmospheric pressure around 2400 K and the
vaporisation temperature is higher for higher pressure.
So in this work we will only consider the plasma
and gas phase with a starting point calculation at
2400 K just after the pre-arcing time. At this step,
the plasma consisting mainly of silver is at low
pressure (atmospheric pressure) and that then begins
to increase. The pressure has not reached its maximum
and the current is not yet back to zero. Then during the
arcing time a high electrical field exists that can reach
high values as 104 V/m [12] and a pressure as high as
30 atm [13] when the silica around the silver starts to
vaporize. So we have chosen to study two plausible
pressures of 1 atm and 10 atm when the plasma is
mainly made of silver.

The fuse behaviour during its working depends on
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the network and on the electrical fault. If the fuse
works in a good way the two following phases appear:
the pre-arcing period and the arcing period consisting
of plasma. In this latter step, one can assume the
chemical equilibrium that can be estimated to be
reached after 1 ms at atmospheric pressure, and the
time will be lower for higher pressure. A plasma
consisting of a mixture of electrons, ions and neutral
chemical species is overall electrically neutral. Several
thermodynamic states (complete thermodynamic
equilibrium CTE; local thermodynamic equilibrium
LTE; partial local thermodynamic equilibrium PLTE;
chemical equilibrium and thermal equilibrium) can be
defined, allowing the use of statistical thermodynamic
formulation as a Planck function, Maxwell distribution,
Boltzmann distribution [14−18]. So to characterize and
to justify the assumptions made in this kind of complex
plasma, researchers and engineers need basic data.
Due to their high mobility the electrons inside the
plasma are the first particles reacting by an external
electrical signal. The plasma frequency determines
the time scale of a plasma submitted to external
electric perturbations. So to guarantee assumptions
of the plasma neutrality, the plasma frequency has to
be higher than electrical frequency signal [15]. One
has to estimate the drift velocity of electrons versus
thermal velocity allowing the use of the Maxwellian
distribution for electrons and heavy particles. The
plasma ideality can be estimated by a comparison of
electrostatic energy versus thermal energy. The validity
of the Debye-Hückel approximation has to be verified.
As a matter of fact, if the density of charged particle
is high enough then collective effect is important and
the use of thermodynamic properties is not valid. We
can then add a corrective term in the Debye-Hückel
approximation to the thermodynamic properties [15,17].
The quasi electrical neutrality assumption has to
be checked [14−17]. This latter is satisfied if lower
dimension of the plasma volume is higher than several
Debye lengths. When an electrical field is applied on
plasma, a non-thermal equilibrium characterized by
a ratio between the electronic temperature and heavy
species temperature θ can appear [17−19]. By an energy
balance one can estimate the thermal non-equilibrium
parameter θ versus electrical field. Then one can
calculate the electrical conductivity from the mobility
of electrons [14−17]. The advantage of this method is
that it depends directly on the physical parameters
notably for the study of the sheaths or in the arc roots
studies and it will give available results. Unlike the
Chapman-Enskog method, this is a little more complex
to program and gives more precise results only if all of
the parameters as collision integrals are well known.

In the first part, we describe the formulation
to obtain the characteristic parameters: plasma
frequency, thermal and electrostatic energy, mean
distance between particles, Debye lengths, thermal
and drift velocities, mean free path of electrons and
thermal non-equilibrium parameter θ. The prerequisite

is the composition that is obtained from the Gibbs
free minimization readily used in plasma out of
equilibrium. In the second part we calculate the
electrical conductivity at thermal equilibrium and for
two pressures 1 atm and 10 atm, and out of thermal
equilibrium (θ=2). The assumptions of the modelling
are tested. In the third part, we evaluate the
thermal non-equilibrium when an electrical field is
applied and estimate the electrical conductivity. We
discuss the influence of Debye length formulation [20]

(depending only on electrons [21], depending on ions
and electrons [22] and a new formulation from Ghorui
et al. [23]) on electrical conductivity. The assumptions
of the modelling are checked and finally the electrical
conductivity of silver plasma is presented.

2 Theoretical formulation

The plasma frequency is the characterization of the
oscillation of electrons around an equilibrium position
due to an external perturbation. As a matter of
fact, when the electrons perform a tiny movement due
to a perturbation, then the Coulomb force pulls the
electrons back. An oscillation occurs at a frequency:

fp =
1
2π

√
nee2

meε0
, (1)

where ne is the concentration of the electrons, e and me

are, respectively, the electrical charge and the mass of
an electron.

The criterion of plasma ideality is that the thermal
energy is higher than the electrostatic energy and that
can be written as [16,24]:

1
8πε0λd

N∑

i=1

niq
2
i ¿

3
2

N∑

i=1

nikTtri, (2)

where ni is the concentration of the ith chemical
species, qi the electrical charge, N the total number of
species present in the plasma, λd the Debye length, k is
the Boltzmann constant, ε0 the vacuum permittivity
and Ttri the translational temperature of the ith
chemical species. This first condition allows the use
of Gibbs free energy minimization [25].

To obtain the formulation of the Debye length we
have to assume that the mean distance d between
particles satisfies the following relation:

d ¿ 3
√

4πλd. (3)

This second condition allows the use of Debye-Hückel
approximation [14,16].

We have to notice that some discrepancies are
observed concerning the choice of Debye length. Several
authors assume that the Debye length concerns only the
electrons since their mobility due to their lower mass is
higher than the one of the heavy species [21]:

λde =
(

1
kε0

e2ne

Ttre

)−1/2
, (4)
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where subscript e denotes electrons.
A complete development of Debye length in plasma

out of thermal equilibrium leads to the following
relation [22]:

λd =

(
1

kε0

N∑

i=1

q2
i ni

Ttri

)−1/2

. (5)

Recently Ghorui et al. proposed that the ions and
the electrons are incorporated in the Debye length but
assumed that they are under thermal equilibrium at
translational temperature of electrons [23]:

λdG =

(
1

kε0Ttre

N∑

i=1

q2
i ni

)−1/2

. (6)

The assumption of a Maxwellian distribution in order
to use the Gibbs free energy method [25] in the presence
of electrical field involves that the drift velocity has to
be lower than the thermal velocity:

vd ¿ v̄e. (7)

This third condition allows the use of the Maxwellian
distribution.

In the previous formulations, the chemical species
concentration is prerequisite. Several chemical species
have to be taken into account for silver plasma:
concerning the monatomic species we take into account
Ag, Ag+, Ag++, Ag− and electrons; for the molecules
we take into account Ag2. We assume that the
plasma is at chemical equilibrium and out of thermal
equilibrium. In the literature, one can find different
methods to obtain local chemical equilibrium plasma
composition such as the method using the mass action
law [26,27]. Nevertheless, we use the Gibbs free energy
minimization [11,27]. Moreover, electrons have a higher
mobility than other particles. They get a mean kinetic
energy higher than those of other charged particles in
the electrical field. So, assuming Maxwell-Boltzmann
distributions, it can be considered that there are
two kinds of translational temperatures: one for free
electrons Ttre and the other one for heavy species Ttrh.
Furthermore, if it is assumed that populations among
different excited states follow Boltzmann distribution
with different temperatures, then we define:

a. The atomic excitation temperature T at
ex from the

electronically excited atomic energy levels for all atomic
species.

b. The rotational temperature Trot from diatomic
rotational levels for Ag2.

c. The vibrational temperature Tvib from
vibrational energy levels for Ag2.

d. The diatomic excitation temperature T diat
ex from

electronically excited molecular energy levels.
Some assumptions have to be made about these

temperatures [27,28]. It is assumed that rotational
temperature Trot and translational temperature of
heavy species Ttrh are equal: Trot ≈ Ttrh. Concerning

the excitation temperatures T at
ex and T diat

ex and
vibrational temperature Tvib, it is assumed that
they are close to the translational temperature of
electrons T at

ex = T diat
ex = Ttre even if it is still a

discussed point [27]. From these assumptions a θ
ratio between the translational temperature of electrons
and that of heavy species θ = Ttre

Ttrh
can be defined,

which characterizes the thermal non-equilibrium in the
plasma.

Chemical equilibrium is reached when the Gibbs
free energy is minimal. Several discussions have
been made about the available method of composition
calculation [26,29]. The results are quite similar if
thermal non-equilibrium does not exceed θ = 2. This
thermodynamic function is written as:

G =
N∑

i=1

ni

×
(

µ0
i + kTtri ln

(
niTtri∑N
i=1 niTtri

)
+ kTtri ln

(
p

p0

))
,

(8)
with p the pressure of the plasma, p0 the reference
pressure (105 Pa) and µ0

i the chemical potential of the
ith species. The monatomic and diatomic chemical
potentials are calculated as described in Refs. [11, 28].
To solve this equation resulting from dG=0 at constant
pressure and temperature, two other relationships are
needed, respectively those of electrical neutrality and
Dalton’s law:

N∑

i=1

nizi = 0, (9)

p−∆p =
N∑

i=1

nikTtri , (10)

where zi is the number and the sign of electrical charge
of the ith species; ∆p is the pressure correction due
to Coulombian interactions between charged particles.
This pressure correction is written as:

∆p = − 1
24πε0λd

3 . (11)

To establish the energy conservation, the free electrons
gain energy in the electrical field and they transmit
energy to particles by collisions.

For the thermalisation process we introduce the
mean free path of free electrons (subscript fe) taking
electrons into account [30]:

λfe =
{

nAgQ̄
(1,1)
eAg +

√
2 (ne) Q̄(1,1)

ee +
(
nAg+

)
Q̄

(1,1)
eAg+

+
(
nAg−

)
Q̄

(1,1)
eAg− + nAg2Q̄

(1,1)
eAg2

}−1

, (12)

where nj is the concentration of chemical species j and
Q̄

(1,1)
ej is the elastic average momentum cross section

between electrons and the jth considered chemical
species.

V (r) = − 1
4πε0

Zje
2

r
exp

(
− r

λd

)
, (13)
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where e is the elementary charge, Zj is the number
of elementary charges (−1 for electrons and Ag− and
the number of positive charge for positive ions) of the
jth chemical species, r the distance between the two
particles and λd is the Debye length. As mentioned
previously, we have to notice that there is some debate
about the appropriate choice of the Debye length.

To determine the average momentum cross sections
Q̄

(1,1)
ej , we use the table of Mason et al. [31] completed

by those of Devoto [32].
Since the silver polarisability value is of the

same order that the one of copper [33], we estimate
the momentum-transfer cross section from those of
copper [34−39]. At high energy we use the data of Mayol
et al [34]. We obtain the average momentum cross
sections Q̄

(1,1)
ej by integration with a 24 points Gauss-

Legendre method and using the physical relations given
in Ref. [40].

According to our knowledge no data exist for the
collisions between e− and diatomic molecule of silver
Ag2, so we estimate it from the following relation:

Q̄
(1,1)
eAg2

= π2/3

√
2
(

Q̄
(1,1)
eAg
π

)3/2

. This formulation has

been obtained from p.987 of Ref. [40] and has been used
in Ref. [22] and recently in Ref. [41].

The time τ between two collisions can be estimated
by τ = λfe

ve
where ve is mean thermal velocity of

electrons. With the assumption that the drift velocity
which contributes to the electrons flux is low compared
to the mean velocity of electrons from the Maxwellian
distribution one can obtain:

ve =
√

8kTtre

πme
, (14)

where me is the mass of one electron.
We assume that the electrons relax to a Maxwellian

distribution with the temperature Ttrh and that the
heavy particles relax to a Maxwellian distribution
with the temperature Ttre. Hence, by equalling the
energy transmitted to heavy particles by electrons:
3
2k (Ttre − Ttrh) 2me

mh

1
τ with the energy gained in the

electrical field by electrons between two collisions:
e2 E2

me
τ , we can deduce the ratio whose definition is

θ = Ttre
Ttrh

as:

θ2 − θ =
πe2

24k2

E2

T 2
trh

mh

me
λ2

fe, (15)

with mh the mean value of mass balanced with the
concentrations of heavy particles and E the value
of electrical field. Since the ratio θ depends on
chemical composition and the composition depends on
the thermal non-equilibrium θ, we resolve the Eq. (15)
by a dichotomy numerical method. For each step of
heavy species temperature, the value of θ is calculated.

Following Ref. [18], we have to notice that the
electron density has to be high enough to obtain
Maxwellian distribution and Boltzmann distribution.

To approach a stationary state the loss of electrons
has to be equal to the production of electrons. We
neglect the other energy losses due to radiation and
heat conduction. From Refs. [18] and [42], we can
roughly estimate the minimal electronic density needed
to satisfy these latter remarks. Thus, we obtain for
electrons a concentration around 1016–5×1017 m−3.
Furthermore, the thermal equilibrium is reached when
the transfer rate of energy due to collisions between
electrons and heavy particles is larger than the rate of
energy gain in the applied field.

To determine the electrical conductivity, we consider
a slice of electrons that moves to the anode. The
interaction of the slice with the medium is due to the
collisions between the electrons of the slice with ions
and neutral particles. We introduce the drift mean free
path:

λf drift =
{

nAgQ̄
(1,1)
eAg +

(
nAg+

)
Q̄

(1,1)
eAg+

+
(
nAg−

)
Q̄

(1,1)
eAg− + nAg2Q̄eAg2(1,1)

}−1

.

The electron conductivity is then written as:

σ =
nee

2

me−

λf drift

ve
. (16)

This can be compared to the electrical conductivity
obtained with the third order approximation of the
Chapman-Enskog method σCE

[20−22].

3 Composition, electrical con-
ductivity versus temperature

In Fig. 1(a), we represent the composition of a
silver gas and plasma versus temperature at thermal
equilibrium and pressures of 1 atm and 10 atm and in
Fig. 1(b) the composition is given for a non-thermal
equilibrium parameter θ of 2 at 1 atm. In our previous
paper [11] we have shown that the vaporisation of liquid
silver appears around 2400 K for 1 atm and 2900 K for
10 atm. So, we plot the composition in a scale between
2400 K and 9 000 K. In these figures we remark that the
concentration of monatomic silver is higher for higher
pressure in the considered temperature range. This
is due to the fact that the monatomic silver is the
main chemical species in the considered temperature
range and then following the Dalton law (10) its
concentration is higher for higher pressures. The
electron concentrations have a similar behaviour with
a higher concentration about a ratio of 2.5 for pressure
of 10 atm than for pressure of 1 atm. When a thermal
non-equilibrium is taken into account (Fig. 1(b)) the
composition is different; we have an ionisation of silver
and ionisation of silver ions at lower heavy species
temperature. So the electrons’ concentration is higher
for lower heavy species temperature.
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Fig.1 (a) Composition of silver plasma versus

temperature for two pressures P= 1 atm (dashed lines)

and P= 10 atm (solid lines) at thermal equilibrium, (b)

Composition of silver plasma versus temperature for a

pressure of 1 atm and thermal non-equilibrium parameter

θ = Ttre
Ttrh

= 2

Fig.2 Plasma frequency of silver plasma versus heavy

species temperature for two pressures (1 atm and 10 atm)

at and out of thermal equilibrium (θ=1 and θ=2)

In Fig. 2, we have plotted the plasma frequency for
two pressures at thermal equilibrium and for a non-
thermal equilibrium parameter θ of 2 at 1 atm. The
plasma frequency values obviously follow the electronic

concentration, see Eq. (1). The plasma frequency is
higher for higher temperature and higher for higher
parameter θ for a given heavy species temperature.
The plasma frequency values vary between Gigahertz
to Terahertz in the considered temperature range.

Fig.3 (a) Electrostatic energy density and thermal energy

density of silver plasma versus heavy species temperature

at thermal equilibrium for two pressures and out of thermal

equilibrium at atmospheric pressure, (b) Debye length

(dashed lines) and distance between particles (solid lines) of

silver plasma versus heavy species temperature at thermal

equilibrium θ=1 for two pressures and out of thermal

equilibrium θ=2 at atmospheric pressure and for various

considered Debye length formulations

In Fig. 3(a) and (b) we have plotted the values
contained in the two criteria (2) and (3) with the Debye
length calculated with Eq. (4) versus heavy species
temperature. Since the chemical species follow the
Dalton law (10), one can observe that the second
member of Eq. (2) depends on the pressure. So we
obtain approximately (only the variation due to the
pressure correction in Debye-Hückel approximation ∆p
(10)) for the thermal energy density, the same value
for thermal equilibrium and non-thermal equilibrium.
The electrostatic density energy increases when the
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thermal non-equilibrium parameter increases. As
a matter of fact when the thermal non-equilibrium
increases, the electrons and ions concentrations
increase. Consequently, the density of charged particles
increases and then the electrostatic density energy
increases. For the considered temperature and pressure
the criterion of plasma ideality (2) is satisfied. In
Fig. 3(b), the distance between particles and the Debye
length is plotted. We remark that the Debye length is
higher than the distance between particles for two cases,
namely at atmospheric pressure and at ten times the
atmospheric pressure at thermal equilibrium but not
for the case out of thermal equilibrium θ=2 with the
Debye length Eqs. (5) and (6). Nevertheless, taking
the coefficients 3

√
4π the condition (3) is satisfied. A

featured result is that the thermal non-equilibrium
parameter can lead to a non-satisfied condition of
(3) leading to the plasma to be out of Debye-Hückel
approximation in our considered temperature range.

Fig.4 Electrical conductivity (S/m) calculated with the

Chapman-Enskog method at the third order approximation

(solid lines) and from the electrons mobility (dashed lines)

at thermal equilibrium θ=1 for two pressures and out of

thermal equilibrium θ=2 at atmospheric pressure and for

various considered Debye length formulations

With the composition results (Fig. 1), we have
calculated in Fig. 4 the electrical conductivity
with the classical method used in the case of
gas, namely Chapman-Enskog at the third order
approximation [20−22], and with the described method
with electron mobility (17) with the three Debye
lengths (4), (5) and (6). At thermal equilibrium,
the results are quite similar within 2‰ and the
main difference can be found between the third
approximation of Chapman-Enskog and from value
found from the mean free path of electrons within
15%. We can notice that electrical conductivity is
higher for higher thermal non-equilibrium at a given
heavy temperature because the electronic concentration
is higher. According to Le Chatelier’s law [43], the
increase of the pressure opposes changes to the original
state of equilibrium, so the ionisation appears at a

higher temperature for a higher pressure, the electrical
conductivity is lower for higher pressure.

4 Evaluation of thermal non-
equilibrium and estimation of
electrical conductivity versus
electrical field

The electrical field during fuse operation can reach
an upper value around 104 V/m. So we consider
five characteristic electrical fields (E=5×102 V/m,
103 V/m, 5×103 V/m, 104 V/m at 1 atm and 105 V/m
at 10 atm) that can appear during fuse arc period [8,9].
The electrons get energy from electrical field and
partially transfer it to the heavy particles by collisions.
So two temperatures can exist, one for the electrons
the other for the heavy species. Before we can get an
estimation of the thermal non-equilibrium θ we have
to estimate the validity of the criteria of the model.
In Fig. 5(a), the electrostatic energy density and the
thermal energy density are plotted versus heavy species
temperature Th = Ttrh for two electrical fields 104 V/m
at 1 atm and 105 V/m at 10 atm. The electrostatic
energy density is lower than the thermal energy
density in the temperature range and for considered
electrical fields. The thermal criterion concerning the
electrostatic energy density and the thermal energy
density (2) and consequently the Gibbs free energy
utilization [19] is satisfied in our temperature range and
in our electrical field range.

In Fig. 5(b), we have plotted the Debye length for
the three Eqs. (4)–(6) and the mean distance between
particles. The criterion (3) concerning the Debye-
Hückel approximation is satisfied for the considered
electrical fields, pressures and temperatures range
taking the ratio of 3

√
4π of Eq. (3) into account.

In Fig. 5(c), the drift and thermal velocities are
plotted versus heavy species temperature. We notice
that the approximation of Maxwellian distribution (7)
is satisfied since the drift velocity is lower than the
thermal velocity. Consequently, we can fix a limit
of validity of 104 V/m at atmospheric pressure and
105 V/m at 10 atm.

In Fig. 6, we have plotted the thermal non-
equilibrium parameter θ for several electrical fields.
Obviously one can observe that the thermal equilibrium
is higher for higher electrical field and the thermal
equilibrium is reached for electrical field lower that
103 V/m in considered heavy species temperature
range. The thermal equilibrium ratio is around the
same value for the various considered Debye length
Eqs. (4), (5) and (6).

In Fig. 7, using Eq. (17) we have plotted the
electrical conductivity for several electrical fields
and two pressures. The ratio between electrical
conductivity obtained with various considered Debye
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Fig.5 (a) Electrostatic energy density (dashed lines) and

thermal energy density (solid lines) of a silver plasma

versus heavy species temperature for several electrical fields

and two pressures (1 atm and 10 atm), (b) Debye length

(dashed lines) and mean distance between particles (solid

lines) versus heavy species temperature in a silver plasma

for several electrical fields and two pressures (1 atm and

10 atm), (c) Drift and thermal velocity versus heavy species

temperature for several electrical fields and two pressures

(1 atm and 10 atm)

length Eqs. (4), (5) and (6) can reach 1.3. We
can observe that for the same pressure the electrical
conductivity at 104 V/m (non-thermal equilibrium) at
low temperature can reach a value higher of several
decades than the one obtained at 103 V/m (closed to
the thermal equilibrium). As a matter of fact, when the

electrical field increases the non-equilibrium parameter
θ (Fig. 6) increases and then the ionisation increases for
a given heavy species temperature. For higher pressure
the electrical conductivity is lower for a given electrical
field. So we find around the same values for electrical
conductivity at pressure of 10 atm with an electrical
field of 105 V/m than the values obtained at pressure
of 1 atm with electrical field of 104 V/m. As a matter
of fact, and as we have shown in section 2, when the
pressure increases the ionisation appears at a higher
temperature.

Fig.6 Thermal non-equilibrium ratios versus heavy

species temperature for several electrical fields and two

pressures (1 atm and 10 atm)

Fig.7 Electrical conductivity of a silver plasma versus

heavy species temperature for several electrical fields and

two pressures (1 atm and 10 atm)

5 Conclusion

The calculation of electrical conductivity in the
presence of the high electrical field of pure silver
plasma is required before we can understand the fuse
behaviour during its work. To our knowledge, no such
needed data are available. In a first step we have
described the physical model to obtain the thermal non-
equilibrium parameter and the electrical conductivity.
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In a second step, we have tested the physical validity
assumptions about the Maxwellian distribution, the
plasma ideality, the Debye-Hückel approximation and
the quasi electrical neutrality in such conditions. We
have shown that our model can be considered as
valid for pressure 1 atm and electrical field lower than
104 V/m and lower than 5 × 105 V/m for 10 atm
The formulation of Debye length needed notably to
describe the interaction between charged particles is
debatable. We have made the calculation taking the
three main kinds of Debye length equations. We have
shown that the thermal non-equilibrium parameter is
not too sensitive to the Debye length equations unlike
the electrical conductivity as mentioned in Ref. [23].
The thermal non-equilibrium parameter and electrical
conductivity have been estimated for several electrical
fields and pressures. In the fuse application the
electrical field varies during time, due to both the
distance between electrodes varying in time (burn-
back) and to the applied electrical potential. The
frequency of the latter has to be lower than the
plasma frequency that has been already calculated in
this paper. This work has to be pursued for higher
plasma density leading to metallic plasma [16] and for
other kinds of electrodes [44]. The theoretical study
has also to be pursued with an evaluation of the
electrical conductivity obtained from measurements at
the same time of the current, the voltage, a speed
camera (the electrical field and the plasma volume) and
temperatures from spectroscopic measurements.
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