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Abstract— The H4 robot is a parallel machine with four
degrees of freedom. The purpose of this work is to evaluate
the H4 stiffness, ie the displacement response of the tool
controlled point when it is submitted to a given force using
an analytical method. A stiffness analysis based on analytical
calculations is performed. It has the advantage to be rather
fast and easy to integrate into a design optimization. This
method allows to compute stiffness matrix of parallel robots
and takes into account particularity of parallel robots with
articulated traveling plate. Some numerical results are shown
at the end of this paper for the H4 first prototype.

Index Terms— Parallel manipulator, Stiffness modeling,
Lower mobility, Articulated traveling plate

I. INTRODUCTION

Parallel manipulators are still a broad topic of research
and the possible mechanical architectures are not all dis-
covered yet. Since the first publications on this topic, the
major part of research efforts was devoted to six-degree
of freedom (dof) manipulators [1], mainly hexapods like
Gough [2] or Stewart [3] platforms.

Clavel contributes to a new phase in research on par-
allel manipulators by putting the focus on lower mobility
parallel mechanisms by publishing his results on the Delta
Architecture [4] at the end of the 80’s. This four-dof robot
has the same motions (Schoenflies motions [5]) as a serial
SCARA arm while being light weight. As a consequence,
H4 robot is well suited to high speed pick-and-place tasks.

A lot of authors work on improving lower manipulability
parallel manipulators by finding new architectures [6]. The
H4 robot created by the authors in 1999 has the same
motions ie three translations plus one rotation about a given
axis (vertical axis has been chosen for the prototype).

Stiffness is a crucially important performance specifica-
tion of parallel kinematic machines. In order to get a real
industrial machine, the H4 prototype (Fig. 1) must be opti-
mized. Because of its long arms and rods, designers must
be particularly careful with the machine stiffness, which
has direct consequences on manipulation accuracy [7].
Several studies were performed by inventors to determine
the geometric model, the usable workspace and the forces
into the machine components [8]. The work presented in
this paper is about stiffness modeling of H4 robot and
can be easily extended to lower manipulability parallel

manipulators and manipulators with articulated traveling
plate. This paper is divided in four parts:

• firstly the robot kinematics and its parameters are
described

• the method is introduced
• and developed in the fourth section
• numerical results and comments are given in the last

section
The conclusion of this paper mentions the feed-back of this
work on the design of future parallel manipulators.

Fig. 1. H4 robot prototype

II. ROBOT KINEMATICS DESCRIPTION

Robot kinematics can be described by its joint-and-
loop graph (Fig. 2) where each box stands for a revolute
(R) or spherical (S) joint (see table I). Grey boxes stand
for actuated joints. Robot practical design is extremely
simple thanks to the use of DD motors. Rods are made of
carbon fiber; arms, forearms and traveling plate are made
of aluminum alloy. Before going further robot’s geometry
must be modeled. As depicted on Fig. 3:

• Pi is a point belonging to ith actuator’s revolute axis
(i = 1..4)

• ui is the unitary vector defining the rotation axis
• Aij is the center of ball joint number j on the actuator

side (j = 1..2)



• Ai is the middle of Ai1 and Ai2

• Bij is the center of ball joint number j on the traveling
plate side

• Bi is the middle of Bi1 and Bi2

• vk is unitary vector of revolute joint on side number
k of the traveling plate (k = 1..2), see Fig. 4

• Ck is the center of the revolute joint on the side
number k of the traveling plate

• D is the end point of the robot
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Fig. 2. H4 robot - joint-and-loop graph

TABLE I
KINEMATIC CHAINS DESCRIPTION

symbol joint name symbol joint name
P prismatic S spherical
R revolute X with sensor
U universal X actuated
C cylindrical
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Fig. 3. H4 robot - CAD model and parameters

H4 robot prototype was built according to the following
simplifying hypothesis:

• Points Pi and Ai are supposed to be located in the
same plane perpendicular to ui

• All forearms are supposed to have the same length r
• All bars are supposed to have the same length l

Geometrical constraints (these constraints are required
to have robot’s end point desired displacements ie three
translations and one rotation about z axis [9]):

• Vector defined by Ai1 and Ai2 is collinear to ui

• Vector defined by Bi1 and Bi2 are collinear to ui

• v and v are collinear to z axis and are replaced by
z in following developments

 v1 v2

C1

D   

Fig. 4. H4 robot: Close view of traveling plate and parameters

As this robot has a particular architecture, some expla-
nations about its behavior are now given. The robot is
composed by four ”legs” linking the fixed part (with the
reference frame visible in Fig. 3) to the traveling plate.
Mainly, technology and working principle is identical to
Delta robot. The major improvement is based on the use
of an articulated traveling plate instead of a rigid one. The
shape of the traveling plate looks like letter ”H” composed
by two lateral bars linked to the central bar by two revolute
joints. Each leg is composed by a forearm and a ”spatial
parallelogram” ie a four bar linkage with spherical joints,
each side having the same length as the opposite one.

When the robot is assembled, lateral bars are parallel to
each other. In such a configuration, if geometrical design
rules are respected during the design stage, ”spatial par-
allelograms” are planar. When the robot moves, excepted
for singular configurations, the lateral bars remain parallel
and ”spatial parallelograms” planar. The end effector is
linked to the central bar. Its possible displacements are
three translations and one rotation about a given axis.
This rotation is obtained by internal deformation of the
articulated traveling plate.

When robot components don’t have their theoretical
geometry due to bad manufacturing process or deformation
linked to external forces applied to the robot, following
changes occur:

• Traveling plate doesn’t remain parallel when moving
• Lateral bars don’t remain parallel to each other

To extend the range of motion of the traveling plate
(limited to 45 degrees) and to reach a 180-degree rotation
capability in both directions, traveling plate design has been
improved and equipped with a mechanical amplification
system with a ratio of 4:1 that can be seen on Fig. 4. This
device was excluded from the stiffness modeling presented
in this paper.



III. STIFFNESS MODELING METHOD

In this section, a method giving a good estimate of
robot stiffness is presented. This method is similar to
the one presented in [7] for a Gough Stewart Platform,
assuming that machine elements are considered as springs.
The advantage of this method is to provide results with
low computation time that can easily be integrated during
the robot design stage in an iterative design process or in a
stiffness optimization procedure. This method is based on
classical mechanical tools and equations. The application
of this method to lower mobility parallel mechanisms is
more difficult than the one for hexapods (presented in
[7]). Moreover, H4 robot has particularities that must be
integrated to the model and complicate this modeling:

• legs stress is not only tension/compression but also
includes bending of the arms

• the traveling plate is not ”rigid” because of the two
passive joint added

For this method (see Fig. 5) virtual forces and torques
are applied on the end point. The load of all the robot
elements is derived. Giving this load, elements deformation
is computed. Using small displacement theory (first order
approximation), end point displacement is computed. As
a final result a relation between an applied force and a
resulting displacement is obtained in a linear form. Matrix
contained in this relation is then considered as the robot
stiffness matrix.

 1 - F o r c e  a n d  t o r q u e  a p p l i e d  t o  e n d  p o i n t  

2- S t r e s s  i n  m a c h i n e  e l e m e n t s  

3  - M a c h i n e  e l e m e n t s  d i s p l a c e m e n t  

4  - E n d  p o i n t  r e s u l t i n g  d i s p l a c e m e n t  

5  - T o t a l  e n d  p o i n t  d i s p l a c e m e n t  

Fig. 5. Method for analytical stiffness modeling

Only a restrained set of elements are taken into account
in the following derivations. The considered elements are
the ones who have the lower stiffness regarding their
shape and material. Stresses taken into account to compute
stiffness are: actuators stiffness (control stiffness), bending
in forearms, torsion in forearms and tension-compression
in bars

Elements neglected are: machine frame, joints, lateral
and central bars of the traveling plate and compression in
forearms.

IV. ANALYTICAL DEVELOPMENTS

A. Preliminary statements

The goal of this first subsection is to find linear relations
between displacement of characteristic points and end point
displacement (step 4 of the method Fig. 5). To do so, finite
displacement theory is used. The following relations give
machine geometrical models:

{

‖wij‖
2 = l2ij

i = 1..4, j = 1..2
(1)

where wij is the vector linking point Aij to Bij .
First order approximation gives:

(δbij − δaij).wij = lij .δlij (2)

where δaij (resp. δbij ) is the change in vector linking
point O to Aij (resp. Bij ).

In this relation, δlij and δaij depend directly on ma-
chine elements deformation. δbij depends on end point
displacement and traveling plate displacement. When a load
is applied on machine elements, their geometry change and
nominal conditions expressed in section II are no longer
respected. Under load, additional displacements must be
considered: central bar rotation around y and z axes, and
rotation of lateral bars around v or v axes. In fact, the
traveling plate is considered as a mechanism composed
by rigid bodies. A set of eight parameters is necessary
to express traveling plate possible spatial displacements
(including its internal dof). The vector used to model its
displacement is:

δtp =
[

δDT δΩT δω1 δω2

]T
(3)

where:
• δD is vector composed by Cartesian coordinates of

point D displacement
• δΩ is vector composed by rotation angles of robot

end part
• δωk is the rotation angle of revolute joint number k

(k = 1 for i ∈ 1, 2, k = 2 for i ∈ 3, 4 )

δck = δd + sk × δΩ (4)

δbij = δck + tij × (δωkz + δΩ) (5)

where δck (resp. δd ) is the change in vector linking
point O to Ck (resp. D ) and sk (resp. tij) is the vector
linking point Ck to D (resp. Bij to Ck ). All this set of
equations can be easily written in a linear form:

M.δtp = M.δε (6)

where:
M =

[

wij
T (wij × (sk + tij))

T · · ·

(wij × tij).z 0
0 (wij × tij).z

]

M =
[

spar([wij ]
T ) diag([lij ]

T )
]



δε =
[

δa · · · δa δl11 · · · δl42
]

Note that dimension of δε is 34. spar() operator is
defined as follows:

spar(X) =











X  · · · 

 X  

 
. . . 

 · · ·  Xn











(7)

where matrix X has n lines and Xi is the ith line of
matrix X .

Now, displacement of all characteristic points of the
mechanism are computed for a virtual force applied to the
traveling plate (steps 1,2 and 3).

B. Displacement of point A

1) Actuator control stiffness: The kinematics I/O law of
this robot can be written as:

Jx.ẋ = Jq.q̇ or ẋ = J .q̇ (8)

where:

• ẋ =
[

ẋ ẏ ż θ̇
]T

is the vector composed by
cartesian and angular velocities of end point

• J , Jx and Jq are jacobian matrices
• q̇ is the vector composed by actuators angular veloc-

ities

Let’s consider a force Fd and torque Td applied to the
end point D about possible displacement directions of the
traveling plate. If there is no friction in the robot, then input
power equals output power that leads to (as this relation is
valid for every set of q̇ and Γact ):

Γact = JT .Γd (9)

where

• Γact is the vector composed by actuators torque
• Γd =

[

Fd
T Td.z

]T

If kc is the angular control stiffness of the actuator
- all actuators are supposed to be identical, the angular
displacement ∆q of the actuators is :

∆q = JT .Γd/kc (10)

This can be written:

δεcont = M∆q (11)

with:
M =

[

spar([ (pi × ui)
T (pi × ui)

T ]) 
]T

where pij is the vector linking point Aij to Pi

δεcont = M.JT .Γd/kc (12)

2) Forearms bending stiffness: In this subsection, only
bending moment around ui is taken into account. Bending
in other directions can be negligible for the geometry of
the studied robot because the biggest component of forces
that produces bending is along z axis. Another reason is
that the effects of bending in other directions on traveling
plate displacement are lower.

Forearms are considered as constant section beams with
a pure force applied to one end. This force can be expressed
as:

ff = Γact/r (13)

Displacement of points Ai is then perpendicular to
forearms and to vector ui . As all forearms shapes and
material are identical, the norm of this displacement can
be expressed as:

‖δAf‖ =
r3

3.E.I
ff (14)

where:
• E is Young’s modulus of forearm material
• I is the quadratic momentum of the beam section
This leads to:

δεbend = r
3.E.I

.M.JT .Γd (15)

3) Forearms torsion stiffness: Considered deformations
generate a set of displacements compatible with geometri-
cal conditions mentioned in section II. As a consequence,
displacements belong to the set of possible displacements
of the robot. Considered forces belong are the controlled
forces ( force and torque that the robot end point can apply
on an external object). The dimension of this set is four.
Now, torsion deformations in forearms and tension in bars
can change all the set of parameters describing traveling
plate position which dimension is eight.

Let’s now consider torsion effects in forearms. Firstly,
forces in bars must be computed. The stress in each bar is
tension-compression. Forces applied to forearms have the
same direction as the considered bars. These computations
need a complete set of forces and torque applied to the
traveling plate applied to the traveling plate. The considered
external actions are Fd, torque Td applied to the end point
D and two torques about z applied on revolute joints
between central and lateral bars t1 and t2.

Traveling plate equilibrium leads to:

Γext = JbFb (16)

where:
• Γext =

[

Fd
T Td

T t1 t2
]T

is the vector com-
posed by extended external forces corresponding to
the dual of traveling plate possible displacements
expressed in eq. 8 .

• Jb is the jacobian matrix relative to forces in bars
• fb =

[

fb11 fb12 fb21 · · · fb42

]T is the vector
composed by the force in each bar ( fbij is the tension
load in bar number ij)



If Jb is not singular:

fb = Jb
−1Γext (17)

Resulting torque tti applied on the forearm (point Ai )
number i is:

tti =
∑

j

fijpij × wi (18)

wi is an unitary vector collinear to vector linking Ai

to Bi . As for bending effects, only torsion around the
forearm axis is taken into account. Torsion torque applied
to forearm i around its axis is:

τi = −tti.ri (19)

where ri is the unitary vector collinear to vector linking
points Ai and Pi

Torsion angle can be expressed as:

δαi =
r

G.I0

τi (20)

where G is Coulomb modulus of the material and I0 the
polar momentum of the section.

Displacement of point Aij is:

δAij = pij × δαiri (21)

δAij = −
r

G.I0

(pij × ri)
∑

j

(fijpij × wi).ri (22)

δεtors = r
G.I0

MJb
−1Γext (23)

with:

M =

[

spar(N)


]

N =

[

[pi × ri]
T [pi × ri].wi

[pi × ri]
T [pi × ri].wi

[pi × ri]
T [pi × ri].wi

[pi × ri]
T [pi × ri].wi

]

C. Changes in bars length

Changes in bars length are linked to bars stiffness.
According to derivations made in previous sections, forces
in bars are given by the relation:

Fb = Jb
−1Γext (24)

Change in bars length is:

δl =
l

Sb.Eb

fb (25)

where Sb is the area of bars section and Eb is Young’s
modulus of bars material

δl =
l

Sb.Eb

Jb
−1Γext (26)

δεtens = l
Sb.Eb

MJb
−1Γext (27)

with:

M =

[



diag(ones(1, 8))

]

D. Machine end point final displacement

The following relation gives machine end point final dis-
placement obtained when forces and torque are applied to
the traveling plate (step 5) by summing all displacements:

δtp = M
−1M(δεcont+δεbend+δεtors+δεtens) (28)

And the following expression is derived:

δtp = KΓext (29)

where K is defined here as the stiffness matrix:

K = M
−1M

(

1

kc

M3J
T R + · · ·

M3
r

3E.I
JT R + r

G.I0
M4J

−1

b + l
Sb.Eb

M5J
−1

b

) (30)

with:

R =









1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0









As mentioned in the beginning of subsection IV-B.3,
bending and control stiffness need a four dimension force
input, torsion and tension need a eight dimension force
input. As the final displacement is the sum of all these
displacements for a given force, the selection matrix R

must be used.

V. STIFFNESS EVALUATION

In this section, results of stiffness analytical modeling are
compared to some experimental stiffness measurements on
H4 robot prototype.

A. Dimensions and mechanical characteristics

Dimensions of the modeled prototype are (dimensions
are expressed in millimeters):

P =





200 60 60 −200
−60 −200 200 60
0 0 0 0





U =





0 1 −1 0
−1 0 0 −1
0 0 0 0





r = 260; l = 480

DBnominal =





−60 60 60 −60
−60 −60 60 60
50 50 50 50







kc = 7, 4.106Nmm/◦

E = 70000Nmm−2

I = 1, 6.104mm4

G = 0, 4E
I0 = 2I
Sb = 28mm2

Eb = 200000Nmm−2

B. Numerical results

Experimental stiffness measurements were done on H4
robot, by applying a force on the traveling plate and mea-
suring the resulting displacements about three directions
(x, y and z) using dial indicators (see Fig. 6 and and a
detailed description in [10]).

Dial indicator

L oad ce ll

A p p lie d f orce

Fig. 6. Experimental setting scheme

Results obtained using these two different methods are
presented in table II. Only translational response of the
mechanism in x, y and z directions is measured for forces
applied in x, y and z directions. Measurements have been
done for one pose that is workspace center ie all actuators
angle qi is equal to 45. Its is obvious that, due to its
particular architecture, when a force is applied on the robot,
the resulting displacement direction is not the same as the
one of the force. Number given in table II are translational
stiffnesses for a given pose expressed in m/N .

TABLE II
COMPARISON BETWEEN EXPERIMENTAL AND COMPUTED RESULTS

force along x force along y force along z
x y z x y z x y z

measured 51 -3 15 0 15 0 11 -1 9
computed 40 0 21 0 21 0 21 0 19

The main result is that stiffness in x direction is bad
regarding other directions. This stiffness study shows that
the choice of robot actuators location on the machine frame
does not provide good results.

The estimated results and the measured ones are ”sim-
ilar” due to approximations in the modeling phase. But
estimated results are pessimistic regarding measured ones
because some technological considerations have not been
taken into account. All forearms length are considered to
be stressed in bending and torsion, but in the prototype
assembly, only 2/3 of the forearms length are stressed.

More over, these parts are the weak point of the prototype
regarding stiffness.

VI. CONCLUSION

In this paper a method for stiffness modeling of lower
mobility parallel manipulators is presented and applied to
a H4 robot whose particularity is to have an articulated
traveling plate. This analytical method is very fast and
useful for the design stage. For better quality results, a
FEM analysis can be conducted once all the dimensions
of robot parts are chosen. Analytical results are compared
to experimental results and allow to have an interesting
feed-back on the design of future parallel H4-like robots:

• actuators placement (that implies legs placement) is
bad and cannot be modified into a symmetrical place-
ment because of the architecture: the robot has a null
stiffness in one direction for a symmetrical placement

• as a consequence, a new articulated traveling plate
(with a different kinematics) has to be designed to
allow a symmetrical design of the robot. This will
contribute to reduce stiffness anisotropy.

• forearms shape and material need to be modified as
they are the weak point of the robot
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