
Improving SLAM with Drift Integration

Guillaume Bresson, Romuald Aufrère, Roland Chapuis

To cite this version:

Guillaume Bresson, Romuald Aufrère, Roland Chapuis. Improving SLAM with Drift Integra-
tion. IEEE 18th International Conference on Intelligent Transportation Systems, 2015, Las
Palmas, Spain. 2015, <10.1109/ITSC.2015.434>. <hal-01351430>

HAL Id: hal-01351430

https://hal.inria.fr/hal-01351430

Submitted on 3 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Clermont Université

https://core.ac.uk/display/49266579?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-01351430


Improving SLAM with drift integration

Guillaume Bresson1,2, Romuald Aufrère3,4 and Roland Chapuis3

Abstract— Localization without prior knowledge can be a
difficult task for a vehicle. An answer to this problematic lies in
the Simultaneous Localization And Mapping (SLAM) approach
where a map of the surroundings is built while simultane-
ously being used for localization purposes. However, SLAM
algorithms tend to drift over time, making the localization
inconsistent. In this paper, we propose to model the drift as
a localization bias and to integrate it in a general architecture.
The latter allows any feature-based SLAM algorithm to be
used while taking advantage of the drift integration. Based
on previous works, we extend the bias concept and propose a
new architecture which drastically improves the performance of
our method, both in terms of computational power and memory
required. We validate this framework on real data with different
scenarios. We show that taking into account the drift allows us
to maintain consistency and improve the localization accuracy
with almost no additional cost.

I. INTRODUCTION

In the quest for making vehicles autonomous, the scientific
community revolving around mobile robotics has furnished
an impressive amount of work towards localization without
any prior knowledge. A vehicle must be able to locate itself
accurately in its environment so as to take the right decisions
(choose which path to follow for instance) in total autonomy.
While some could think of GPS as the solution to this
localization problem, it has quickly emerged that it was not
enough, both in terms of accuracy (or cost needed to reach a
proper accuracy with devices like RTK-GPS’s) and reliability
(urban canyons, etc.). The topic of Simultaneous Localization
And Mapping (SLAM) has thus become part of the key to
this localization issue.

While many SLAM solutions, relying on various sensors
and methods, have been proven to work, some aspects are
often overlooked, such as how to properly handle the inherent
SLAM drift or how to have a framework which could
work with different settings (as proposed in [11]) and deal
with high-level issues (detect loops, integrate geo-referenced
information, take into account the localization drift, etc.).

The localization provided by SLAM algorithms tend to
drift over time [2]. Improving the localization capabilities
is thus tightly linked to the integration of all sorts of
information that can help reduce this drift. We can divide
them in three categories that overlap. Geo-referenced data
is a first way to counter the drift as it is not affected by it
[7]. Finding loops in the trajectory (recognizing previously

1Institut VEDECOM, Versailles, France
firstname.name@vedecom.fr

2Inria Paris-Rocquencourt, Le Chesnay, France
3Institut Pascal - UMR 6602 CNRS, Université Blaise Pascal - Aubière,

France firstname.name@univ-bpclermont.fr
4LIMOS - UMR 6158 CNRS, Université Blaise Pascal - Aubière, France

visited places) is another way. By identifying previously
perceived landmarks, it becomes possible to reduce the drift
to what it was when landmarks were first seen [12]. Last,
information coming from external agents (other vehicles,
infrastructure, etc.) can at least constrain the drift as they
are not similarly (or at all) affected by it [3]. In order to
properly integrate this knowledge in a SLAM algorithm, a
global sensor independent architecture should be prefered.

In this article, we propose a solution to solve both
problems with a drift model integrated inside a dedicated
architecture. Based on previous works [3], we improve
the overall performance of our system with a new drift
integration and a different handling of the map state. We
present here an application to the loop closing problem using
a data association process which is not sensor dependent as
well as an example of geo-referenced integration.

We will first present related work regarding SLAM drift in
Section II. Then, in Section III, we will give further details
about the drift model that we previously introduced in [3].
Next, in Section IV, we will focus on the new architecture
proposed in this paper to deal with the drift problem. We
will expose the integration of a feature-based SLAM and
how the drift is taken into account. Finally, an experimental
validation will be provided in Section V along with various
metrics and resource consumption comparisons.

II. RELATED WORK

The drift is causing the computed localization (and there-
fore the map as well) to slowly diverge from its true value.
Moreover, the uncertainty associated to the vehicle pose does
not include the real pose. It means that the computed estimate
is inconsistent and should not be trusted.

The divergence problem affecting SLAM algorithms has
been stated several times in the literature. The use of non-
linear models that need to be linearized is one of the
reason causing the divergences. Indeed, linearizations made
far from the true value tend to produce optimistic estimates
[2]. The consequence is that the localization slowly drifts
over time. Of course, the use of any sensor from whose
errors accumulate over time (odometer for instance) will also
provoke this phenomenon. Correlations between sensor data
are also a source of overconfidence [10]. Indeed, most of
the time, it is wrongly considered that data coming from
the same sensor are not temporally linked. It also appears
that an approximation regarding the vehicle orientation has
a stronger impact on the divergence than a translation error
[1]. The literature regarding SLAM drift usually considers
two ways of dealing with it: by avoiding it or by reducing
it when possible.



The former category includes submapping approaches [9]
where new reference frames are regularly set. At a submap
level, most of the drift is avoided. It can be an issue as
creating too much submaps leads to an information loss.
However, the global map linking all the submaps is still
affected by the divergence. In a similar manner, robot-centric
methods are often considered to avoid drift [5]. Estimates are
always given with relation to the robot pose thus limiting
consistency problems as they do not accumulate over time.
However, as for submapping techniques, divergence is not
solved when considered out of the robot-centered frame
which is needed to detect loop closures and in many other
applications. Some authors have worked on reducing errors
with smoothing approaches [8]. Even with such methods, the
remaining drift could still be taken into account to improve
consistency.

Regarding reducing drift, in [7], satellite images are used
to obtain an absolute localization. The satellite images are
compared to the output of a standard camera. The vehicle
pose can be computed based on these absolute, and so drift-
free, correspondences. A geo-referenced database is also a
good way to remove the drift and maintain consistency.
However, most of the time, absolute information can only
be integrated punctually and there is no guarantee that the
system will not drift in-between. In [12], the authors show
that even if closing the loop reduces the drift, the results
will always be overconfident because of approximations
regarding the links between landmarks. Cole and Newman
in [6] propose to redistribute errors in a probabilistic manner
around the past trajectory. Even if better results are obtained,
the resulting map is not always consistent. Besides, the
vehicle pose will certainly be diverging without knowing so
before finding any loop closing.

The solutions presented in this last paragraph can all be
applied to reduce the drift. However, it appears mandatory to
be able to represent the drift at any time even without such
information. This is why we propose here to model the drift
and to integrate it inside a Kalman filter so as to estimate it
conjointly with the vehicle state and the map.

III. DRIFT

We define the localization bias as the parameters allowing
to compensate the drift. As the drift tends to grow with the
distance traveled, the localization bias evolves according to
the curvilinear abscissa. As so, at a curvilinear abscissa s,
the bias is defined as:

bs =
(
bxs bys bθs

)T
(1)

with bxs and bys representing a position bias and bθs an
angular bias.

The localization bias follows a dynamic model. Indeed, the
bias at a curvilinear abscissa s strongly depends on the one
preceding it at s−∆s. Starting from the evolution equation
of a continuous stochastic linear system [15], we can write:

ḃ(s) = Acb(s) + Bcu(s) + Mcε(s) (2)

where b is the bias vector, u the input vector and ε the
evolution noise which is assumed white. Ac is the state
matrix associated to b, Bc expresses the link between u
and b and Mc the link between ε and b.

The drift is considered to evolve similarly across its three
parameters and as such, a simple random walk can be used as
an approximate model. Considering so, Ac = 0, Bc = 0 and
Mc = I (identity matrix), and the drift evolution becomes:

ḃ(s) = ε(s) (3)

By discretizing Equation (3), we obtain the following bias
evolution:

bs = Abs−∆s + ε∆s

= exp(Ac∆s)bs−∆s + ε∆s

= bs−∆s + ε∆s

(4)

with ε∆s being the drift (white noise) affecting the vehicle
between s− ∆s and s.

In order to ensure consistency at any time, the uncertainty
regarding the drift occurring between s−∆s and s must be
considered. It is expressed as follows:

Pε∆s =

∫ ∆s

0

exp(Acs)Pε exp(AT
c s)ds (5)

with Pε being the uncertainty associated to ε(s).
Based on Equations (4) and (5), the bias uncertainty Pbs

is calculated as:

Pbs
= Pbs−∆s

+ ∆sPε (6)

We consider here a stationary process. Even though the
bias evolution is not identical in every situation (for instance,
turning might have a stronger impact on the rotation drift
than going straight), this approximation is sufficient if Pε is
properly characterized. As a consequence of the stationarity
hypothesis, Pε can be experimentally defined, based on the
observed quadratic divergence over the distance traveled.

Considering the vehicle pose vk =
(
xk yk θk

)T
at

a time k corresponding to the curvilinear abscissa s, the
localization bias can be integrated as follows (where u stands
for unbiased):

vuk
=

[
R(bθs) 02×1

01×2 1

]
vk + bs

=

cos(bθs) − sin(bθs) 0
sin(bθs) cos(bθs) 0

0 0 1

vk + bs

(7)

Similarly, for a landmark lik =
(
lixk

liyk
)T

, the local-
ization bias can be taken into account:

luik
= R(bθs)lik +

[
bxs

bys

]
(8)

Based on Equations (7) and (8), we can also infer how
the uncertainty regarding the vehicle pose and a landmark



position will be affected by the drift integration. However,
integrating the bias localization directly into the SLAM
process where these estimates are computed will not prevent
the system from being inconsistent. Indeed, observations
will lower the bias uncertainty while it should not be the
case. A dedicated architecture is thus needed to avoid this
phenomenon.

IV. GLOBAL ARCHITECTURE

The objective of this architecture is twofold: providing a
framework in which any feature-based SLAM algorithm can
take into account and handle the drift as well as integrating
all the possible means to estimate it thanks to the ensured
consistency. To do so, the initial SLAM should be decorre-
lated from the part responsible for the drift estimation. It has
the advantage to avoid mixing uncertainties and to allow the
use of any feature-based SLAM algorithm. This led us to the
organization presented in Figure 1.

Fig. 1. Bias integration architecture

It can be noted that the low-level SLAM algorithm just
communicates with the rest of the architecture by providing
landmark and vehicle estimates. A dedicated process takes
these incoming landmarks and vehicle poses and builds a
proper map, designed to be consistent due to the bias inte-
gration. Specific modules, whose goal is the drift estimation,
can then be developed (squared in blue in Figure 1) by taking
advantage of this new consistent map. Each module provides
a way to estimate the bias. The drift estimation module is
in charge of activating them and provides the information to
fuse to the Extended Kalman Filter (EKF). So as to balance
the computing requirements, landmarks do not need to be
kept in the low-level algorithm when they are not visible
anymore. As associations (loops for instance) are sought in
the high-level, it is not useful to have all the landmarks in
the low-level (and thus allowing the use of Visual Odometry
algorithms). This way, the architecture does not add much
to a classic SLAM in terms of memory or processing power
required.

An EKF is used to handle the high-level map. Its goal is to
connect the bias estimates together based on Equation (4) and
update them when an information allowing so is available
(loop closing, geo-referenced data, etc.). Bias estimates are
regularly inserted (by the Bias integration module) based on
the distance traveled in order to represent the drift along the
trajectory. While there should ideally be a bias estimate per

landmark, it would require an important amount of resources
to handle them and would not improve much the localization
quality. With no prior knowledge about the drift (ε = 0), its
initialization via the Kalman Filter is simple:

bs = bs−∆s (9)

In order to connect the current bias to its previous estimate,
we first initialize its variance to infinite values inside the
covariance matrix and use the EKF to refine it. To do
so, let define the observation function hb which makes the
difference between two consecutive bias estimates:

hb(bs,bs−∆s) = bs − bs−∆s (10)

We define the observation error as follows:

Rb = Pbs −Pbs−∆s (11)

Hb, the Jacobian matrix associated to hb, can be com-
puted:

Hb =
[
03×3(n−2) −I3×3 I3×3

]
(12)

where n is the number of bias estimates in the state vector.
A Kalman update is then performed to link together bias

estimates and properly initialize the uncertainty of the new
bias estimate bs. The lack of knowledge about ε makes
the Kalman innovation equal to zero, meaning that only the
covariance matrix will be affected by the update.

Instead of inserting landmarks and vehicle poses into
the state vector, we chose to only have connected bias
estimates. The main motivation is to reduce the memory
used by the storage of a rapidly growing covariance matrix
as well as the processing power needed to properly insert
a new element inside the map. Indeed, the EKF requires
several multiplications involving the whole state vector and
covariance matrix and, even though it is not an important
burden with a few landmarks, it quickly becomes unbearable
with hundreds of them. As high-level landmarks and vehicle
poses only depend on the bias estimation, there is no loss
of information. The only constraint comes from the data
association process which will be later discussed in this
section. The high-level architecture is depicted in Figure 2.

Incoming landmarks are stored along with the current
vehicle pose and the respective variances (1). The cross-
covariances recomposed thanks to the previously presented
drift integration are indicated in blue here (2). The vehicle
state vector taking into account the bias (3) is here to help
the data association process.

In order to correct the drift, landmarks must be associated
and fused. The three modules presented earlier in Figure
1 work similarly. They consider incoming landmarks and
look for associations across landmarks already in the high-
level (stored in (1) in Figure 2). The difference lies in the
fact that the fusion does not affect the same bias estimates.
In case of information coming from another vehicle for
instance, the bias estimates of both vehicles involved are
updated when an association is found. For geo-referenced



Fig. 2. High-level architecture

information, the bias estimates of the vehicle with which
information is fused are concerned. Regarding loop closing,
the fusion occurs between landmarks already mapped and
new ones, which means that the bias estimates regarding
these two sets of landmarks become directly connected. In
each case, the cross-covariances recomposed (2) are able
to properly spread the impact of an update on all the bias
estimates concerned.

Let consider that a new landmark lj (associated to a
bias bj) corresponds to a landmark already mapped li, the
observation z = lj and its covariance R = Plj as received
from the low-level SLAM (or a distant vehicle, or already
known geo-referenced information). The association found
means that luj = lui which allows us to define the non-
linear observation function hf as:

hf (bi,bj) = R(bθj )T
(
R(bθi)li +

[
bxi

byi

]
−
[
bxj

byj

])
(13)

The Jacobian Hf associated to the function hf is then
computed and used in the Kalman equations to update
the state vector composed of bias estimates. All the bias
estimates will be affected by the update. Of course, the
farthest from the fusion point, the less concerned by the
update will be bias estimates. By only working with the bias
estimates, it allows the overall process to be faster while
not preventing to compute unbiased landmarks or a drift-free
vehicle pose if needed.

Concerning the data association, we use the fact that the
bias model allows us to achieve consistency as a way to
constrain and drive the association process. However, as
consistent landmarks are not immediately available, corre-
spondences cannot be directly sought. Instead of landmarks,
we decided to work with vehicle poses. Like shown in
Figure 2, a separate state vector is maintained with vehicle
poses integrating the bias. Each time a new bias estimate is
initialized, so is a vehicle pose in this vector. The idea is to
reduce the search space around potential association areas.
To do that, vehicle poses which are compatible, meaning
that the vehicle could potentially be located in these already
visited areas, are used. This unary constraint is computed as

follows:

D2
ik = (vui

− vuk
)T (Pvui

+ Pvuk
)−1(vui

− vuk
) < χ2

d,α

(14)
where vui is the vehicle pose associated to the bias bi and
vuk

is the current one.
The acceptation threshold, below which an association is

possible, is based on the Chi-squared distribution χ2
d,α, with

d = 3 (degrees of freedom) and the desired confidence α set
to 0.95.

Only landmarks mapped between the different portions
where vehicle poses are compatible will be tested in the
association process, thus drastically reducing the number of
potential pairings and the processing time required.

Once potentially already seen landmarks are extracted,
they are tested with the newly mapped landmarks. To do
so, we use the Geometric Constraints Branch and Bound
(GCBB) method [13]. The idea is to find sets of landmarks
with similar binary geometric constraints. Corresponding
landmarks should share the same geometric organization.
Considering two potential associations aij = (li, lj) and
akl = (lk, ll), a binary geometric constraint is a relation
between li and lk which is also satisfied between lj and ll.
In our case, li and lk would be new landmarks and lj and
ll, previously mapped landmarks. The geometric constraint
used here is the relative distance between the landmarks (the
distance between li and lk must be similar to the one between
lj and ll). Binary constraints can be computed beforehand
(and are limited to landmarks already satisfying the unary
constraint). A tree of the potential sets of associations is
then explored to find the best correspondences.

By using the consistency provided by the bias integration,
we are able to limit the exploration time needed to find
associations. The use of binary geometric constraints has the
advantage to allow us to find pairings between landmarks
which are not affected by the same orientation drift.

With geo-referenced information, the data association dif-
fers as landmarks are not necessarily expressed with relation
to the same reference (local frame or absolute frame). In
this case, we only use the geometric organization of new
landmarks with the GCBB algorithm to associate them with
geo-referenced ones.

V. EXPERIMENTS

We present two experiments to validate our approach.
The first one shows a loop closure and the second one the
integration of geo-referenced information. In both experi-
ments, an electric vehicle (VIPALab) was manually driven
at around 2 meters per second. Here, we do not consider the
low-level SLAM to only focus on the high-level. Landmark
positions and vehicles poses are received regularly without
knowing what sensors or algorithms are used in the low-
level (interested readers can refer to [4] for more information
regarding the low-level SLAM).

The first trajectory presents a loop of approximately 100
meters. The vehicle returns to its starting point and continues



for several meters in order to have enough landmarks to de-
tect loop closures. Throughout the trajectory, 372 landmarks
were mapped, with around 40 common to both passages
(around the starting point of the trajectory). We compare
the proposed algorithm to its previous version [3]. In this
previous version, the architecture is different and the associ-
ation algorithm is based on Indivudal Compatibility between
landmarks. Both Matlab implementations are checked against
the same trajectory.

Figure 3 shows the trajectories performed. It can be
noticed that the trajectory out of the low-level SLAM slowly
drifts from the ground truth (provided by a RTK-GPS).
Conversely, when integrating the bias, the algorithm is able
to detect the loop and correct the trajectory. Of course, the
farthest part from the closing point is the less affected by
the correction. Similar results are obtained by our previous
architecture, showing that integrating landmarks in the high-
level state vector does not improve the localization accuracy
(both trajectories are superimposed). The data association
process worked well in both cases, allowing to close the loop
several times around the starting point of the trajectory. For
the first closure, individual compatibility between landmarks
retained 160 of them (out of 372) for the GCBB process
and individual compatibility between vehicle poses led to
145 landmarks for GCBB. These similar numbers show that
using vehicle poses to limit the exploration tree of GCBB
works as efficiently as using directly individual compatibility
between landmarks. Landmarks integration inside the high-
level state vector is consequently not essential to the data
association process.

Fig. 3. Trajectories performed. In green: trajectory computed by the low-
level SLAM. In blue: trajectory computed with the approach presented in
this paper. In red (almost identical to the blue one): trajectory computed
with the previous bias integration. In black: ground truth (RTK-GPS).

Concerning the accuracy of the obtained localization, we
measured the Root-Mean-Square Error (RMSE) based on the
ground truth. Results are visible in Figure 4. Closing the
loop allows us to have a better position accuracy especially
in the late trajectory (the beginning is quite similar).We
obtain almost identical results between the approach of this
paper and [3] (both curves are superimposed). The landmarks
associated are the same in both methods hence the similar
results. What is interesting is that the RMSE would have

grown without the bias integration if the trajectory had
continued because of the angular drift. This effect would
have been prevented with our algorithm.

Fig. 4. Root-Mean-Square Error during the trajectory. In green: RMSE of
the low-level SLAM. In blue: RMSE with the approach presented in this
paper. In red (almost identical to the blue one): RMSE with the previous
bias integration.

As the primary goal of the bias model is to ensure
consistency, we measured the Consistency Index (CI), as
defined in [14], which is based on the Normalized Estimation
Error Squared (NEES) and the Chi-square test. A CI lower
than 1 means that the estimate is consistent with the ground
truth. Conversely, estimates whose CI is greater than 1
are optimistic (inconsistent). CI curves with no association
performed are pictured in Figure 5 and in Figure 6 when
the loop is closed. The bias model allows us to achieve
consistency even without applying any loop closure. It is
obviously not the case without the bias integration as the CI
quickly grows. Once again, similar results are obtained for
both architectures showing that estimating only bias values
in the EKF is sufficient.

(a) Consistency Index

(b) Closer view

Fig. 5. Consistency Index during the trajectory with no association
performed.In green: CI of the low-level SLAM. In blue: CI with the
approach presented in this paper. In red (superimposed with blue): CI with
the previous bias integration. The black line represents the consistency
threshold.

The main motivation behind this architecture was to pro-
vide a faster and less memory thrifty bias integration. Figure



Fig. 6. Consistency Index during the trajectory with associations. In blue:
CI with the approach presented in this paper. In red (superimposed with
blue): CI with the previous bias integration.

7 shows the computing time taken by each algorithm all
along the trajectory. The new architecture shows impressive
results by using in average around 0.25 ms per iteration
(integration of new landmarks and new bias estimate if
needed) near the end of the trajectory while our previous
implementation needs more than 220 ms for the same
thing. It makes our approach suited for long trajectories. If
necessary, bias estimates can easily be separated in substates
and so reduce the time needed by the current architecture
even more.

(a) Previous architecture (b) Current architecture

Fig. 7. Processing time required by the high-level algorithm.

In terms of memory consumption, the same trend can
be noted (see Figure 8). Storing the different state vectors
and covariance matrices requires almost 5 MB of memory
at the end of the trajectory with the previous architecture
whereas the new approach only uses around 100 KB. The
exponential growth of our previous architecture is also way
less pronounced with the new bias integration.

Fig. 8. Memory used by the high-level algorithm. In blue: memory used by
the approach presented in this paper. In red: memory used by the previous
bias integration.

In the second experiment, we show the integration of geo-
referenced landmarks. The context is the same as for the
previous experiment. We start the trajectory with the geo-
referenced landmarks already known. The geo-referenced

landmarks are created beforehand using the RTK-GPS. We
generated 20 landmarks at mid-distance of the trajectory,
with less than half common with the mapping process. As
mentioned previously, we only use the geometric criterion to
recognize these landmarks. The results can be seen in Figure
9.

Fig. 9. Trajectories performed. In green: trajectory computed by the low-
level SLAM. In blue: trajectory computed with the approach presented in
this paper. Circled in red: location of the geo-referenced landmarks. In black:
ground truth (RTK-GPS).

We can see that the integration of the geo-referenced
landmarks allows us to correct the orientation drift that
occurs during the bend. The localization is greatly improved
even with only a few landmarks. The GCBB algorithm was
able to find the common landmarks only using the geometric
criterion (9 out of 20 were associated to the SLAM map).
As previously, the RMS Error and the CI obtained by our
algorithm are exposed in Figures 10 and 11 with relation to
their counterpart which does not integrate the drift.

Fig. 10. Root-Mean-Square Error during the trajectory. In green: RMSE
of the low-level SLAM. In blue: RMSE with the approach presented in this
paper.

The RMS Error is below 50 centimeters all along the
trajectory and is under 20 centimeters close to the fusion
point. Without new information to characterize the drift, it
starts to grow again by the end of the trajectory. Without
the bias integration, the error reaches 4 meters and would
have gone further if the trajectory had continued. Regarding
consistency, the same behavior can be observed. During the
bend and without our dedicated architecture, consistency is
lost. The Covariance Index goes above a value of 300 by the
end of the trajectory and keeps on growing as there is no



Fig. 11. Consistency Index during the trajectory with associations (zoomed
view). In green: RMSE of the low-level SLAM. In blue: RMSE with the
approach presented in this paper. The black line represents the consistency
threshold.

way to consider the drift. With the architecture presented in
this paper, the CI stays below 1 meaning that consistency is
maintained throughout the whole trajectory, even when no
information to estimate the drift is available.

VI. CONCLUSION

We have presented a new architecture allowing us to
take into account the drift inherent to SLAM algorithms.
Thanks to this approach, the consistency of the computed
localization can be maintained even without information
to correct it. The new bias integration introduced in this
paper requires very little resources compared to previous
approaches thus permitting to consider drift integration even
with long trajectories.

The bias model is integrated outside of the classic SLAM
algorithm. It has the advantage to allow the use of any
feature-based SLAM algorithm. The inclusion of the lo-
calization bias in the high-level EKF-SLAM provides an
easy way to estimate the drift as consistency is ensured.
Absolute information, loop closing or distant information can
be easily integrated. We introduced a new data association
process that takes advantage of the consistency provided by
the bias model. Thanks to it, it becomes possible to detect
loops without relying on clues of a specific sensor. Results
showed that the localization obtained is consistent and that
the overall architecture allows better performance over our
previous approach.

We plan to expand this framework to various scenarios
using diverse SLAM algorithms. A different bias model is
also envisaged to deal with non-systematic errors that cannot
be covered by motion models.

REFERENCES

[1] T. Bailey, J. Nieto, J. Guivant, M. Stevens, and E. Nebot. Consistency
of the EKF-SLAM Algorithm. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 3562–3568, 2006.

[2] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan. Estimation with
Applications to Tracking and Navigation. Wiley-Interscience, 2001.

[3] G. Bresson, R. Aufrère, and R. Chapuis. Consistent Multi-robot
Decentralized SLAM with Unknown Initial Positions. In 16th In-
ternational Conference on Information FUSION, 2013.

[4] G. Bresson, T. Feraud, R. Aufrere, P. Checchin, and R. Chapuis.
Real-time monocular slam with low memory requirements. Intelligent
Transportation Systems, IEEE Transactions on, PP(99):1–13, 2015.

[5] J. A. Castellanos, R. Martinez-Cantin, J. D. Tardós, and J. Neira.
Robocentric Map Joining: Improving the Consistency of EKF-SLAM.
Robotics and Autonomous Systems, 55(1):21–29, 2007.

[6] D. M. Cole and P. M. Newman. Using Laser Range Data for 3D
SLAM in Outdoor Environments. In IEEE International Conference
on Robotics and Automation, pages 1556–1563, 2006.

[7] G. Conte and P. Doherty. Vision-Based Unmanned Aerial Vehicle
Navigation Using Geo-Referenced Information. EURASIP Journal On
Advances In Signal Processing, pages 10–32, 2009.

[8] F. Dellaert and M. Kaess. Square Root SAM: Simultaneous local-
ization and mapping via square root information smoothing. The
International Journal of Robotics Research, 25(12):1181–1203, 2006.

[9] C. Estrada, J. Neira, and J. D. Tardós. Hierarchical SLAM: real-
time accurate mapping of large environments. IEEE Transactions on
Robotics, 21(4):588–596, 2005.

[10] S. J. Julier and J. K. Uhlmann. A Counter Example to the Theory of
Simultaneous Localization and Map Building. In IEEE International
Conference on Robotics and Automation, pages 4238–4243, 2001.

[11] R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard.
g2o: A general framework for graph optimization. In IEEE Inter-
national Conference on Robotics and Automation, pages 3607–3613,
2011.

[12] A. Martinelli, N. Tomatis, and R. Siegwart. Some Results on SLAM
and the Closing the Loop Problem. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2917–2922,
2005.

[13] J. Neira, J. D. Tardós, and J. A. Castellanos. Linear time vehicle
relocation in SLAM. In IEEE International Conference on Robotics
and Automation, volume 1, pages 427–433, 2003.

[14] L. M. Paz, J. D. Tardós, and J. Neira. Divide and Conquer: EKF
SLAM in O(n). IEEE Transactions on Robotics, 24(5):1107–1120,
2008.

[15] S. Thrun. A Probabilistic Online Mapping Algorithm for Teams
of Mobile Robots. The International Journal of Robotics Research,
20(5):335–363, 2001.


