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A B S T R A C T   

Background: Toxicological studies have raised concerns regarding the neurotoxic effects of per- and poly
fluoroalkyl substances (PFAS). However, observational evidence from human studies investigating the associa
tion between childhood PFAS and neurobehavior is limited and remains unclear. 
Objectives: To examine whether childhood PFAS concentrations are associated with neurobehavior in children at 
age 8 years and whether child sex modifies this relationship. 
Methods: We used data from 208 mother-child dyads in the Health Outcomes and Measures of the Environment 
(HOME) Study, a prospective pregnancy and birth cohort (Cincinnati, OH, USA). We quantified PFAS in child 
serum at 3 and 8 years. We assessed neurobehavioral domains using the Behavior Assessment System for 
Children-2 at 8 years. We used multiple informant models to estimate score changes per ln-increase in repeated 
PFAS concentrations. 
Results: Childhood PFAS were not associated with Externalizing or Internalizing Problems at 8 years. However, 
we noted effect measure modification by sex, with higher scores in Externalizing Problems among males per ln- 
unit increase in perfluorononanoate (PFNA) at 3 years (β = 4.3 points, 95% CI: 1.0, 7.7) while females had lower 
scores (β = − 2.8 points, 95% CI: − 4.7, − 1.0). More Internalizing Problems were observed among males per ln- 
unit increase in concurrent PFNA concentrations (β = 3.7 points, 95% CI: 0.7, 6.8), but not in females (β = − 1.7 
points, 95% CI: − 4.6, 1.2). Childhood PFNA concentrations were associated with lower scores for attention 
problems and activity of daily living. 
Conclusion: While findings do not consistently support an association between childhood PFAS serum concen
trations and neurobehavior, child sex may play a role in this relationship.   

1. Introduction 

Per- and polyfluoroalkyl substances (PFAS) are a class of environ
mentally persistent man-made chemicals that have both hydro- and 
lipophilic properties, making them highly desirable for commercial and 

industrial uses as surfactants, emulsifiers, and performance chemicals, 
such as hydraulic fluid and fuel additives. PFAS, which are chemically 
stable due to the strong C–F bond, are highly resistant to biological, 
chemical, and thermal degradation. PFAS are ubiquitous pollutants that 
have been detected in environmental media, wildlife species, and 
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human tissues (Lau et al., 2007). Data from the National Health and 
Nutrition Examination Survey (NHANES) show that median concen
trations of serum perfluorooctanoate (PFOA), perfluorooctane sulfonate 
(PFOS), perfluorohexane sulfonate (PFHxS), and perfluorononanoate 
(PFNA) have declined among the US population (Dong et al., 2019). 
However, PFAS remain a public health concern because of mounting 
evidence linking them with cardiovascular disease, immunosuppression, 
and neurodevelopment (Bach et al., 2016; DeWitt et al., 2018; Liew 
et al., 2018; Rappazzo et al., 2017; Sunderland et al., 2019). 

PFAS can disrupt thyroid hormone levels, alter neural cell differen
tiation, disturb neurochemical signaling and homeostasis, alter the 
susceptibility of the cholinergic system, stimulate neuronal cell 
apoptosis, and induce the formation of reactive oxidative stress (Bernt
sen et al., 2017; Eggers Pedersen et al., 2015; Johansson et al., 2009; 
Johansson et al., 2008; Lee and Viberg, 2013; Lee et al., 2016; Liu et al., 
2013; Liu et al., 2015; Long et al., 2013; Reistad et al., 2013; Slotkin 
et al., 2008; Yu et al., 2016). Experimental studies in mice have reported 
disturbances in cognition and behavior from PFAS exposures occurring 
prenatally and neonatally (Fuentes et al., 2007; Johansson et al., 2009; 
Johansson et al., 2008; Viberg et al., 2013). In epidemiological studies, 
prenatal concentrations of PFAS have been associated with behavioral 
problems in children in the INUENDO (Biopersistent organochlorines in 
diet and human fertility) cohort (Hoyer et al., 2015), the Danish Na
tional Birth Cohort (DNBC) (Luo et al., 2020), the Health Outcomes and 
Measures of the Environment (HOME) Study (Vuong et al., 2021), the 
Upstate KIDS Study (Ghassabian et al., 2018), and in a Faroese cohort 
(Oulhote et al., 2019). Comparatively, the number of epidemiological 
studies investigating the potential role of childhood PFAS in neuro
behavior are limited and results have been inconsistent. Some epide
miological studies have reported childhood PFAS were associated with 
behavioral problems in children (Gump et al., 2011; Oulhote et al., 
2019; Oulhote et al., 2016), while others have reported protective or 
null associations (Stein et al., 2013, 2014). Further, findings regarding 
the relationship between childhood PFAS with internalizing behaviors 
and adaptive skills remains unclear (Oulhote et al., 2019; Oulhote et al., 
2016; Stein et al., 2014). 

Our study objectives were to: 1) examine the relationship of repeated 
measures of serum PFAS concentrations during childhood with neuro
behavioral domains assessed at age 8 years, identifying possible win
dows of susceptibility; 2) identify potential sexual dimorphism in these 
associations; and 3) examine the persistence of our previously reported 
adverse associations between prenatal PFAS and neurobehavior taking 
into account childhood PFAS concentrations (Vuong et al., 2021). 

2. Materials and methods 

2.1. Study design and cohort 

We used the HOME Study, a prospective pregnancy and birth cohort, 
for the present study. Between March 2003 and February 2006, we 
recruited pregnant women from the greater Cincinnati area that fulfilled 
the following inclusion criteria: 1) ≥18 years of age; 2) 16 ± 3 weeks of 
gestation; 3) residing in housing constructed before 1978; 4) receiving 
and planning to continue prenatal care and deliver at one of the 
collaborating obstetric practices; 5) HIV- status; and 6) not taking any 
medications related to seizures, thyroid disorders, or chemotherapy/ 
radiation. A detailed description of the methodology for the HOME 
Study is described by Braun et al. (2020, 2017). Of the 468 enrolled 
women, 390 remained to deliver live singletons. We included in the 
present study 208 participants for whom information was available for 
at least one PFAS measurement during childhood and a neurobehavioral 
assessment at age 8 years. The study protocol was approved by the 
Institutional Review Board (IRB) at the Cincinnati Children’s Hospital 
Medical Center (CCHMC). The Centers for Disease Control and Preven
tion (CDC) and collaborating institutions deferred to CCHMC IRB as the 
IRB of record. 

2.2. Childhood serum PFAS concentrations 

Our analysis focused on PFOA, PFOS, PFHxS, and PFNA. These PFAS 
compounds were quantified in child sera collected at ages 3 (n = 146) 
and 8 years (n = 193) using on-line solid-phase extraction coupled to 
high-performance liquid chromatography-isotope dilution mass spec
trometry with established quality control procedures (Kato et al., 2011). 
The limit of detection (LOD) was 0.1 ng/mL for all PFAS except PFOS, 
which was 0.2 ng/mL. We detected the four PFAS in all samples 
analyzed from HOME Study children aged 3 and 8 years. 

2.3. Neurobehavioral assessment 

We assessed neurobehavior in 8-year-old children by parent-report 
using the Behavioral Assessment System for Children-2 (BASC-2) (Rey
nolds and Kamphaus, 2004). The BASC-2 yields four composite scales: 1) 
Externalizing Problems, including hyperactivity, aggression, and 
conduct problem subscales; 2) Internalizing Problems, including anxi
ety, depression, and somatization subscales; and 3) Adaptive Skills, 
including adaptability, social skills, activity of daily living, and func
tional communication subscales; and 4) Behavioral Symptoms Index, 
including Externalizing Problems, Internalizing Problems, and attention 
problems, atypicality, and withdrawal subscales. All scales have a mean 
of 50 ± 10, with higher scores indicating poorer functioning or more of 
those behaviors. In contrast, for Adaptive Skills and its subscales, higher 
scores indicate better functioning. 

2.4. Statistical methods 

We analyzed data using descriptive statistics; we used the Student t- 
test for continuous variables and X2 for comparison of categorical var
iables. To test the hypothesis that childhood PFAS concentrations are 
associated with poorer neurobehavioral outcomes in children, we used 
multiple informant models to estimate βs and 95% confidence intervals 
(CIs) between repeated measures of ln-transformed PFAS at ages 3 and 8 
years and neurobehavior at age 8 years (Sanchez et al., 2011). This 
method utilizes a non-standardized version of generalized estimating 
equations for parameter estimation with the incorporation of separate 
linear regression models that are embedded into each set of estimating 
equations for each time period of interest. Thus, this model is able to 
incorporate repeated measures of PFAS concentrations during childhood 
to determine whether associations between PFAS measurements and 
BASC-2 scores differ by timing of measurement during childhood. To 
determine whether there are susceptible periods of vulnerability, we 
incorporated the interaction term between PFAS and age at measure
ment, with statistical significance considered present if p < 0.10. 
Because some interaction terms had a p < 0.10, we presented age-at- 
exposure-measurement-specific βs. Final models included covariates 
based on findings from Kingsley et al. (2018). Maternal sociodemo
graphic and behavior factors included age, race/ethnicity, marijuana 
use, depression at enrollment, use of vitamin supplements during 
pregnancy, IQ, marital status, and whether the child was breastfed. We 
also adjusted for maternal blood lead level (16 ± 3 weeks gestation), 
maternal serum cotinine (16 ± 3 weeks gestation), household income, 
child sex, and the Home Observation for Measurement of the Environ
ment (HOME) score at age 1 year, which is an assessment of how 
nurturing the home environment is by measuring the quality and 
quantity of encouragement and support for child development (Caldwell 
and Bradley, 1984). We additionally adjusted for prenatal concentra
tions of BDE-47 in a sensitivity analysis to determine if our conclusions 
remained the same. 

Using generalized additive models, we tested for non-linear re
lationships between childhood PFAS concentrations and neurobehavior. 
We estimated sex-specific associations for males and females using the 3- 
way interaction term between PFAS (continuous), child sex (categori
cal), and visit at PFAS measurement (categorical), as well as all possible 
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2-way interactions (PFAS×child sex, PFAS×visit, visit×child sex), with 
a p < 0.10 indicating that statistically significant effect measure modi
fication by child sex was present. Finally, we adjusted for prenatal PFAS 
concentrations to test whether associations differed between childhood 
PFAS and BASC-2 scores and to examine whether previous associations 
reported between prenatal PFAS and neurobehavior remained after 
taking into account childhood PFAS concentrations (Vuong et al., 2021). 

For the secondary analyses, we re-examined the relationship be
tween childhood PFAS and BASC-2 outcomes using body burden as the 
measure of exposure to account for the dynamic and complex uptake 
and elimination of PFAS during childhood that are influenced by 
collinear temporal changes, such as dilution due to physical growth. 
PFAS body burdens at ages 3 and 8 years were calculated using the 
formula: body burden (μg) = PFAS serum concentration (μg/mL) ×
volume of distribution (mL/kg bw) × body weight (kg) (Thompson 
et al., 2010). We used PFAS serum concentrations measured at chil
dren’s ages 3 and 8 years. For volume of distribution, we used values 
provided by Thompson et al. (2010) for PFOA (170 mL/kg bw) and PFOS 
(230 mL/kg bw). For PFNA and PFHxS, volume distributions for PFOA 
and PFOS were used, respectively. This substitution, which was based on 
rodent studies, showed that the volume distributions of differing chain 
length perfluoroalkyl carboxylic acids are within the same range 
(Koponen et al., 2018). Childhood body weight (kg) was measured using 

a scale at ages 3 and 8 years. 

3. Results 

3.1. Study participants 

The majority of women in the HOME Study were non-Hispanic white 
(59.4%), 25–34 years of age (57.5%), educated beyond a high school 
degree (72%), married or living with a partner (73%), nonsmokers 
(82.1%), and did not consume alcohol during pregnancy (55.1%) 
(Table 1). We found that PFOA concentrations at ages 3 and 8 years were 
significantly higher among children of mothers who were older, non- 
Hispanic white, had minimal or mild depressive symptoms, were mar
ried or living with a partner, and who breastfed their child. PFOA con
centrations were additionally significantly higher among children from 
households with annual incomes ≥$80,000 and HOME scores ≥40. We 
also found significantly higher PFOS and PFHxS concentrations at ages 3 
and 8 years among children from households with higher HOME scores 
and with two parents. Externalizing Problems scores at age 8 years were 
significantly higher among children of mothers who used marijuana 
during pregnancy and who were moderately/severely depressed. 

Table 1 
Childhood serum concentrations of PFAS (ng/mL) and BASC-II scores [Mean(SD)] at 8 years in the HOME Study by various characteristics.   

n 3 years (GM) 8 years (GM) Externalizing Problems 

PFOA PFOS PFHxS PFNA PFOA PFOS PFHxS PFNA 

Overall  5.4 6.6 1.9 1.4 2.4 3.9 1.4 0.8 50(10)  

Age, years 
<25 58 4.1* 5.2 1.3 1.1 2.0* 3.4 1.1* 0.6* 49(11) 
25–34 119 5.7 7.0 2.1 1.5 2.5 4.0 1.5 0.8 50(9) 
≥35 30 6.1 6.9 1.9 1.4 3.0 4.8 1.3 0.8 50(8)  

Race/ethnicity 
Non-Hispanic White 123 6.5* 8.1* 2.5* 1.6* 2.8* 1.5* 1.6* 0.8 50(9) 
Non-Hispanic Black and Others 84 3.9 4.5 1.1 1.1 2.0 3.2 1.1 0.7 50(11)  

Household income 
<$40,000 88 4.1* 5.0* 1.2* 1.2 2.1* 3.6* 1.2 0.7 51(11) 
$40,000–$79,999 67 5.9 6.8 2.1 1.5 2.5 3.8 1.4 0.8 49(9) 
≥$80,000 52 6.8 9.1 2.9 1.5 3.0 4.6 1.6 0.9 49(8)  

Maternal marijuana use 
No 192 5.5* 6.7 2.0* 1.4 2.5 4.0* 1.4 0.8 49(9)* 
Yes 15 3.7 4.6 0.8 1.6 2.0 3.0 1.1 0.8 57(12)  

Maternal depression 
Minimal or mild 185 5.6* 6.6 1.9 1.4 2.5* 4.0 1.4 0.8 49(9)* 
Moderate or severe 20 4.2 6.2 1.9 1.4 2.0 3.1 1.1 0.7 56(11)  

Maternal vitamin use 
Daily 159 5.5* 6.8 2.0 1.4 2.5 4.0 1.4 0.8 49(10) 
<Daily 35 5.8 6.3 1.8 1.3 2.4 3.5 1.5 0.8 51(10) 
Never 13 3.2 4.1 1.2 1.6 2.2 3.5 0.9 0.8 54(7)  

Marital status 
Married or living with partner 151 5.9* 7.1* 2.1* 1.5 2.6* 4.2* 1.5* 0.8 49(9) 
Not married or living alone 56 3.8 4.9 1.3 1.2 2.0 3.2 1.1 0.7 51(12)  

HOME Score 
≥40 119 6.4* 8.0* 2.4* 1.6* 2.8* 4.3* 1.6* 0.8* 49(9) 
35–39 40 3.9 4.4 1.4 1.1 1.9 3.3 1.2 0.6 52(12) 
<35 34 3.8 4.7 1.0 1.3 2.2 3.7 1.1 0.7 50(8)  

Ever breastfed current child 
No 40 3.8* 5.2 1.6 1.0* 2.0* 3.3* 1.1 0.7 50(10) 
Yes 166 5.8 6.9 1.9 1.5 2.5 4.0 1.4 0.8 50(10)  

Child Sex 
Male 93 5.1 6.1 1.7 1.3 2.3 3.8 1.3 0.7 51(10) 
Female 115 5.6 7.0 2.0 1.5 2.5 4.0 1.4 0.8 48(9) 

Abbreviations: GM - geometric mean. 
* p < 0.05. 
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3.2. Longitudinal trends of PFAS in childhood 

The median serum concentrations of PFOS in HOME Study children 
decreased from age 3 (6.2 ng/mL) to 8 years (3.6 ng/mL) (Supplemental 
Fig. S1). In contrast, the median body burden of PFOS increased from 
age 3 (21.5 μg) to 8 years (24.3 μg) (Supplemental Fig. S2). The serum 
concentrations of PFHxS also increased (6.5 μg to 8.1 μg), while PFNA 
concentrations were relatively stable (3.2 μg to 3.4 μg). However, serum 
PFOA concentrations and body burdens both decreased from age 3 to 8 
years (5.4 ng/mL to 2.4 ng/mL for serum concentrations; 13.3 μg to 
11.6 μg for body burdens). 

3.3. Childhood serum PFAS and neurobehavior 

Childhood serum PFAS concentrations were not statistically associ
ated with Externalizing or Internalizing Problems or their corresponding 
subscales at age 8 years (Tables 2–3). While no relationship was 
observed between PFAS and Behavior Symptoms Index, we did observe 
a significant inverse association between PFNA concentrations at age 3 
years and attention problems (Table 4). Associations between childhood 
PFAS and Adaptive Skills were not statistically significant, with point 
estimates close to the null (Table 5). We did, however, find one statis
tically significant inverse association between PFNA at age 8 years and 
scores for activity of daily living (β = − 2.4 points, 95% CI: − 4.4, − 0.4), 
indicating poorer abilities. Additional adjustment for prenatal BDE-47 
resulted in similar conclusions (results not shown). No evidence of a 
non-linear relationship between childhood PFAS and BASC-2 compos
ites were observed. All non-linearity p-values in generalized additive 
models were ≥ 0.10 (results not shown). 

3.4. Effect measure modification by child sex 

Overall, our results did not suggest that child sex modified the re
lationships between childhood PFAS concentrations and Adaptive Skills 
(Supplemental Table S1). However, for Externalizing Problems, we 
noted significant modification by child sex with higher concentrations of 
PFNA at age 3 years (interaction term: PFNA × visit3 years × child sex =

0.074) (Fig. 1). Significantly more externalizing behaviors were 
observed among males (β = 4.3 points, 95% CI: 1.0, 7.7), while less 
externalizing behaviors were noted among females (β = − 2.8 points, 
95% CI: − 4.7, − 1.0) with higher serum PFNA concentrations at age 3 

Table 2 
Estimated score differences (95% CIs) in BASC-2 Externalizing Problems scale and subscales at age 8 years by a ln-unit increase in childhood serum PFAS (ng/mL), 
HOME Study.a  

PFAS Externalizing Problems Hyperactivity Aggression Conduct problems 

β 
(95% CI) 

β 
(95% CI) 

β 
(95% CI) 

β 
(95% CI) 

PFOA 
3 years 0.1 

(− 2.7, 2.8) 
− 0.4 

(− 3.3, 2.6) 
− 0.2 

(− 2.8, 2.4) 
0.7 

(− 2.0, 3.5) 
8 years 0.2 

(− 2.8, 3.1) 
− 0.3 

(− 3.4, 2.8) 
− 0.2 

(− 3.1, 2.7) 
1.0 

(− 2.4, 4.4)  

PFOS 
3 years − 1.3 

(− 3.5, 1.0) 
− 1.2 

(− 3.4, 1.1) 
− 1.0 

(− 3.4, 1.5) 
− 1.2 

(− 3.4, 1.1) 
8 years − 1.4 

(− 4.1, 1.3) 
− 1.8 

(− 4.7, 1.0) 
− 1.6 

(− 4.2, 0.9) 
− 0.2 

(− 3.1, 2.7)  

PFHxS 
3 years 0.02 

(− 1.6, 1.6) 
− 0.3 

(− 1.9, 1.2) 
0.1 

(− 1.5, 1.7) 
0.4 

(− 1.3, 2.1) 
8 years − 1.1 

(− 2.8, 0.6) 
− 1.9 

(− 3.9, 0.04) 
− 1.2 

(− 2.9, 0.5) 
0.1 

(− 1.9, 2.1)  

PFNA 
3 years − 0.7 

(− 2.5, 1.1) 
− 0.8 

(− 2.5, 0.9) 
− 0.7 

(− 2.6, 1.2) 
− 0.4 

(− 2.2, 1.4) 
8 years − 0.03 

(− 1.9, 1.9) 
0.8 

(− 1.4, 3.0) 
− 0.9 

(− 3.0, 1.1) 
− 0.003 

(− 2.2, 2.1) 

PFAS were ln-transformed. 
a Adjusted by maternal age, race/ethnicity, household income, maternal marijuana use, maternal blood lead, maternal serum cotinine, maternal depression, vitamin 

use during pregnancy, maternal IQ, marital status, Home Observation for Measurement of the Environment Score, whether the child was breastfed, and child sex. 

Table 3 
Estimated score differences (95% CIs) in BASC-2 Internalizing Problems scale 
and subscales at age 8 years by a ln-unit increase in childhood serum PFAS (ng/ 
mL), HOME Study.a  

PFAS Internalizing Problems Anxiety Depression Somatization 

β 
(95% CI) 

β 
(95% CI) 

β 
(95% CI) 

β 
(95% CI) 

PFOA 
3 years 0.4 

(− 2.1, 2.9) 
− 0.4 

(− 3.0, 2.2) 
0.2 

(− 2.3, 2.7) 
1.4 

(− 1.2, 4.0) 
8 years − 0.7 

(− 3.5, 2.0) 
− 1.1 

(− 4.1, 1.9) 
− 0.2 

(− 2.9, 2.6) 
− 0.3 

(− 3.2, 2.6)  

PFOS 
3 years 0.6 

(− 1.5, 2.6) 
1.4 

(− 0.9, 3.8) 
− 0.2 

(− 2.1, 1.6) 
0.1 

(− 2.2, 2.4) 
8 years 0.2 

(− 2.3, 2.7) 
− 0.2 

(− 3.2, 2.8) 
0.7 

(− 1.5, 3.0) 
− 0.1 

(− 2.8, 2.7)  

PFHxS 
3 years 0.6 

(− 0.6, 1.7) 
0.8 

(− 0.6, 2.1) 
0.8 

(− 0.4, 1.9) 
− 0.2 

(− 1.7, 1.3) 
8 years 0.2 

(− 1.5, 1.9) 
0.3 

(− 1.7, 2.3) 
0.4 

(− 1.2, 1.9) 
− 0.3 

(− 2.2, 1.6)  

PFNA 
3 years 0.1 

(− 2.3, 2.5) 
0.5 

(− 1.8, 2.9) 
− 0.5 

(− 2.4, 1.4) 
0.3 

(− 2.2, 2.8) 
8 years 0.7 

(− 1.6, 3.0) 
0.1 

(− 2.6, 2.7) 
1.0 

(− 1.2, 3.2) 
0.7 

(− 1.6, 3.0) 

PFAS were ln-transformed. 
a Adjusted by maternal age, race/ethnicity, household income, maternal 

marijuana use, maternal blood lead, maternal serum cotinine, maternal 
depression, vitamin use during pregnancy, maternal IQ, marital status, Home 
Observation for Measurement of the Environment Score, whether the child was 
breastfed, and child sex. 
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years. In addition, concurrent PFOA was associated with higher 
aggression scores in males (β = 2.7 points, 95% CI: − 0.7, 6.2), but lower 
scores in females (β = − 3.4 points, 95% CI: − 7.5, 0.7) (interaction term: 
PFOA × visit8 years × child sex = 0.051), albeit sex-stratified associations 
were not statistically significant. We also observed effect modification 
by sex with concurrent PFNA concentrations, with significantly higher 
internalizing behaviors and depression scores among males (Internal
izing Problems: β = 3.7 points, 95% CI: 0.7, 6.8; Depression: β = 5.1 

points, 95% CI: 2.5, 7.7), while there were null associations among fe
males (Internalizing Problems: β = − 1.7 points, 95% CI: − 4.6, 1.2; 
Depression: β = − 2.1 points, 95% CI: − 4.8, 0.6). Similar findings were 
also noted between PFNA and PFOA at age 8 years and Behavior 
Symptoms Index (Supplemental Fig. S3). 

Table 4 
Estimated score differences (95% CIs) in BASC-2 Behavior Symptoms Index and subscales at age 8 years by a ln-unit increase in childhood serum PFAS (ng/mL), HOME 
Study.a  

PFAS Behavior Symptoms Index Atypicality Withdrawal Attention problems 

β 
(95% CI) 

β 
(95% CI) 

β 
(95% CI) 

β 
(95% CI) 

PFOA 
3 years 0.3 

(− 2.4, 3.0) 
0.3 

(− 2.4, 3.1) 
1.9 

(− 0.8, 4.6) 
− 0.2 

(− 3.2, 2.9) 
8 years 0.4 

(− 2.5, 3.2) 
0.04 

(− 3.2, 3.3) 
2.1 

(− 1.1, 5.3) 
0.7 

(− 2.8, 4.2)  

PFOS 
3 years − 0.7 

(− 2.7, 1.3) 
− 0.1 

(− 2.0, 1.7) 
1.1 

(− 1.2, 3.3) 
− 1.9 

(− 4.1, 0.3) 
8 years − 0.3 

(− 2.8, 2.2) 
0.2 

(− 2.1, 2.4) 
1.0 

(− 1.7, 3.7) 
0.2 

(− 2.9, 3.3)  

PFHxS 
3 years 0.2 

(− 1.0, 1.5) 
− 0.3 

(− 1.4, 0.7) 
0.9 

(− 0.6, 2.4) 
− 0.1 

(− 1.6, 1.4) 
8 years − 0.8 

(− 2.5, 0.8) 
− 1.3 

(− 2.8, 0.2) 
0.6 

(− 1.5, 2.7) 
− 0.5 

(− 2.5, 1.4)  

PFNA 
3 years − 1.1 

(− 2.9, 0.7) 
− 0.5 

(− 2.1, 1.1) 
− 0.5 

(− 2.8, 1.9) 
− 1.8 

(− 3.4, − 0.2) 
8 years 0.5 

(− 1.6, 2.6) 
− 0.1 

(− 2.1, 2.0) 
0.5 

(− 2.2, 3.3) 
1.4 

(− 0.8, 3.6) 

PFAS were ln-transformed. 
a Adjusted by maternal age, race/ethnicity, household income, maternal marijuana use, maternal blood lead, maternal serum cotinine, maternal depression, vitamin 

use during pregnancy, maternal IQ, marital status, Home Observation for Measurement of the Environment Score, whether the child was breastfed, and child sex. 

Table 5 
Estimated score differences (95% CIs) in BASC-2 Adaptive Skills and its subscales at age 8 years by a ln-unit increase in childhood serum PFAS (ng/mL), HOME Study.a  

PFAS Adaptive Skills Adaptability Social skills Activity of daily living Functional communication 

β 
(95% CI) 

β 
(95% CI) 

β 
(95% CI) 

β 
(95% CI) 

β 
(95% CI) 

PFOA 
3 years − 0.8 

(− 3.7, 2.1) 
− 1.0 

(− 4.3, 2.3) 
− 2.3 

(− 5.4, 0.8) 
− 1.2 

(− 4.1, 1.8) 
2.1 

(− 1.0, 5.2) 
8 years − 1.2 

(− 4.7, 2.2) 
− 0.3 

(− 3.9, 3.2) 
− 1.3 

(− 5.1, 2.4) 
− 2.1 

(− 5.3, 1.2) 
0.3 

(− 3.2, 3.7)  

PFOS 
3 years 0.7 

(− 1.5, 2.9) 
1.1 

(− 1.2, 3.4) 
− 0.02 

(− 2.5, 2.5) 
1.1 

(− 1.3, 3.4) 
0.8 

(− 1.3, 2.9) 
8 years − 2.2 

(− 5.1, 0.6) 
− 0.1 

(− 3.1, 2.9) 
− 2.5 

(− 5.7, 0.6) 
− 1.4 

(− 4.2, 1.4) 
− 1.8 

(− 4.4, 0.8)  

PFHxS 
3 years 0.4 

(− 1.1, 1.8) 
0.5 

(− 1.0, 2.0) 
0.9 

(− 0.7, 2.5) 
0.2 

(− 1.4, 1.7) 
0.7 

(− 0.7, 2.1) 
8 years 0.1 

(− 1.7, 1.9) 
0.8 

(− 1.0, 2.5) 
0.9 

(− 1.3, 3.1) 
0.1 

(− 1.8, 2.1) 
0.2 

(− 1.5, 1.9)  

PFNA 
3 years 0.7 

(− 1.3, 2.6) 
− 0.02 

(− 1.9, 1.9) 
0.4 

(− 1.6, 2.5) 
0.9 

(− 1.3, 3.1) 
0.9 

(− 0.9, 2.7) 
8 years − 2.1 

(− 4.3, 0.1) 
− 1.6 

(− 3.9, 0.7) 
− 1.8 

(− 4.1, 0.6) 
− 2.4 

(− 4.4, − 0.4) 
− 1.7 

(− 4.0, 0.6) 

PFAS were ln-transformed. 
a Adjusted by maternal age, race/ethnicity, household income, maternal marijuana use, maternal blood lead, maternal serum cotinine, maternal depression, vitamin 

use during pregnancy, maternal IQ, marital status, Home Observation for Measurement of the Environment Score, whether the child was breastfed, and child sex. 
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3.5. Childhood body burden of PFAS and neurobehavior 

Childhood body burdens of PFAS were not associated with Exter
nalizing Problems (Supplemental Table S2). However, there was a sta
tistically significant inverse relationship between body burdens of 
PFHxS at age 8 years and hyperactivity (β = − 2.1 points, 95% CI: − 3.9, 
− 0.4) that was not present when we examined serum PFHxS. We 
observed comparable associations between body burden of PFAS and 
Internalizing Problems and Adaptive Skills as with PFAS serum con
centrations (Supplemental Tables S3–4). However, there were two 
additional statistically significant inverse associations, specifically be
tween the body burden of PFHxS at age 8 years and atypicality scores 

and between the body burden of PFOS at age 3 years and attention 
problems (Supplemental Table S5). We observed several significant sex 
interactions among associations between PFAS body burden and neu
robehavior that were previously noted in our analyses of PFAS serum 
concentrations, including effect measure modification by sex in the as
sociations between: 1) PFOA at age 8 years and aggression; 2) PFNA at 
age 8 years and Internalizing Problems and depression; and 3) PFOA at 
age 8 years and atypicality (Supplemental Table S6). 

3.6. Prenatal and childhood PFAS and neurobehavior 

We observed no relationship between prenatal PFAS concentrations 
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Fig. 1. Estimated score differences and 95% CIs in BASC-2 scores at age 8 years by a ln-unit increase in child serum PFAS concentrations (ng/mL) by child sex, HOME 
Study. Adjusted by maternal age, race/ethnicity, household income, maternal marijuana use, maternal blood lead, maternal serum cotinine, maternal depression, 
vitamin use during pregnancy, maternal IQ, marital status, Home Observation for Measurement of the Environment Score, and whether the child was breastfed. 
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and Adaptive Skills in models adjusted for childhood PFAS concentra
tions (Supplemental Table S7). However, we continued to observe an 
inverse relationship between PFNA at 8 years and activity of daily living. 
There were several positive associations between prenatal PFAS and 
Externalizing Problems after adjusting for childhood concentrations 
(Fig. 2). Prenatal PFOS (β = 3.2 points, 95% CI: 1.0, 5.3), PFHxS (β = 2.1 
points, 95% CI: 0.6, 3.7), and PFNA (β = 3.7 points, 95% CI: 1.1, 6.3) 
were significantly associated with higher scores on Externalizing Prob
lems. These findings are concordant with those previously reported in 
the HOME Study that did not take into account childhood PFAS con
centrations (Vuong et al., 2021). Statistically significant positive asso
ciations were also observed between prenatal PFOS, PFHxS, and PFNA 
with hyperactivity, aggression, and conduct problems. Adjusting for 
prenatal PFAS resulted in similar null associations between childhood 
PFAS and Externalizing Problems. Finally, mutual adjustment for pre
natal and childhood PFAS resulted in significantly higher scores for 
Internalizing Problems, somatization, Behavior Symptoms Index, and 
attention problems in children with increased prenatal PFHxS (Supple
mental Table S8–9). We also continued to observe null findings between 
childhood PFAS with Internalizing Problems and its subscales (Supple
mental Table S8) as well as a significant inverse relationship between 
PFNA at 3 years with attention problems (Supplemental Table S9). 

4. Discussion 

In this prospective cohort study, we observed that childhood serum 
concentrations of PFAS at ages 3 and 8 years were not associated with 
externalizing or internalizing behaviors in children at age 8 years. 
However, there is suggestive evidence that child sex modifies the asso
ciations between childhood PFAS and neurobehavior, where higher 
serum concentrations of PFOA and PFNA are associated with more 
externalizing problems, internalizing problems, and behavior symptoms 
in males compared to females. We also noted significant associations 
between PFNA and lower scores for activity of daily living and attention 
problems, though findings do not suggest childhood serum concentra
tions of PFOA, PFOS, or PFHxS are associated with behavior symptoms 
or adaptive skills. Lastly, prenatal PFAS concentrations remain associ
ated with more externalizing and internalizing problems in children 
even after taking into account childhood concentrations. 

Our null findings between childhood PFAS and behavioral problems 
are not consistent with the findings from the Faroese cohort (Oulhote 
et al., 2019; Oulhote et al., 2016). PFNA concentrations at age 5 years 
were significantly associated with more externalizing problems in chil
dren at age 7 years (Oulhote et al., 2016). Oulhote et al. (2016) also 
reported more internalizing problems in children at 7 years with higher 
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Fig. 2. Estimated score differences (95% CIs) in BASC-2 Externalizing Problems scale and subscales at age 8 years by a ln-unit increase in serum PFAS during 
gestation and childhood (ng/mL), HOME Study. Adjusted by maternal age, race/ethnicity, household income, maternal marijuana use, maternal blood lead, maternal 
serum cotinine, maternal depression, vitamin use during pregnancy, maternal IQ, marital status, Home Observation for Measurement of the Environment Score, 
whether the child was breastfed, and child sex. 
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PFOA serum concentrations at age 5 years. In the examination of early 
life exposures to chemical mixtures, PFNA concentrations at 5 years was 
significantly associated with higher total Strengths and Difficulties 
Questionnaire (SDQ) scores, indicating worse behavioral problems 
(Oulhote et al., 2019). However, no relationship was noted between 
concurrent PFAS concentrations and behavioral problems at 7 years 
(Oulhote et al., 2016). In a cross-sectional study examining serum PFAS 
at age 10 years, higher concentrations of several PFAS were associated 
with shorter inter-response times, indicating impulsivity (Gump et al., 
2011). In contrast, the C8 Health Study reported mixed findings, with 
protective and null associations between childhood PFAS and behav
ioral problems, including inattention and impulsivity (Stein et al., 2013, 
2014). The only adverse relationship observed in the HOME Study was 
between prenatal PFAS and externalizing and internalizing behaviors, 
which was previously reported by Vuong et al. (2021) and replicated in 
the current study after taking into account childhood concentrations. 
Our findings align with those from the INUENDO cohort examining 
prenatal PFAS concentrations (Hoyer et al., 2015), but they contrast 
with the protective associations reported in the Taiwanese and Danish 
cohorts (Fei and Olsen, 2011; Lien et al., 2016) and the null associations 
in the Dutch cohort (Quaak et al., 2016). 

No other study has formally examined childhood PFAS and Adaptive 
Skills using BASC-2, but a few have investigated aspects of this behav
ioral domain, including peer-social behaviors and self-help. Those 
studies, which mainly focused on PFAS during gestational development, 
mirror the results of the present study (Chen et al., 2013; Fei et al., 2008; 
Goudarzi et al., 2016; Oulhote et al., 2016). In contrast, Lien et al. 
(2016) observed better prosocial behavior and fewer peer problems in 
children at 7 years with increased cord PFOA concentrations. Hoyer 
et al. (2015) reported worse scores on the SDQ in children 7–9 years of 
age with higher prenatal PFOA and PFOS concentrations. Our study 
similarly lacked convincing evidence of a relationship between child
hood PFAS and Adaptive Skills. This finding is inconsistent with the 
Faroese cohort where higher PFOA concentrations at age 5 years were 
associated with problems with peer relationship, though further 
adjustment for prenatal PFAS resulted in null associations (Oulhote 
et al., 2016). 

Our main findings on childhood PFAS concentrations and neuro
behavior were discordant with those of the Faroese cohort (Oulhote 
et al., 2019; Oulhote et al., 2016). This discrepancy may relate to a 
number of factors. In the Faroese study, PFAS serum concentrations 
were measured at ages 5 and 7 years, while in the HOME Study con
centrations were measured at ages 3 and 8 years. In the Faroese study, 
significant adverse associations were only noted between PFAS at 5 
years, while null associations were observed with PFAS at 7 years with 
behavioral outcomes. There were generally null findings in the present 
study, though PFNA at 3 and 8 years was inversely associated with 
attention problems and activity of daily living scores, respectively. 
Inconsistent conclusions between the studies regarding the timing of 
childhood PFAS exposure with neurobehavior does not indicate a spe
cific time period during childhood in which PFAS are more detrimental 
to neurobehavior. Concentrations also differed between the cohorts, 
with PFOS and PFOA median concentrations higher in Faroese children 
at age 7 years (PFOS: 15.26 ng/mL; PFOA: 4.37 ng/mL) compared to 
HOME Study children at age 8 years (PFOS: 3.6 ng/mL; PFOA: 2.4 ng/ 
mL). The administered neurobehavioral assessments also varied be
tween studies. We used the BASC-2, while Oulhote et al. (2019; 2016) 
used the SDQ, which provides the scales of Externalizing Problems 
(consisting of subscales: hyperactivity/inattention and conduct prob
lems) and Internalizing Problems (consisting of subscales: emotional 
symptoms, peer relationship problems, and prosocial behavior). They 
focused on subscales of the SDQ that pertained to adaptive skills, 
including peer relationship problems and prosocial behavior, which may 
have differed from our behavioral assessment of Adaptive Skills using 
BASC-2. Lastly, statistical approaches varied between studies. While we 
used multiple informant models that took into account repeated 

measures of PFAS, Oulhote et al. (2016) used negative binomial 
regression models. They did, however, used structural equation 
modeling (SEM) as well as G-formula combined with Superlearner to 
examine the joint associations between prenatal and childhood PFAS 
along with other potential environmental contaminants (Oulhote et al., 
2019; Oulhote et al., 2016). 

Interestingly, both the HOME Study and the Faroese cohort reported 
potential sexual dimorphism between childhood PFAS and behavioral 
domains. In the HOME Study, we noted more externalizing problems 
with higher concentrations of PFNA at age 3 years and higher aggres
sions scores with increasing PFOA concentrations at age 8 years in 
males, but not in females. In the Faroese cohort the opposite was found, 
with female children appearing more sensitive to PFAS (Oulhote et al., 
2016). Higher PFOS, PFNA, and PFHXs concentrations at age 7 years 
were associated with more externalizing problems, hyperactivity/inat
tention, and conduct problems in females, but not in males. It is unclear 
as to why there is a discrepancy between the studies regarding effect 
modification by sex results for childhood concentrations. While it re
mains to be determined whether males or females may be more sensitive 
to PFAS’ potential neurotoxic effects, there is evidence from both studies 
that the associations may differ by sex. The mechanisms that come into 
play have yet to be elucidated, though eliminations rates between sexes 
may contribute to sex-specific findings. Toxicological studies in mice 
and rodents have shown differences in the clearance of PFAS by sex, 
with PFOA, PFNA, and PFOS having longer half-lives in males because of 
slower elimination rates (Kennedy Jr. et al., 2004; Ohmori et al., 2003; 
Tatum-Gibbs et al., 2011). In humans, PFOS and PFHxS have also been 
observed to have longer half-lives in males than in females (Li et al., 
2018). 

The present study has several strengths, including prospective 
childhood PFAS exposure assessment and extensive covariate informa
tion, including maternal depression, caregiving quality/quantity, and 
measurements of other potential neurotoxicants. We had repeated 
measurements of PFAS during childhood, and examined associations 
taking into account prenatal PFAS concentrations. Third, we utilized 
multiple informant models to identify potential windows of suscepti
bility. Lastly, we relied on the BASC-2 to assess neurobehavior in chil
dren, which is a reliable and valid neurobehavioral battery. 

We also recognize some study limitations. First, the sample size 
limits our power to examine effect measure modification by sex. 
Although some findings would suggest potential sexual dimorphism, our 
results should be interpreted cautiously given the sample size. Second, 
while we had two serum PFAS measurements during childhood, earlier 
measurements during infancy and around toddler age may be more 
detrimental to neurodevelopment. Third, we do not have information 
regarding water consumption sources or frequency within the HOME 
Study for children at 3 and 8 years. Quantification of PFAS concentra
tions in child serum occurred after Cincinnati implemented water 
treatment technology to remove PFAS. Given that the main route of 
human exposure to PFAS is via water consumption and that 60% of 
water volume consumed by US children 4–13 years is from tap water 
sources, it is likely that our findings may be biased toward the null 
(Drewnowski et al., 2013; Sunderland et al., 2019). Multiple compari
sons remains a potential concern despite the use of multiple informant 
models to reduce the total number of models in the study because there 
is no reduction in type 1 error. However, given our generally null as
sociations, type 1 error is not a serious concern. In addition, we did not 
examine mixtures of PFAS, which may have additive, synergistic, or 
negative effects. Lastly, findings may not be entirely generalizable as 
some PFAS concentrations in the HOME Study are higher than those 
reported in NHANES. While the geometric mean (GM) of PFOS con
centrations in HOME Study mothers (12.8 ng/mL) was comparable to 
that of pregnant women in NHANES 2003–2004 (12.3 ng/mL), PFOA 
concentrations are higher in the HOME Study (5.3 ng/mL compared to 
2.39 ng/mL) (Woodruff et al., 2011). Childhood concentrations of PFOA 
and PFOS were also higher in the HOME Study at 3 and 8 years 
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compared to concentrations quantified in serum of children at 3–5 and 
6–11 years in NHANES 2013–2014 (Ye et al., 2018). 

5. Conclusions 

Findings from the HOME Study do not support a relationship be
tween childhood serum concentrations of four PFAS compounds and 
neurobehavior. Nevertheless, there is some evidence to suggest that sex 
may modify the relationship between childhood PFAS and neuro
behavior, with males being more sensitive to increasing concentrations 
of PFOA and PFNA. The null association observed between PFAS con
centrations in all HOME Study children and BASC-2 outcomes may be 
due to the inverse associations observed among females that attenuated 
the positive associations in male children. However, because of our 
limited sample size, results should be interpreted cautiously and repli
cated in sufficiently powered birth cohorts. Last, we also confirmed 
previous findings from the HOME Study between higher prenatal PFAS 
concentrations and more externalizing and internalizing problems in 
children after taking into account childhood PFAS concentrations. 
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