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ARTICLE

Altered theta rhythm and hippocampal-cortical
interactions underlie working memory deficits in a
hyperglycemia risk factor model of Alzheimer’s
disease
Ryan. A. Wirt1,4, Lauren. A. Crew1,4, Andrew. A. Ortiz1, Adam. M. McNeela1, Emmanuel Flores1,

Jefferson. W. Kinney2 & James M. Hyman 3✉

Diabetes mellitus is a metabolic disease associated with dysregulated glucose and insulin

levels and an increased risk of developing Alzheimer’s disease (AD) later in life. It is thought

that chronic hyperglycemia leads to neuroinflammation and tau hyperphosphorylation in the

hippocampus leading to cognitive decline, but effects on hippocampal network activity are

unknown. A sustained hyperglycemic state was induced in otherwise healthy animals and

subjects were then tested on a spatial delayed alternation task while recording from the

hippocampus and anterior cingulate cortex (ACC). Hyperglycemic animals performed worse

on long delay trials and had multiple electrophysiological differences throughout the task. We

found increased delta power and decreased theta power in the hippocampus, which led to

altered theta/delta ratios at the end of the delay period. Cross frequency coupling was

significantly higher in multiple bands and delay period hippocampus-ACC theta coherence

was elevated, revealing hypersynchrony. The highest coherence values appeared long delays

on error trials for STZ animals, the opposite of what was observed in controls, where lower

delay period coherence was associated with errors. Consistent with previous investigations,

we found increases in phosphorylated tau in STZ animals’ hippocampus and cortex, which

might account for the observed oscillatory and cognitive changes.
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A lzheimer’s disease (AD) is a progressive neurodegenera-
tive disorder characterized by escalating memory
impairments and the presence of two core pathologies,

amyloid beta (Aβ) plaques and hyperphosphorylated tau
(ptau)1–4. Over the past 15 years, neuroinflammation has
emerged as a third core pathology in AD5–7. Additional data have
demonstrated that neuroinflammation promotes the production
of Aβ and ptau8,9, demonstrating a role in the progression of the
disorder10. While the exact cause of most AD cases (late-onset
AD) is still unknown, a number of risk factors have been iden-
tified. These include genetic factors ApoE411, age12, and other
existing pathologies such as diabetes mellitus (DM), in particular,
Type 2 DM (DM2). DM2 is characterized by insulin receptor
insensitivity and hyperglycemia that eventually progresses to a
more robust loss of insulin signaling13. Additional metabolic and
vasculature changes are observed, as well as increased inflam-
matory signaling14–16. DM itself has been linked to cognitive and
neurological problems17; however, little is understood about how
or if DM2 affects mechanisms important for cognition.

The hippocampus is an area of vital importance for working
memory function and is also one of the first areas in the
brain affected by AD pathology18,19. DM and AD share
multiple neuropathologies in the hippocampus, including
impaired neurogenesis20–22, dendritic atrophy23, tau hyperpho-
sphorylation, and increased neuroinflammation10. All these
results were identified in the streptozotocin (STZ) model10. STZ
is a diabetogenic drug that selectively damages insulin-producing
pancreatic β-cells, leading to impaired insulin production24.
High-dose STZ treatments lead to symptoms mimicking Type 1
diabetes, including severe insulin production impairments, mas-
sive weight loss, malaise behavior, and increased mortality25,26.
Severe cognitive and learning deficits also occur, with impair-
ments found in spatial memory27, working memory28, and hip-
pocampal long-term potentiation (LTP)29. However, it is difficult
to delineate the cognitive impairments from changes associated
with illness and malaise behavior in this model. Murtishaw et al.10

employed an intermittent low-dose STZ model that mimics
progressive and sustained hyperglycemia seen in late-stage DM2
known as “pancreatic exhaustion,” in an otherwise healthy ani-
mal. Importantly, in this model, learning and memory impair-
ments were present, reiterating conclusions from previous studies
that sustained hyperglycemia, and not sickness, induces cognitive
impairments. Additionally, this model renders pathological
changes in the brain consistent with observations in AD model
systems, including increased tau phosphorylation and sustained
immune response (chronic neuroinflammation). While impair-
ments with hippocampal neurogenesis, LTP, and atrophy provide
some insight into the mechanisms behind DM-linked cognitive
impairments, they do not necessarily account for such large
deficits30. Furthermore, the overlap of AD-related changes in the
hyperglycemia model merits further investigations to determine
whether changes in network-level function in the STZ model also
mirror changes observed in AD-specific models.

We hypothesized that the learning and memory impairments
previously observed in the low-dose STZ model were in part due
to hippocampal network activity disruptions. During learning and
memory tasks, hippocampal activity is dominated by the
appearance of high-powered theta oscillations (6–13 Hz in
rodents), which are integral for many of the mechanistic aspects
thought to subserve hippocampal memory processes. Theta
oscillations help to organize the flow of activity along the per-
forant path31, integrate entorhinal cortical input32, control
neuroplasticity33,34, and are coupled with gamma oscillations to
incorporate local neuronal activity with global hippocampus
activity35. Perhaps equally important is theta rhythm’s role in
coordinating interactions with the anterior cingulate cortex

(ACC)36–38 and many other neural areas39–41. Interestingly, in
various AD animal model systems, changes have been found in
these very same theta-related hippocampal network
functions42–44. However, hippocampal–cortical theta interactions
have not previously been studied in a model of hyperglycemia
and linking these interactions with hyperglycemia could provide a
cognitive link between AD and DM.

To assess the effects of STZ-induced hyperglycemia in other-
wise healthy animals on neural network activity, we recorded
simultaneously from area CA1 in the hippocampus and ACC
while rats performed a variable length delayed alternation task on
a T-maze. We found that hyperglycemic animals had decreased
theta/delta (TD) ratios in the hippocampus and, overall,
had unique network activity in both areas, including elevated
theta/gamma coupling. During the delay period, STZ animals had
higher ACC–hippocampal theta coherence. On error trials,
coherence was higher than for correct trials in STZ animals, but
for controls, the opposite was true (i.e., more theta coherence
leads to better performance). This effect was magnified on long
delay trials, where STZ animals also had poor working memory
performance. Consistent with previous work, we found increased
levels of ptau in the hippocampus in STZ animals. Overall, we
report significant changes in both hippocampal and ACC net-
work activity and the interactions between these areas during
working memory performance, similar to network disruptions
observed in the early pathological stages of several different AD
animal models.

Results
STZ-treated animals have high blood glucose. Following the
series of STZ injections, all animals in the experimental group
exhibited a sustained fasting blood glucose reading >250 mg/dl
(see Fig. 1a) and a mild decrease in body weight (see Fig. 1b),
which normalized before recordings began. A threshold of
≥250 mg/dl was selected based on clinical criteria to establish a
chronic hyperglycemia state consistent with DM10. The experi-
mental group mean was 358.1 ± 36.7 mg/dl prior to the first
recording session. A two-factor analysis of variance (ANOVA)
revealed significant main effects for group (F(1,35)= 49.4;
p= 1.2 × 10−7), day (F(3,35)= 13.05; p= 1.63 × 10−5), and a
significant interaction (F(3,35)= 14.06; p= 8.9 × 10−6; Fig. 1a).
These results align with our previously published work with this
same protocol10.

We compared body weights over the course of injections and
recordings with a two-factor ANOVA (Group ×Weeks) and
found significant main effects for group (F(1,61)= 6.93; p= 0.01)
and weeks (F(7,61)= 7.44; p= 5.6 × 10−6), but notably no
significant interaction (F(7,61)= 1.28; p= 0.28; Fig. 1b). While
the increase in weight is expected over weeks, the group
difference likely arose in the period immediately following
surgery. The week following surgery (approximately the fourth
week after the first injections), STZ animals lost considerable
weight compared to controls; however, they quickly recovered,
and no difference between groups was observed during recording
sessions. It was likely that STZ animals recovered from surgery
more slowly but quickly caught up to their control peers. All
recording sessions that generated data analyzed in the present
study were carried out 5.5 weeks or longer post-surgery when no
significant weight differences were present.

Behavioral impairments only appear during the longest delay
trials. All animals performed a spatial delayed alternation task on
a T-maze (see Fig. 1d). Animals were trained and reached cri-
terion performance on the task before their first injection and
prior to surgery (see “Methods”). On any given trial, an animal
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must navigate from the sequestered delay area around the maze
via the return arms. Once animals returned to the delay area, they
were sequestered for a random interval between 5 and 45 s (time
spent sequestered). A total of 35 sessions were analyzed here:
19 sessions from 5 STZ animals and 16 sessions from 3 controls
(see Fig. 1c). Trials were divided into short (<20 s) and long
(>20 s) delay periods, depending on the time spent sequestered.
This led to a relatively even distribution of trials, with slightly
more short delay trials (Fig. 1e). We then compared the percent
of correct trials by delay length between groups and found that
STZ animal performance was strongly affected by delay length
(Fig. 1f). A two-factor ANOVA (Group × Delay Length) found a
significant main effect for Delay Length (F(1,66)= 9.14;
p= 0.0036), but not Group (F(1,66)= 0.94; p= 0.33). Impor-
tantly, there was a significant interaction between Group and
Delay Length (F(1,66)= 7.96; p= 0.0063) and follow-up tests
showed the difference was isolated to the STZ group (Tukey’s;
p < 0.001). These results show that STZ animals had a sig-
nificantly larger drop off in accuracy for long delay trials com-
pared with control animals. This is consistent with previous
reports of memory problems with this same animal model10.

To ensure that group performance differences were not
associated with general motor or sensory impairments, we
examined the distance animals moved throughout the session
and speed. We found the mean total distance traveled over all
sessions was comparable (F(1,34)= 0.0027; p= 0.985). Since both

theta and delta oscillations are linked with running, we compared
running speeds during trials to assure that this behavioral factor
did not confound our electrophysiological results. A two-factor
ANOVA (Group ×Maze Position) on running speeds from the
sequester box to reward zone was performed, and while we did
find that both main effects were significant (p < 0.01), notably we
found no significant interaction between the two factors
(F(23,792)= 0.619; p= 0.918; Fig. 1g). This indicates that, while
overall speed between groups was different and speed varied over
the maze, there was no section of the maze in which control and
STZ animals ran at different speeds. As shown in the raw session
traces in Fig. 1f, there is plenty of overlap between control (gray)
and STZ (magenta) running speeds. No other behavioral
differences were found between groups that might potentially
explain any electrophysiological differences.

Decreased hippocampal TD ratios in hyperglycemic animals.
Local field potentials were recorded from the hippocampus and
ACC of 8 animals (STZ= 5; control= 3). We included ACC
recordings to analyze hippocampal–cortical theta interactions
and to serve as a positive control for spectral analyses of the
hippocampus, since hyperglycemia has been previously shown to
strongly affect the hippocampus10. Recording implants targeted
area 24 in the ACC45 and dorsal CA1 in the hippocampus. The
location of the leads relative to the CA1 cell layers was inferred

Fig. 1 Metabolic and behavioral data. a Blood glucose values from all subjects. Blood glucose index values are shown on the y-axis and the date of testing
is on the x-axis. b Group body weight change. All weights were normalized to week 1 values for each subject, which was the day of the final STZ or vehicle
injections. i= injection day; *i= supplemental injection day. c Table of subjects and sessions. d Schematic of T-maze. e Distribution of trial delay lengths. f
Accuracy by the total trial length between groups. Proportion of correct trials is on the y-axis, and total delay length is on the x-axis. g Mean running speed
during trials. Running speed in centimeters per second is on the y-axis and position on the maze on the x-axis. **p < 0.01. Error bars= SEM.
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using methods from Mizuseki et al.46. We performed a two-way
ANOVA on hippocampal sharp-wave ripple amplitude between
groups and found no difference in STZ-treated or control animals
(F(1,33)= 0.305; p= 0.584), confirming that hippocampal
recording locations were comparable across subjects.

Our initial set of analyses of hippocampus and ACC networks
sought to characterize the global electrophysiological effects on

slow frequency oscillations of chronic hyperglycemia. We first
examined the hippocampal local field potential (LFP) power
spectrum over the course of the full sessions (Fig. 2a), where we
observed the most striking differences in the low frequency bands.
For these analyses, each recording lead was spectrally decom-
posed and then values were averaged across all hippocampal
leads, yielding a single value per session. Control animal CA1
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leads were dominated by ~8 Hz theta activity, while hypergly-
cemic animals often had very strong delta (1–4 Hz). We found
significant delta power in hyperglycemic animals
(F(1,33)= 14.14; p= 6.6 × 10−4) across all CA1 recordings and
subjects (Fig. 2b). Also, we found significantly lower theta power
in STZ animals (F(1,33)= 13.44; p= 8.57 × 10−4). These differ-
ences show that CA1 delta and theta oscillations were affected by
chronic hyperglycemia during spatial working memory
performance.

The hippocampus typically alternates between active proces-
sing theta states and offline delta states47,48. Thus, throughout the
delayed alternation task, processing states are regulated by the
task structure, as animals alternate from periods of running to
stationary periods during reward consumption and the delay
period. Typically, theta power dominates during the running
periods and delta appears more prominently in the absence of
movement. Since our previous analysis found group differences in
delta and theta power, we next investigated whether the interplay
between these two oscillations was disrupted. To quantify this
relationship, we calculated TD ratios, a prominent measure used
to find alterations associated with AD pathology in both humans
and animal models49. We calculated TD ratios for the entire
sessions, which captured the strength of the changes in these two
frequency bands. By averaging power over the entire session, we
wanted to “smooth” out any transient behavioral influences that
could mask more enduring changes in oscillatory balance. We
found that TD ratios were lower in hyperglycemic animals
(F(1,33)= 20.03; p= 4.66 × 10−4; Fig. 2c). These results demon-
strate that the interplay between these bands was altered at the
recording sites over the full length of the session, similar to
patterns associated with AD pathology.

TD ratio differences indicate a fundamental change in the
coordination of these behaviorally relevant network states, but
this analysis does not address what factors lead to the decreases.
Smaller TD ratios could arise if theta power was lower but delta
power was unchanged, or if delta was higher but theta was
unchanged, or if the relationship between the two was altered
through some combination of these factors. In turn, when we
examined how theta and delta power related during a given
session, we found a strong negative correlation in controls
(R=−0.683; p= 2.97 × 10−7); however, this relationship was not
present in hyperglycemic animals (R=−0.185; p= 0.45; Fig. 2d).
These results show that the fundamental balance between these
two behaviorally relevant oscillations was altered by chronic
hyperglycemia, but understanding what factors contributed to
this imbalance can be difficult. When we examined behavior over
the whole session, animals in both groups performed a similar
number of trials, ran at similar speeds, and had similar

distributions of trial lengths, and thus, it is reasonable to
conclude that these differences were not due to changes in gross
behavior. However, since both theta and delta are strongly
affected by locomotion and running speed50, it remains possible
that changes in TD ratio might be linked to more discrete
behavioral changes.

Our next set of analyses examined whether the moment-to-
moment coupling between delta and theta oscillations with
running speed was altered in STZ animals. In control animals,
delta power was negatively correlated with running speed, as
expected; however, in STZ animals this relationship was weaker
(Χ2(1,33)= 9.89; p= 0.0017; Fig. 2d). As can be seen in Fig. 2e,
hyperglycemic animals’ cumulative distribution of delta/running
speed correlations is shifted toward zero. For theta oscillations,
we did not find a similar effect. (Χ2(1,33)= 0.246; p= 0.619;
Fig. 2f), as both groups had equally strong positive correlations
between theta and running speed. We next compared TD ratios
with running speed over the course of the session and again
found that, across all sessions, STZ animal’s hippocampal
networks were less coupled with running speed (Fig. 2g). These
analyses lead to multiple conclusions. First, it appears that
behavioral differences do not account for the observed effects in
delta power and TD ratio since STZ animal’s delta, theta, and TD
ratios were differentially affected by ongoing behavior. Clearly,
STZ treatments and factors related to the resultant long-lasting
hyperglycemia are fundamentally changing delta oscillations in
hippocampal networks. In STZ animals, the antagonistic relation-
ship between theta and delta oscillations was less prominent
throughout the task session, and the interplay between these
oscillations (i.e., TD ratio) was less influenced by locomotor
behavior over trials during sessions. Additionally, these results
suggest that higher delta power during running was affecting
whole-session TD ratios, as opposed to delta during stationary
periods. This can be seen in the weaker negative relationship
between STZ animals’ delta power and TD ratios with running,
while theta correlations remained like controls. Taken together,
these analyses suggest that differences in delta power and delta’s
relationship with ongoing behavioral output were primarily
responsible for the changes in TD ratio, though theta changes
might have also contributed.

ACC delta and theta power more coupled with running.
Oscillatory dynamics in the ACC are generally more diverse than
in the hippocampus. While there is prominent theta activity,
there is also considerable delta power present during task
performance51. In STZ animals, there were many instances where
we found peaks in the delta range or two clear peaks, one in delta

Fig. 2 Spectral analyses of hippocampal and ACC local field potentials. a, h Power spectral densities (PSD) of each STZ (top) and control (bottom) group.
Values are means from all leads from the entire recording session and have been normalized as a proportion of total spectral power. Sessions are on the y-
axis and frequency is on the x-axis. b, i Mean power by frequency band. Mean normalized PSD power is on the y-axis and frequency bands are on the x-
axis. Error bars show the standard error of the mean. Inset, mean spectral density over all leads per group by frequency (x-axis). c, j Theta/delta ratios.
Mean theta power divided by delta power is on the y-axis. d, k Correlation between theta and delta power. Theta power is on the y-axes and delta power on
the x-axes. Left, control sessions and right, STZ sessions. e–g, l–m Relationship between delta (e, l) and theta (f, m) power and theta/delta ratio (g, n) with
running speed. Cumulative density of leads is shown on the y-axis and correlation values are on the x-axis. h ACC power spectral densities. Mean session
long mean values for STZ (top) and control (bottom) animals. o Spectral phenotype analysis. Decoding accuracy by training set size. On the y-axis is
percent accurately identified and the x-axis shows the number of LFP signals in each training set group. There were four groups: control ACC, control
hippocampus, STZ ACC, STZ hippocampus. Colors show how leads were classified—blue for correct categorization and yellow, red, and green for the three
types of incorrect classifications. The white dashed line shows the chance levels derived from 1000 bootstraps of randomly assigned group memberships.
Bottom, confusion matrices by training set size. Colors depict the mean posterior probabilities for each category. Note the emergence of yellow on the
diagonal as training set sizes increase. p, q Leave one out subject and session. On the y-axis is percent identified and the two groups are shown on the x-
axis. Each dot (gray for control; magenta for STZ) shows an individual subject’s or sessions mean percent accurately identified. The white dotted line shows
chance levels. In all plots, control values are in gray and STZ are shown in magenta. Dots indicate individual session values. **p < 0.01. Error bars= SEM.
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and another in theta (Fig. 2h). When we examined individual
frequency band mean power between groups, we did not find
significant changes in delta (F(1, 33)= 1.95; p= 0.172) and found
a slight but not significant (corrected for multiple compar-
isons) difference in theta power (F(1,33)= 4.977; p= 0.0326;
Fig. 2i). We also found no difference in TD ratios in ACC
(F(1,33)= 0.378; p= 0.542; Fig. 2j). Overall, we found much
smaller effects of chronic hyperglycemia in ACC oscillatory
power, which can be readily seen in the correlations between
whole session delta and theta power (Controls: R=−0.93;
p= 2.97 × 10−7; STZ: R=−0.84; p= 5.87 × 10−6; Fig. 2k).

We next examined the relationship between theta and delta
power in the ACC, by analyzing the power in each band and how
it related to the animal’s running speed. Relative to controls, we
found that a much larger percentage of STZ ACC leads had delta
power that was less negatively correlated with running
speed (Χ2(1,33)= 14.754; p= 1.22 × 10−4; Fig. 2l). In STZ
animals, significantly more ACC leads showed a strong positive
correlation between theta and running speed (Χ2(1,33)= 12.302;
p= 4.84 × 10−4; Fig. 2m). Lastly, we found no noticeable
differences in how ACC TD ratios related to running speed in
the STZ and control groups (Χ2(1,33)= 2.965; p= 0.085; Fig. 2n).
Thus, chronic hyperglycemia increased the coupling between
both theta and delta oscillatory power and locomotor behavior,
but it did not affect how the relative strength of these frequency
bands related to running speed. Unlike in the hippocampus of
STZ animals, the lack of differences in TD ratio or its relation to
running suggest that, in ACC, there was a general increase in
lower frequency oscillatory linkage with running. Thus, higher
delta power and delta coupling with running were offset by higher
theta power and theta running coupling, leading to unchanged
TD ratios. All together, these results reveal that cortical oscillatory
activity was also affected by STZ in multiple frequency bands,
though these effects were more nuanced than those observed in
the hippocampus.

Identifying a unique electrophysiological phenotype due to
hyperglycemia. After finding changes in multiple frequency
bands (notably delta and theta) in both the ACC and hippo-
campus of STZ animals, we next sought to determine how
widespread these effects were throughout all our subjects and
recording leads. We hypothesized that, if hyperglycemia fun-
damentally altered network activity in these areas, this should
be relatively consistent across animals, recording sites within
areas, and sessions. Thus, there should be an identifiable
spectral pattern that can distinguish ACC and hippocampal
leads in controls vs. STZ animals. Thus, we had 4 categories and
we used the normalized spectral power between 1 and 100 Hz
for classification. We classified with support vector machines
(SVMs) and first examined accuracy for different sized training
sets. For each iteration, we randomly selected the same number
of leads for each category to use to train the classifiers, and the
remaining leads were then decoded. We repeated this process
1000 times for each training set size in multiples of 10 from 5 to
85 leads. Figure 2o shows the results for the different sized
training sets and shuffled data with 85 leads. We noted whether
it was accurately classified or misclassified for each test lead, by
group (STZ vs. control), area (ACC vs. hippocampus), or both
group and area. We found an equal likelihood for each of the 4
outcomes for our shuffled data, or that chance was indeed 25%.
With as few as 5 leads per training set, we found that we could
get above chance classification accuracy. With 15 leads, accu-
racy was >50% and started to plateau at 45 leads per training
set. Maximum accuracy was found with 85 leads per training set
at 73.4%. Furthermore, the posterior probabilities increased as

larger training sets were used (Fig. 2o). This analysis shows that
STZ treatments lead to a unique oscillatory profile in the hip-
pocampus and ACC.

To confirm that STZ animals had an identifiable electro-
physiological phenotype, we tried to classify an animal’s leads
based upon other animals. We ran a series of leave one subject
SVM analyses with training sets equally composed of control and
STZ sessions from other subjects. We then attempted to classify
the leads from our “left out” subject. This process was repeated
100 times per subject. We found that we were able to decode both
group and area with a high degree of accuracy (control= 86.7%
and STZ= 82%; Fig. 2p). This finding clearly shows that animals
treated with STZ had consistent changes in both hippocampus
and ACC oscillations across animals.

As a control, we next sought to determine whether we could
accurately classify leads from one session based on training sets
from other sessions. We ran another SVM analysis, but this time
using all but one session as training sets and then attempted to
classify the remaining session. We randomly selected an equal
number of control and STZ sessions and repeated this 100 times
for each of the “left out” sessions. We again found very high
classification accuracy (control= 90.5% and STZ= 81%; Fig. 2q).
Together these classification analyses confirm our hypothesis that
chronic hyperglycemia leads to a unique oscillatory phenotype in
both the hippocampus and ACC during the performance of a
spatial delayed alternation task.

Elevated cross-frequency coupling in hippocampus and ACC.
Our previous analysis had shown that STZ animals have con-
siderable changes in multiple oscillatory frequency bands in both
hippocampus and ACC; we next investigated the possibility that
the coordination between these different oscillations may also be
impacted by hyperglycemia. We first analyzed cross-frequency
phase–amplitude coupling (PAC) and found that overall STZ
animals’ networks were more strongly coupled relative to control
animals. As shown in the comodulograms in Fig. 3a, b, hyper-
synchrony was widespread across frequency bands in both hip-
pocampus and ACC. When we analyzed cross-frequency
coupling in specific frequency bands, we found unique patterns in
both hippocampus and ACC. In the hippocampus, we found that
delta–theta (Χ2(1,33)= 11.64; p= 6.48 × 10−4; Fig. 3c),
theta–slow gamma (Χ2(1,33)= 11.54; p= 2.84 × 10−8; Fig. 3d),
and theta–fast gamma PAC (Χ2(1,33)= 6.17; p= 0.013; Fig. 3e)
were all elevated in STZ animals. In the ACC, we found sig-
nificant increases in theta–slow gamma PAC (Χ2(1,33)= 5.07;
p= 0.0243; Fig. 3g); however, unlike in the hippocampus, there
were no differences in delta–theta (Χ2(1,33)= 1.583; p= 0.208;
Fig. 3f) or theta–fast gamma PAC in STZ animals
(Χ2(1,33)= 0.088; p= 0.77; Fig. 3h). Overall, we found evidence
of hypersynchrony in STZ animals in both the hippocampus and
ACC that manifested as in different overcoupled frequency bands,
but most notably between theta and slow gamma.

Hippocampus and ACC oscillatory changes during the delay
period. After establishing that both hippocampus and ACC
network activity was altered in STZ animals, we next wanted to
assess whether these changes could account for the behavioral
impairments found in STZ animals. Specifically, we were inter-
ested in activity during the delay period, where behavior was
limited for all animals. Since our previous analyses investigated
oscillatory changes over the entire session, it is possible that
these effects might dominate during other times and be absent
during the critical delay periods. Previous research has shown
that delay period activity in both the hippocampus and ACC is of
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singular importance for successful spatial working memory
performance52.

We first examined oscillatory power changes during the
interval at the end of the delay period. As illustrated in Fig. 4a,
in the control animals’ hippocampus, spectral power during the
end of the delay period was dominated by strong theta activity,
which became even stronger once the delay ended and the
animals started their trial run. For STZ animals, hippocampus
power also showed strong theta activity, but this was accom-
panied by relatively high-powered delta activity that also

increased when animals started trials (Fig. 4b). We calculated
TD ratios for the end of the delay period and found that control
TD ratios were higher than STZ animals throughout the delay
(Fig. 4c). This finding confirmed that the overall session
differences in TD ratio, shown above, were indeed present during
this crucial trial epoch. At the very end of the delay, control
animals’ TD ratios increased and peaked just after the start of the
trial. While STZ animals also showed an end of the delay increase,
it was not nearly as strong as what we found in controls. Notably,
these effects seem to be somewhat independent from running

Fig. 3 Hypersynchrony in STZ subjects. a, b Mean hippocampal (a) and ACC (b) comodulograms for the control (left) and STZ (right) groups. Amplitude
frequency is on the y-axis and phase frequency is on the x-axis. Modulation index value is on the z-axis and the scales in a, b apply to both control and STZ
plots. c–e Hippocampal LFP modulation index comparisons. For all comparisons, the phase frequency is listed first and the amplitude frequency second.
Modulation index values are on the y-axes. f–h ACC LFP modulation index comparisons. Same as described above for hippocampus. In all plots, control
values are in gray and STZ are shown in magenta. **p < 0.01; *p < 0.05. Error bars= SEM.
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speed-related TD ratio changes. As can be seen in Fig. 4d,
running speed is comparable for each group throughout the delay
period and trial run, while larger TD ratios for control animals
are present during the delay and then ramp up leading up to the
initiation of running. This effect can be seen clearly in the F-
values comparing TD ratios between groups in Fig. 4e (df(1,33)).
While many time points during the delay were above significance

levels (dotted red line), the prevalence of significant differences
ramped up toward the end of the delay and into the start of the
trial run. These results show that the altered hippocampal
oscillatory balance between theta and delta was present during the
delay period and worsened as the end of the delay approached.

Delay period hippocampus–ACC coherence changes correlate
with trial accuracy. We next examined whether oscillatory
changes due to hyperglycemia could account for task accuracy.
ACC–hippocampus theta coherence is known to be of great
importance for proper working memory function. In spatial
working memory tasks alone, ACC–hippocampus theta interac-
tions are linked with accuracy at multiple time points throughout
the task: during the delay period53, the trial run54, at the decision
point38,55, and during the initial learning56. This work has con-
sistently revealed a decrease in theta-based interactions during
error trials compared with correct trials, suggesting that these
interactions are necessary for accurate performance. Since we
have found that STZ animals have changes in hippocampal TD
ratios during the delay periods and evidence of theta band
hypersynchrony within the ACC and hippocampus, what changes
would we find in ACC–hippocampal theta coherence, and could
such changes provide insight into why STZ animals performed
worse on long delay trials? We examined ACC–hippocampus
coherence during the end of the delay period up until the decision
point in the maze.

As can be seen in the mean cohereograms in Fig. 5a, b, there is
a clear band of increased coherence in the theta range. In control
animals, theta coherence values appear stronger during the end of
the delay period and the first few seconds of the trial run on
correct trials. STZ animals appear to have the opposite pattern,
where theta coherence is decreased on correct trials. To examine
these possibilities, we calculated mean ACC–hippocampal theta
coherence values over the end of the delay period and trial run for
both correct and error trials. We then calculated a simple
difference score by dividing mean error coherence by mean
correct coherence per session. We compared these values with a
single-factor ANOVA and found that STZ animals had a larger
error/correct difference scores (F(1,33)= 8.54; p= 0.0062;
Fig. 5c). The control group mean difference score was <1, which
is consistent with previous reports. However, hyperglycemic
animals showed the opposite pattern, higher ACC–hippocampal
coherence values during delay periods on error trials. Since
magnitude squared coherence can be influenced by oscillatory
power57, we compared the raw power of theta oscillations in both
areas for correct and error trials. We performed two-
factor ANOVAs with group and trial outcome as variables. We
found no significant differences in theta power in either
hippocampal (group: F(1,66)= 1.68; p= 0.199; trial outcome

Fig. 4 Theta delta ratios during the end of the delay period. a, b Mean
peri-event spectrograms for the hippocampus of control (a) and STZ (b)
groups. Frequency is shown on the y-axis and time relative to trial start (TS)
is on the x-axis. c Mean peri-event theta delta ratios for the hippocampus.
TD ratio values on the y-axis and time relative to trial start is on the x-axis.
Gray lines show control group value and magenta show STZ. Shaded error
bars show standard error of the mean. d Mean running speed. Normalized
running speed values are shown for the control (gray) and STZ (magenta)
groups over the same time period as plots c, d. e Running F tests for TD
ratios for the hippocampus. TD ratios from all trials were compared at each
time step (500ms) between the two groups with a single-factor ANOVA. F
value is on the y-axis and time relative to trial start is on the x-axis. The red
dotted lines show the level for significance at p < 0.05; Bonferroni
corrected. Error bars= SEM.
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Fig. 5 Coherence during the delay period for correct and error trials. a, b Peri-event ACC–hippocampus cohereograms for correct and error trials for the
control (a) and STZ (b) groups. Frequency is shown on the y-axis and time relative to trial start (TS) is on the x-axis. The z-axis legend on the far right
applies to all plots. c Theta coherence trial outcome difference scores. Mean error trial coherence divided by mean correct trial coherence per session. d, e
Theta band power in the hippocampal and ACC. Spectral power is on the y-axis and group and trial outcome on the x-axis. Correct trials: solid bars; error
trials: striped bars. f Coherence difference scores by delay length. g, h Distribution of theta coherence values for short (g) and long (h) delay trials. Control
and STZ groups on correct (left) and error (right) trials. Magnitude squared coherence is on the x-axis and proportion of trials is on the y-axis. Dotted lines
show the median coherence value. In all plots, control values are in gray and STZ are shown in magenta. **p < 0.01; *p < 0.05. Error bars= SEM.
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(F(1,66)= 0.000034; p= 0.99) or ACC (group: F(1,66)= 1.74;
p= 0.192; trial outcome (F(1,66)= 0.043; p= 0.94). These results
suggest that the differences we found in theta coherence between
groups cannot be explained by differences in theta power.

Our next analysis sought to understand how theta coherence
changes were related to working memory performance. For all
our previous analyses, we grouped trials together and looked at
mean values from all sessions, but to examine delay length and
trial accuracy this was not possible. When we separated trials by
delay and outcome (i.e., short delay correct, short delay error…),
there were some sessions (mostly STZ) with very few trials in one
of the four categories (mostly long delay correct or short delay
error). We restricted this analysis to sessions with at least 3 trials
in each category, leaving us with 12 of the 19 STZ sessions and 14
of the 16 control sessions. Since this left only a subset of available
sessions and of the total trials, we employed two different
approaches to understand how delay length and performance
affected ACC theta coherence. First, we analyzed just the limited
set of sessions with enough of each trial type and next we
examined all trials together across animals and sessions. In both
cases, we averaged coherence values within the session, so there
was one value for each trial, and we found similar results.

We first compared the whole session averaged error/correct
trial coherence difference scores for short and long delay trials.
We found no significant difference on short delay trials
(Χ2= 2.54; p= 0.11), but on long delay trials STZ values were
larger than controls (Χ2= 5.59; p= 0.018; Fig. 5f). Thus, in
hyperglycemic animals only on long delay trials were coherence
difference scores higher, indicating that correct performance was
related to lower coherence values relative to error trials and
control animals displayed the opposite pattern.

The above analysis was limited by nature since not all sessions
and trials were included, so to examine the full scope of this effect
we examined the distribution of ACC–hippocampal delay period
coherence values for all trials from all sessions and compared the
two groups directly. The true nature of these changes is apparent
in the distributions of theta coherence values for each trial
outcome (Fig. 5g, h). For short delay trials, the distributions are
similar between groups on error trials, though there is a slight
skew to the right for STZ animals. During the long delay trials,
however, theta distributions are highly divergent between groups
for both correct and error trials. For the control group, error trial
distributions are skewed to the left, indicating more low
coherence values; however, the STZ group data are skewed to
the right due to higher coherence values on error trials. Statistical
significance tests largely backed up these observations. We found
significant differences in the distributions of short delay correct
trials (Χ2(1,449)= 10.83; p= 9.98 × 10−4; Fig. 5g), with the

median STZ value being greater than the control value; however,
there was no difference between groups for short delay error trials
(Χ2(1,109)= 3.01; p= 0.083; Fig. 5g). During long delay trials, we
found significant group differences for both correct
(Χ2(1,482)= 11.812; p= 5.89 × 10−4; Fig. 5h) and error trials
(Χ2(1,193)= 24.964 p= 5.84 × 10−7; Fig. 5h). This examination
of the full range of trials from all animals shows the extent of
hyperglycemia’s effects on ACC–hippocampal theta coherence
during working memory delay periods.

The changes indicate two distinct types of wholesale changes in
communication between the ACC and CA1; for healthy animals,
a loss of synchrony during the long delay periods was more likely
to lead to errors, but for STZ animals, lower coherence values lead
to correct performance. This finding indicates that such high
baseline levels of ACC–CA1 coherence in STZ animals were not
optimal for the task’s working memory demands leading to error
commission. Thus, the dynamics relating ACC–hippocampus
synchrony with working memory were altered in the STZ
animals. The hypersynchrony was so strong that a degree of
desynchronization occurred on correct trials, which is opposite to
what is found in healthy brains.

Increased phosphorylation of tau in hippocampus and frontal
cortex. In previous reports STZ-induced hyperglycemia led to
significantly increased phosphorylation of tau (ptau) proteins
consistent with other animal models of AD10, providing a linkage
to the increased risk DM confers to developing AD. This finding
is critically relevant since tau pathology is the constituent of
neurofibrillary tangles58 and has been linked with impaired net-
work activity and cognitive dysfunction59. We found a significant
increase in phosphorylation of the tau Ser396 epitope in hippo-
campus (F(1,20)= 5.09; p < 0.05; Fig. 6a and Supplementary Figs.
1–3) and frontal cortex, including ACC (F(1,20)= 20.02;
p < 0.001; Fig. 6b). These results replicate our previous findings
and demonstrate that the staggered and low-dose STZ protocol
reliably leads to increased ptau levels in both hippocampus and
cortex.

Discussion
In the current study, we found that animals administered a low-
dose STZ protocol, that induced prolonged hyperglycemia in
otherwise healthy animals, had unique alterations in hippocampal
and cortical network activity. We report three main findings: (1)
hyperglycemic animals exhibited identifiable patterns of network
changes in both ACC and hippocampus; (2) hypersynchrony
within and between areas was observed in the hyperglycemic
animals as compared to controls; (3) during delay periods prior to

Fig. 6 STZ leads to increased tau phosphorylation in frontal cortex (including ACC) and hippocampus. a, b Tau levels at Ser396 were significantly
elevated in the hippocampus (a) and frontal cortex (b). Proportions of pTau396 normalized to total tau are on the y-axes. Dots show individual data points
(see “Methods”). Saline control values are in gray and STZ in magenta. Representative western blot images are shown in the insets. *p < 0.05; ***p < 0.001.
Error bars= SEM.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02558-4

10 COMMUNICATIONS BIOLOGY |          (2021) 4:1036 | https://doi.org/10.1038/s42003-021-02558-4 | www.nature.com/commsbio

www.nature.com/commsbio


error trials, cortico-hippocampal communication moved in
opposite directions for control and hyperglycemic animals. These
data are novel since the impact of sustained hyperglycemia on
overall hippocampal and cortical network function has not been
well characterized in vivo. In addition, because hyperglycemia is a
core feature of DM2, which confers increased risk for developing
AD, the changes observed in the present study have implications
in AD pathogenesis. Based on the links between DM and AD and
the paucity of existing comparable studies in DM models, these
results are discussed in relation to network changes related to AD
pathology.

We found that STZ animals had increased delta oscillatory
power in the hippocampus, which appeared to arise at the
expense of power in the theta band; thus, the functional rela-
tionship between delta and theta was altered. In healthy animals,
typically there is a negative relationship between delta and theta
driven by changes in behavior, as hippocampal field potentials
vacillate between periods of high-powered theta during move-
ment and then strong delta power when the animal is still. In
hyperglycemic animals, both delta and theta oscillations were
decoupled from locomotor activity compared with controls,
suggesting not only that the ebb and flow of delayed alternation
behavior (i.e., trial runs and delay periods) did not coincide with
appropriate balances of these oscillations, but also that the bal-
ance between the oscillations, in general, was disturbed. Since
many cognitive processes related to spatial working memory rely
on theta activity in both the ACC and hippocampus, any
alterations in how theta relates to behavior could have profound
effects. Indeed, transection of the fornix, which significantly
decreases hippocampal theta power60,61, leads to spatial working
memory deficits comparable to full hippocampal lesions62. While
the current results revealed more mild decreases in hippocampal
theta power, these differences resulting from a sustained hyper-
glycemic state are substantial. These findings also overlap with
similar effect sizes observed in multiple animal models of
AD44,63,64. Even slight reductions in theta power can lead to
learning impairments and decreased spatial information in hip-
pocampal cells65. Alternatively, studies have shown that increased
delta power may also contribute to working memory perfor-
mance. In fact, the stimulation of delta to the thalamic nucleus
reuniens, an indirect ACC–hippocampal pathway, leads to ele-
vated delta in the hippocampus and spatial working memory
impairments66,67. Thus, this imbalance may be attributed to both
higher delta power and lower theta power. Furthermore, we also
found that the relationships between theta and delta with running
speed were altered in the STZ group. This finding suggests that
the overall dynamics of hippocampal network activity were
changed in subtle ways. There is evidence that glutamatergic
septal inputs control the coupling of theta oscillations with run-
ning speed68, but it is unknown how, or if, these projections are
affected by STZ treatments and the resulting chronic hypergly-
cemic state. Additionally, no known mechanisms could explain
why delta oscillations become less negatively correlated with
running speed. However, given that delta and theta oscillations
are generally orthogonal in the healthy hippocampus47, it is likely
that any alterations to this antagonistic relationship could impact
hippocampal function.

Using a machine learning-based group decoding approach, we
revealed that, overall, STZ animals had unique LFP signals in
both ACC and hippocampus. This analytical approach allowed us
to identify an electrophysiological phenotype in the ACC and
hippocampus of STZ animals. To our knowledge, this is the first
time that LFP spectral analyses have been used to accurately
identify treatment groups and recording location of other LFPs.
In the present study, this novel analysis strongly supported our
conclusion that chronic hyperglycemia fundamentally alters both

hippocampus and ACC network activity. The sensitivity of this
approach is quite notable, as evidenced by the ability to separate
ACC control and STZ networks, even though traditional statis-
tical approaches did not find any significant group differences in
the dominant oscillatory power bands (delta and theta). This
analytical approach could be applied to a vast range of transla-
tional studies and could also potentially serve as a diagnostic
measure in human patients69–71.

In the STZ group, we found increases in cross-frequency
coupling in both the hippocampus and ACC between multiple
frequency bands. In the hippocampus, there was an increase in
delta–theta coupling, though these oscillations are generally not
linked in healthy subjects; however, there is also no established
relationship between delta–theta coupling and memory. Indeed,
ordinarily in the hippocampus delta and theta states appear in
opposition to each other, as discussed above, so the idea of delta
amplitude modulating theta phase is difficult to reconcile with the
current understanding of normal hippocampus functioning.
Though, in AD patients, reports have found that delta–theta
coupling is increased72–74. Indeed, Ranasingeh et al.75 recently
found that the accumulation of tau and Aβ peptides correlated
with increased delta–theta synchrony in AD patients, showing
that these frequency-specific interactions are likely affected by AD
pathology. Given that we found increased tau in the hippocampus
and ACC in STZ animals, we may have detected a similar effect in
this hyperglycemia model.

The relationship between theta and gamma oscillations is
better understood than delta–theta, at least in the hippocampus,
but it is more complex. The activity of both fast and slow gamma
in CA1 originates via different inputs. Fast gamma is driven by
incoming entorhinal cortex input76,77, while slow gamma is
influenced by CA3 input to CA177,78. It is thought that, during
active behavior, CA1 is switching back and forth between
entorhinal cortex and CA3 afferent drive corresponding with
changes between encoding and retrieval of memory
information79. In turn, there is evidence that theta–fast gamma
coupling is linked with improved learning35 and theta–slow
gamma coupling is linked with memory retrieval80. Perhaps, the
increases we found in both comparisons could counteract each
other; however, it is more plausible that these alterations are
hampering the separation of the different phases of memory,
leading to inefficient and unreliable memories. Interestingly,
decreases in CA1 theta–gamma coupling have been found in
multiple amyloidosis models81,82, but the role of accumulated tau
on theta–gamma coupling is less clear. Tanninen et al.83 found
that injections of ptau fragments into the entorhinal cortex lead to
decreased learning-related theta–slow gamma coupling in the
hippocampus but no effects on theta–fast gamma coupling. In the
current results, we found increased tau levels in the hippocampus
and increased theta–fast gamma coupling in the hippocampus. It
is not difficult to imagine that the effects of accumulated tau
within the hippocampus are likely to be different than when tau is
in the entorhinal cortex only, but certainly, more work is needed
to unravel these effects. Another unaccounted result is the
increase we found in theta–slow gamma coupling in the hippo-
campus, as most studies in AD models have shown that increased
tau leads to decreases in theta–slow gamma cross-frequency
coupling84,85. It is possible that the data collected here represent
an intermediate state between what occurs in controls prior to
more substantial disruption by AD pathology. Undoubtedly,
more work is needed to understand the complicated relationship
between ptau and cross-frequency coupling.

Additionally, we found highly elevated inter-area synchrony
between the ACC and hippocampus in the theta band. Syn-
chronization of theta rhythms between the ACC and hippo-
campus has been strongly linked with working memory
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performance38,54,55, and any changes to these interactions are
likely to impact cognitive function. The mechanisms underlying
these effects are less clear, but there have been widespread reports
of hypersynchrony in a range of animal AD models86 and human
patients87,88, including seizures along with the high comorbidity
of epilepsy and AD89–91. There are also possible links to changes
in excitatory–inhibitory (E/I) balance, which are thought to also
underlie epilepsy, and it has recently been proposed that changes
in the E/I balance occur as AD pathology and cognitive symp-
tomology progress92. It will take more experimentation to better
understand the mechanisms behind inter-area hypersynchrony
and how AD-related pathology affects this phenomenon.

The cognitive challenges that hypersynchrony creates are
robust. Since first suggested by Gray93, the neural synchrony
hypothesis has been widely supported by extensive neural data in
a range of species94. In the current experiments, our control
group had decreased ACC–hippocampus coherence during error
trials, indicating a lack of communication between these areas
and replicating the purest essence of neural synchrony hypothesis
(i.e., synchrony supports information transfer enabling cognitive
success). Similar theta range effects have been found in spatial
working memory and long-term memory tasks before in
rodents53,54,95, macaques96, and in humans97,98. Thus, it is quite
remarkable that we found that in STZ animals coherence between
the ACC and hippocampus was decreased on correct trials. This
suggests that coherence between these areas might have a
U-shaped function, such that too little or too much coherence can
hinder performance. To our knowledge, this is the first report of
desynchronization between the ACC and hippocampus being
linked with improved working memory performance in any
animal model. Given that multiple reports have recently showed
that patients with mild cognitive impairment and early AD
symptomology have increased connectivity between the hippo-
campus and cingulate areas99,100, it is possible that our results
provide a potential mechanistic window into how patients are
able to overcome these effects during the prolonged prodromic
phase of AD. It is possible that short spells of decreased oscilla-
tory coherence are a neural adaptation that minimizes the cog-
nitive impairments of increased connectivity. Perhaps, early in
AD progression, patients, like hyperglycemic rats, can decrease
oscillatory connectivity at times to perform well; however, over
time, this ability fades as neurodegeneration progresses. This
exciting possibility requires much more research; however, it does
suggest that novel treatments which decrease connectivity might
be effective. Overall, the counterintuitive coherence effects
reported here in chronically hyperglycemic rats speaks to the
serious impact that overly synchronized brain networks might
have on cognition.

Understanding why network function was altered in STZ
animals is a bit murkier, as there are multiple possible
pathological aspects that may play a role, including tau hyper-
phosphorylation, altered blood glucose levels, and neuroin-
flammation. We have already discussed how increased tau levels
may affect hippocampal and ACC activity, but we will also point
out that it has recently been postulated that tauopathy impairs
cognition when tau clusters at projection axons, thus impairing
communication between areas59. It is also possible that the cur-
rent results reflect the impact of altered insulin levels. Indeed,
insulin levels in the brain are closely associated with object and
spatial memory101,102, working memory performance103, and
neurotransmitter signaling104. Impairments to insulin resistance
can be induced by a high-fat diet leading to deficits in working
memory in rodents105, and other forms of cognitive decline are
found in prediabetic human patients exhibiting insulin
resistance106. Concurrently, intracerebroventricular injections of
STZ lead to phosphorylation of insulin receptors in the

hippocampus and altered inflammatory signaling9,107, which
impair insulin signaling in the brain. While previous findings
have shown peripheral injections of STZ impair insulin-
producing cells in the pancreas108–110, our results suggest that
these effects impair neural circuitry and working memory. Future
work is needed to disentangle how insulin levels affect network
dysfunction and working memory impairments, where insulin
levels are controlled after STZ treatment. Additionally, these
manipulations will provide an intriguing model of DM patients
who are in treatment.

The role of neuroinflammation is more poorly understood but
ultimately might prove to be more relevant. Neuroinflammation
is found in AD genetic models along with the tau or Aβ
pathologies, but it is not known what effects are due to neu-
roinflammation as opposed to amyloidosis or tauopathy111. It has
been shown that chronic neuroinflammation causes changes in
hippocampal cells, such as altered ion channel dynamics112,
excitability113, and synaptic integration114. Such cellular effects
might potentially explain hippocampal network-level changes,
but the mechanism is not clear. Furthermore, it is less clear how
neuroinflammation might affect the ACC or interactions between
the hippocampus and ACC, which are likely mediated by tha-
lamic connections55. Intriguingly, abnormal delta activity from
the thalamus into the hippocampus has been linked with
impaired working memory retrieval67, perhaps hyperglycemia is
affecting the thalamus leading to the increase in hippocampal
delta power and altered hippocampal–ACC theta interactions.
While more work is needed to better understand how neuroin-
flammation relates to network activity, there have been multiple
reports revealing neuroinflammation-linked memory deficits in
rodents115,116 and in humans117. A better understanding of how
neuroinflammation, and the brain’s immune response in general,
interacts with network activity is desperately needed and the
current results document some network effects that need to be
accounted for.

These experiments have revealed that STZ-induced hypergly-
cemia impairs hippocampal and ACC network activity. These
experiments are a first step in understanding how hyperglycemia
affects working memory network function and potentially explain
why behavioral/cognitive deficits have been linked with
DM118,119. The model and approach also provides an opportunity
for investigations of the relationship of hyperglycemia as seen in
DM and increased risk for AD. The changes in network function
are similar to those found in AD patients and animal models,
suggesting that there may be a more direct link between DM and
AD than is currently known.

Methods
Subjects. Subjects were eight male Long-Evans rats (8–12 months) obtained from
Charles River Laboratories, Inc. (Wilmington, MA), weighing between 400 and
550 g at the time of surgery and injections. Rats were on a restricted food intake of
about 25 g per day while performing the behavioral task. The rats were singly
housed and kept on a 12 h light:dark cycle. Training and recording sessions were
carried out during the light cycle and were recorded roughly 3 days per week. All
experimental procedures were approved by the University of Nevada Las Vegas
Institutional Animal Care and Use Committee.

Apparatus. We used a custom-built T-maze with three movable doors sur-
rounding a delay area (see Fig. 1c). It was made using white, 14.5 cm wide textured
plastic floors with ~28 cm high walls made from white corrugated plastic. The
central stem of the T was 63.5 cm long connecting to the choice arms at the top of
the stem totaling 162.5 cm. Each choice arm was roughly 74 cm in length with a
small circular reward well near the end made of plastic piping 3 cm in diameter,
0.5 cm deep, and flush with the floor. A reservoir with a sugar-free chocolate
beverage could be delivered to the reward wells through a small tube controlled by
a photobeam tripped solenoid valve. The maze was elevated from the ground and
surrounded by black curtains with distinctive visual cues attached. The maze and
cues remained in the same location for the remainder of the experiment.
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Behavioral training. Prior to surgery and viral injections, rats were trained in
multiple phases to perform a delayed spatial alternation task on a modified T-maze.
Rats were first exposed to the maze to habituate to the new environment. Reward
wells were baited with a sugary treat (Froot Loops; Kelloggs, Battlecreek, MI) to
encourage exploration. Once acclimated, rats began the first phase of training that
consisted of forced continuous alternating trials. Rats were placed in the sequester
area of the maze with all doors closed. The center stem door opened, and rats
would traverse to the end of the stem, where only one choice arm would be open
on each trial. To encourage the return to the sequester area, the area was initially
baited every trial and then periodically after returning became habitual. After
animals were efficient at the forced alternation task (mean= 3 ± 2 sessions), trials
were started with both choice arms open. In the second phase, the use of choice
arm barriers was removed, allowing the rats to freely choose the correct arm.
Animals were still rewarded with a sugary treat for correctly alternating between
the two arms. In the third phase, rats were introduced to roughly 1 ml of a sugar-
free chocolate beverage as a reward and required infrequent sequester baiting.

For all subsequent training and testing sessions, rats were placed in the enclosed
sequester area with no choice arm barriers and allowed to run for 30–50 trials. The
experimenter stayed outside the curtained enclosure for the duration of the session.
Animal behavior was observed using a video monitor connected to a tracking
system. On each trial with correct arm choice, a drop of a sugar-free chocolate
beverage was delivered to the well in the arm following arm entry. Incorrect trials
resulted in the end of a trial without a reward, and the rat was required to return to
the sequester area on the correct return arm.

Surgery and electrophysiology. Rats were anesthetized using isoflurane gas
(1–3%) and surgically implanted with a 32-movable tetrode hyperdrive affixed to
the animal’s skull. Tetrodes were made from a single 13 μm wire folded and wound
to produce four independent channels. Of the 32 tetrodes, 16 were targeted
bilaterally to the ACC (2.5 mm anterior; +0.5 lateral; 8 left and 8 right) and 16
bilaterally to dorsal CA1 (3.5 mm posterior to bregma; +2.5 lateral; 8 left and 8
right). Two screws were placed posterior, just above the cerebellum, used as
grounding wires and soldered into the electrode interface board (EIB; Plexon Inc.
Dallas, TX), typically done in rodent in vivo recordings120. Once tetrodes were
positioned directly over the targeted brain areas, the implant was fixed in place
using dental acrylic on top of the skull. After the dental acrylic hardened, tetrodes
were lowered 400 mm into the cortex. Following a 7-day recovery period, tetrodes
were then slowly lowered ventrally into the ACC (~2.5 mm, 10° angle) and the
pyramidal cell layer of dorsal CA1 using known electrophysiological markers120.
Each electrode was connected to a 128-channel EIB that could plug into four
separate headstages (Intan Technologies, Los Angeles, CA). Electrophysiological
signals were digitized and sent through two tethered cables into an RHD 2000 USB
interface board (Intan Technologies, Los Angeles, CA), which is made visible
through the OpenEphys (Cambridge, MA) interface. Data were sampled at a rate of
30 KHz. Continuous data were passed through a bandpass filter (0.1–6 KHz).

Treatment groups. To induce a chronic hyperglycemic state, we used a modified
STZ protocol, which consists of staggered and low doses of STZ injections10. Our
goal was to achieve a chronic level of hyperglycemia with little changes in body
weight. Due to the additional stress of neural implant surgery, we used a lower dose
of STZ than Murtishaw et al.10. STZ (Sigma-Aldrich, MO, USA) was prepared
fresh prior to administration by dissolving the drug in 0.1 M sodium citrate buffer
(pH 4.5) for a final concentration of 20 mg/kg/ml. Following a 6-h fast, animals
were injected with STZ via intraperitoneal injection. All injections were adminis-
tered within 5 min of mixing, given that STZ is pharmacologically active for
approximately 15 min121. Similarly, vehicle (citrate buffer) was administered to
control groups by intraperitoneal injection (pH 4.5) at a final concentration of
20 mg/kg/ml. Our protocol to ensure that a sustained hyperglycemic state was
based on achieving a group average fasting blood glucose level of ≥250 mg/dl
consistent with DM levels. The modified protocol of staggered STZ injections on
days 1, 2, 3, 14, and 15, followed by supplemental injections of STZ on days 35 and
36, achieved the criteria for sustained hyperglycemia consistent with Murtishaw
et al.10.

Tissue collection. Animals were euthanized via carbon dioxide asphyxiation.
Animals dedicated for western blotting were trans-cardially perfused with 20 ml of
sterile 1× phosphate-buffered saline (PBS). Hippocampal and cortical regions were
quickly dissected and flash frozen with liquid nitrogen and stored at −80 °C until
further tissue processing. Animals dedicated for histological analysis were initially
trans-cardially perfused with 20 ml of sterile 1×PBS, followed by 20 ml of cold 4%
sterile-filtered paraformaldehyde. Brains were removed and placed in 4% paraf-
ormaldehyde at 4 °C for 24 h. Afterwards, the brains were moved into a 10%
sucrose solution for 24 h, 20% sucrose solution for 24 h, and stored in 30% sucrose
solution+ 0.05% sodium azide to prevent tissue contamination. Some tissue
samples were unable to be included in this experiment due to problems with rodent
implant detachment, thus, there was an n= 3 for both groups hippocampus and
n= 3 for controls and n= 4 for STZ ACC for western blotting. All procedures and
guidelines were followed in accordance to the Institutional Animal Care and Use
Committee at the University of Nevada, Las Vegas.

Protein extraction. Hippocampus and cortical regions were lysed for protein
extraction by utilizing the BioPlex Cell Lysis Kit (BIO-RAD, CA, USA) with
modifications. Briefly, 500 μl of complete cell lysis buffer was added to frozen tissue
and mechanically homogenized (Kinematica Polytron 1300D, Luzern, CHE). The
homogenates were then stored at −80 °C overnight. Frozen homogenates were then
allowed to thaw on ice and immediately sonicated (Branson SFX 150, CT, USA),
and centrifuged for 10 min at 10,000 × g, followed by supernatant collection.
Protein concentrations were measured using the Pierce Bicinchoninic Acid Assay
Kit (Thermo Fisher Scientific, MA, USA) with minor modifications. Protein lysates
were diluted to 1000 ng/μl with a complete cell lysis buffer and stored at −80 °C
until further processing.

Western blot/sodium dodecyl sulfate–polyacrylamide gel electrophoresis
(SDS-Page). Proteins were loaded onto a 8% SDS-Page gel at a concentration of
10 μg and were separated by gel electrophoresis (Laemmli, 1970). Afterwards, the
proteins were transferred onto a polyvinylidene difluoride transfer membrane (Cat.
No. IPVH00010, Millipore-Sigma, MO, USA) followed by TBS-based blocking
buffer (LI-COR, NE, USA) gently shaking overnight at 4 °C. On the following day,
the membranes were incubated with primary antibody (rabbit anti-phospho-tau
(pTau 396), 1:5000, Abcam ab109390; mouse anti-tau-5 (total tau), 1:5000, Milli-
pore MAB361) gently shaking overnight in 4 °C. On the next day, the membranes
were washed in 1×TBS+ 0.1% Tween-20, followed by 1×TBS washes, and then
incubated in IRDye near-infrared secondary antibodies (1:5000) for 1 h at room
temperature. Lastly, the membranes were washed in 1×TBS+ 0.1% Tween-20,
followed by 1×TBS washes, and then imaged on ChemiDoc MP Imaging System
(BIO-RAD, CA, USA). Target band intensity signals were quantified utilizing the
Image Lab Software version 6.0 (BIO-RAD, CA, USA). Normalization of the target
bands was completed using anti-total tau signals.

Statistics and reproducibility
Behavioral analysis. To quantify behavioral changes that occurred during each
session, we first examined running speed by linearizing the maze into 35 bins. We
then calculated running speed by dividing total distance traveled between the two
time points by the total time between the two same time points and then summed
the total speed by each linearized bin. We then compared total distance traveled
with one-way ANOVA between groups and speed over the maze with a two-factor
ANOVA (Group ×Maze Position). To test performance accuracy, trials were split
into two roughly equally sized categories: short delays (<20 s) and long delays
(>20 s). We then used a two-factor ANOVA (Group × Delay Length) to assess
accuracy differences.

Neural data analysis
LFP analysis. All analyses were performed in MATLAB (Mathworks, Natick, MA)
using custom written scripts. LFP signals were analyzed from 4 leads in each area
and each hemisphere (16 total). These leads were selected based on visual
inspection in order to minimize noise. Only one wire from each tetrode could be
selected. Signals were analyzed over the total of 35 sessions (19 STZ and 16 con-
trol). LFP signals were first notch filtered to remove 60 Hz noise. Spectral power
was calculated with the spectrogram function in MATLAB. LFPs were sampled at
1 KHz and power spectral densities were computed over a window size of 1000 ms
with 200 ms of overlap. Values from each area were then averaged, yielding one
mean spectral power for the hippocampus and one for ACC for each session.
Frequency band differences between groups were compared with ANOVAs.

SVM classification of area and group. For this analysis, first we calculated the
spectral power over the entire session for each lead (16 per session). The power
values (in proportion of total value) for the first 50 frequencies (1–50 Hz) were used
for classification. We choose these frequencies to avoid introducing any bias that
could be introduced by differing 60 Hz noise levels between sessions or animals.
Next, we used the fitceoc function in MATLAB to construct SVMs to classify the
location (ACC or hippocampus) and group (control or STZ) for each lead.
Beforehand, we would randomly select a certain number of leads from each of the 4
classification groups (1—ACC control; 2—hippocampus control; 3—ACC STZ; 4—
hippocampus STZ) to be the training set and the remaining leads were the test set.
This process was repeated 1000 times for each analysis and the mean decoding
accuracies are reported here. Our first analysis used iteratively larger numbers of
leads in training sets starting with only 5 leads per classification group and moving
by increments of 10 up to 85 lead training sets. We compared these values to 85
lead training sets with randomly assigned classification groups. This group/area
shuffled comparison was also repeated 1000 times.

Next, we performed a leave one subject version of this analysis. This allowed us
to see if the spectral power profiles were consistent across subjects. For this, we
would randomly select 40 leads from each classification group from all the subjects
except one to serve as the training set. We then used the remaining left out subject’s
leads as the test set. This process was repeated 1000 times per subject and the mean
decoding accuracies were reported.

Lastly, this same analysis was performed on individual sessions to ensure that
the spectral profiles were consistent session to session. We randomly selected 40
leads from each classification group from all but one session and then used the
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remaining session as the test set. This process was repeated 1000 times for each
session.

Cross-frequency coupling. PAC techniques were first described by Tort et al. For
this analysis, we examined the modulation index (MI) or the rate at which the
amplitude in certain higher frequency bands were influenced by the phase of lower
frequency bands. All these analyses were performed on signals recorded from the
same leads. MI values are between 0 and 1 and were generated using the freely
available Neurodynamics Lab MATLAB toolbox function ModIndex_v2. MI values
were calculated over the entire session. MI values were averaged for each area
per session, yielding one ACC and one hippocampal MI value per session. Changes
in MI between groups were examined using Kruskal–Wallis non-parametric
ANOVAs.

ACC–hippocampus coherence. Coherence values were computed for each possible
pair of ipsilateral ACC and hippocampus leads using the mscohere function in
MATLAB. The coherence value is computed as:

Cxy f
� � ¼ jPxy f

� �j2

Pxx f
� �

Pyy f
� �

For the analysis in Fig. 5, coherence values were calculated separately for each
trial. These values were then averaged over the last 10 s of the delay period and the
first 2 s of the trial run for the comparisons shown in Fig. 5. Then the mean values
from all ipsilateral recording lead combinations were computed per session or trial.
Coherence values between correct and error trials were compared with non-
parametric Kruskal–Wallis ANOVAs.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The electrophysiological and behavioral data that support the findings of this study are
available by request from the corresponding author. The source data for the protein
assays are shown in Supplementary Data 1.

Code availability
All code are available by request from the corresponding author.
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