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H I G H L I G H T S

∙ Original model based on the kinetics of the digestion process.

∙ Better performance than current empirical approaches.

∙ Interesting tool to reduce the duration of batch tests.
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The ability of anaerobic digestion to create value from waste gives it an important role in reducing greenhouse 
gas emissions and in the transition to a circular economy. For a better understanding of the digestion process 
and in order to reduce the number of time-consuming batch tests, an analytical model was developed to describe 
the kinetics of biogas production. Assuming that the organic fraction of the substrate has different degradation 
rates, the whole process was modelled as two groups of 1st order reactions.

The model was tested with published data and showed an excellent performance in reproducing the experimental 
information. Moreover, its kinetic constants provided a useful insight into the internal processes of anaerobic 
digestion and the substrate characteristics. Given its accuracy in fitting the data, the model can be used as an 
auxiliary tool to determine the biogas potential, presenting itself as the most complete empirical model currently 
available.
1. Introduction

The reduction of greenhouse gas (GHG) emissions and the fight 
against climate change constitute one of the greatest challenges of the 
modern world. In this context, anaerobic digestion (AD) presents itself 
as a promising technology, contributing to the achievement of the goals 
defined in the Paris Agreement (Paolini et al., 2018). By transform-

ing organic matter into energy and natural fertilizers, waste that would 
once have been deposited into landfills (releasing GHGs) is continu-

ously reused. Anaerobic digestion is thus a waste valorization process, 
whose principles are directly connected to the basic concepts of a cir-

cular economy (Martin and Parsapour, 2012).
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Anaerobic digestion consists in a heterogeneous ecosystem where 
several groups of microorganisms participate interactively in the con-

version of complex organic matter into biogas. From a biochemical 
point of view, the AD can be described in 4 phases: hydrolysis, acidoge-

nesis, acetogenesis and methanogenesis (Appels et al., 2008; Shin and 
Song, 1995; Lyberatos and Skiadas, 1999). The process is schematically 
represented in Fig. 1. The biogas produced during the process consists 
essentially of a mixture of 50-70% methane (CH4) and 30-50% carbon 
dioxide (CO2), depending on the substrate and the AD process selected 
(Rasi et al., 2007; Fagerström et al., 2018).

With the growing interest and investment in the biogas produc-

tion industry, modelling is paramount for a better understanding of the 
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Fig. 1. Reaction steps that occur during anaerobic degradation of the organic fraction of the substrate from a biochemical perspective: a) simplified scheme adapted 
from Shin and Song (1995); and from a process-engineering perspective: b1) 1st order, single-phase model; b2) 1st order, two-phase model; b3) 1st order, three-phase 
model.
anaerobic digestion process (Gerber and Span, 2008; Gustafsson et al., 
2020). The determination of the degradation kinetics and the maximum 
volume of biogas that can be extracted from a given substrate is essen-

tial in reactor design and performance control (Adl et al., 2015). These 
parameters are obtained from anaerobic digestion batch assays, which 
can be quite time-consuming due to long retention times. Therefore, 
the construction of fitly calibrated mathematical models can provide an 
alternative in this sense, reducing the number of tests and allowing a 
better insight into the system’s behaviour (Dursun et al., 2011).

Taking this into consideration and in order to develop an analytical 
model that would describe the kinetics of substrate degradation dur-

ing anaerobic digestion, a review of the available models was initially 
performed. In the following section the different classes of models are 
analysed.

1.1. Kinetic models of batch AD

The existing analytical models of AD can be divided into two groups: 
mechanistic or empirical. Mechanistic models such as ADM1 developed 
by the International Water Association (Batstone et al., 2002), allow the 
simulation of bacterial growth and the biochemical reactions of the pro-

cess. However, these models are complex and quite difficult to calibrate 
as they require a high number of input parameters and experimental 
measurements that, in most cases, are not performed in AD facilities 
(Gerber and Span, 2008). In this regard, empirical models (less sophis-

ticated) have been the object of study by several researchers (Gerber 
and Span, 2008; Vavilin et al., 2008; Lauwers et al., 2013; Kythreotou 
et al., 2014). With fewer experimental measurements, empirical mod-

els such as: the 1st order kinetic models (Veeken and Hamelers, 1999; 
Turick et al., 1991) or the Modified Gompertz model (Zwietering et al., 
1990), allow to describe the kinetics of the digestion process in batch 
mode and thus estimate the biogas potential for any type of substrate.

In processes where the hydrolysis is the rate-limiting step, the sat-

uration effects of the bacterial growth rate due to the limited presence 
of nutrients in the substrate can be neglected, and the substrate degra-

dation follows a 1st order kinetics (Brulé et al., 2014), according to 
equation (1):
2

𝑑𝑆𝑡

𝑑𝑡
= −𝑘 ⋅𝑆𝑡 (1)

Where 𝑘 is the degradation rate of the organic matter and 𝑆𝑡 the 
concentration of the organic fraction of the substrate at the instant 𝑡. 
Thus, from a process-engineering perspective, the complex system of 
biochemical and biological interactions that constitutes the AD can be 
simplified in a mechanism of one or more phases, described by 1st order 
kinetic reactions, as schematically represented in Fig. 1.

The 1st order, single-phase model is the most frequently used and 
describes the degradation of the organic fraction of the substrate in a 
single reaction. The cumulative biogas production function associated 
to this model can be expressed by equation (2):

𝑆𝑡 = 𝑆
(
1 − 𝑒−𝑘1𝑎𝑡

)
(2)

Where 𝑆 is the initial organic matter concentration of the substrate 
and 𝑘1𝑎 the kinetic constant associated with the conversion of the or-

ganic fraction of the substrate into biogas. This model has been applied 
by several authors (El-Mashad, 2013; Angelidaki et al., 2009; Jokela 
et al., 2005; Rao and Singh, 2004) and allows to obtain a reasonable 
estimate of the temporal progression of biogas produced.

Generally, multiphase models permit to describe the temporal con-

version of the substrate into biogas with more detail, providing addi-

tional information on the behaviour of intermediate products formed 
during AD. Shin and Song (1995) proposed a model where the AD pro-

cess is described in two consecutive phases of 1st order reactions: acid-

ification and methanation. During the acidification of the biodegrad-

able fraction of the substrate, volatile fatty acids (VFA) are produced, 
which are then converted into biogas in the final stage of methanation 
(Demirel and Yenigün, 2002), according to equation (3):

𝑆𝑡 = 𝑆
[
1 +

𝑘2𝑎𝑒
−𝑘2𝑏𝑡 − 𝑘2𝑏𝑒−𝑘2𝑎𝑡

𝑘2𝑏 − 𝑘2𝑎

]
(3)

Where 𝑘2𝑎 and 𝑘2𝑏 are the kinetic constants associated with the acid-

ification and methanation steps, respectively.

In the scope of waste treatment from the bakery industry, Deveci 
and Çiftçi (2001) developed a model where the AD is considered a 3-

phase system. For this model, the cumulative production of biogas over 
time is expressed by equation (4):
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Fig. 2. Reaction steps assuming that the substrate has different degradation 
rates: a) 1st order, single-phase model; b) 1st order, two-phase model.

𝑆𝑡 = 𝑆

[
1 − 𝑒−𝑘3𝑎𝑡 − 𝑘3𝑎

𝑒−𝑘3𝑎𝑡 − 𝑒−𝑘3𝑏𝑡
𝑘3𝑏 − 𝑘3𝑎

− 𝑘3𝑎𝑘3𝑏

(
𝑘3𝑐 − 𝑘3𝑏

)
𝑒−𝑘3𝑎𝑡 −

(
𝑘3𝑐 − 𝑘3𝑎

)
𝑒−𝑘3𝑏𝑡 +

(
𝑘3𝑏 − 𝑘3𝑎

)
𝑒−𝑘3𝑐 𝑡(

𝑘3𝑏 − 𝑘3𝑎
)(
𝑘3𝑐 − 𝑘3𝑎

)(
𝑘3𝑐 − 𝑘3𝑏

) ] (4)

Where 𝑘3𝑎, 𝑘3𝑏 and 𝑘3𝑐 are the kinetic constants associated with 
the conversion of biodegradable substrate into hydroylis products, the 
hydrolysis products into VFA and VFA into biogas, respectively. This 
three-phase system was also applied by Safari et al. (2011), in the scope 
of leachate treatment from municipal waste.

The models previously mentioned assume that all organic mat-

ter degrades at the same rate. However, the chemical composition of 
substrates is typically heterogeneous and therefore the organic mat-

ter has different conversion velocities (Dijkstra et al., 2005). Simpler 
monomeric compounds are readily available to be biodegraded by 
heterotrophic microorganisms, whereas complex organic polymers re-

quire an extracellular breakdown (hydrolysis) before being biodegraded 
(Mertens et al., 2005). Having that in mind, Rao et al. (2000) and 
Kusch et al. (2008) described the AD process through a 1st order model 
where the substrate was divided into two groups of components: rapidly 
biodegradable and slowly biodegradable. This approach is schemati-

cally represented in Fig. 2 and the respective cumulative function of 
biogas production is given by equation (5):

𝑆𝑡 = 𝑆
[
1 − 𝛼𝑒−𝑘1𝑅𝑡 − (1 − 𝛼)𝑒−𝑘1𝐿𝑡

]
(5)
3

Where 𝛼 corresponds to the fraction of rapidly biodegradable sub-

strate, and 𝑘1𝑅 and 𝑘1𝐿 are the kinetic constants associated with the con-

version of rapidly and slowly degradable components of the substrate 
into biogas, respectively. Brulé et al. (2014) combined this approach 
with the 2-phase model proposed by Shin and Song (1995), resulting in 
equation (6):

𝑆𝑡 = 𝑆

[
𝛼

(
1 +

𝑘2𝑅𝑒
−𝑘2𝑏𝑡 − 𝑘2𝑏𝑒−𝑘2𝑅𝑡

𝑘2𝑏 − 𝑘2𝑅

)

+ (1 − 𝛼)

(
1 +

𝑘2𝐿𝑒
−𝑘2𝑏𝑡 − 𝑘2𝑏𝑒−𝑘2𝐿𝑡

𝑘2𝑏 − 𝑘2𝐿

)] (6)

Where 𝑘2𝑅 and 𝑘2𝐿 are the kinetic constants associated with the con-

version of rapidly and slowly degradable components of the substrate 
into VFA.

The introduction of the concept that the organic fraction of the sub-

strate has different degradation speeds, seems to improve the prediction 
of substrate degradation kinetics over time (Rao et al., 2000; Brulé et 
al., 2014).

As mentioned above, another empirical model widely used in the 
literature to analyse data related to bacterial population growth is the 
Modified Gompertz model (Donoso-Bravo et al., 2010; Li et al., 2018; 
Kafle and Kim, 2013; Browne et al., 2014; Tsapekos et al., 2018; Deep-

anraj et al., 2015). The Modified Gompertz model proposed by Zwieter-

ing et al. (1990) is a re-parameterisation of the traditional cumulative 
Gompertz model (Tjørve and Tjørve, 2017) and it can be express by 
equation (7):

𝑆𝑡 = 𝑃 exp
[
−exp

(
𝜇 ⋅ 𝑒
𝑃

(𝜆− 𝑡) + 1
)]

(7)

Where 𝑃 is the maximum biogas production, 𝜇 the maximum biogas 
production rate and 𝜆 the lag phase for biogas production to begin.

Typically, the determination of the parameters of all the models pre-

sented before, requires only experimental information regarding biogas 
production profiles. However, the values obtained for the kinetic con-

stants are rarely analysed from a physical perspective of the process, 
thus lacking validation (Weinrich et al., 2018).

2. Model development

After a revision of the empirical models proposed by different re-

searchers to characterize the AD process, a more complete kinetic model 
was developed with the objective of describing the temporal degra-

dation of the substrate along the different phases in a more precise 
way and in order to obtain more realistic estimates for the maximum 
potential of biogas production. The proposed model is schematically 
represented in Fig. 3, where the following assumptions were adopted:

1. Organic matter has different conversion speeds and therefore the 
substrate can be divided into two major groups of components: 
rapidly and slowly biodegradable.

Considering the approach of Brulé et al. (2014) and Rao et al. 
(2000), the total amount of rapidly biodegradable components 
(𝐶𝑅) and slowly biodegradable components (𝐶𝐿) can be expressed 
mathematically by equation (8) and (9), respectively:

𝐶𝑅 = 𝛼 ⋅𝑆𝐴0 (8)

𝐶𝐿 = (1 − 𝛼) ⋅𝑆𝐴0 (9)

Where 𝑆𝐴0 is the initial concentration of biodegradable substrate 
and 𝛼 the fraction of rapidly biodegradable substrate;

2. The process associated with the degradation of the slowly bio-

degradable fraction is simplified in a system of 3 phases: hydrolysis, 
acidogenesis and methanogenesis, according to Deveci and Çiftçi 
(2001). Whereas the process associated with the rapidly biodegrad-

able fraction is simplified into a system of only 2 phases, since this 
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Fig. 3. Schematic representation of the proposed kinetic model of anaerobic 
digestion.

fraction is associated with the simplest monomeric compounds. 𝑆𝐴, 
𝑆𝐵 , 𝑆𝐶 and 𝑆𝐷 correspond to the concentrations of biodegradable 
substrate, products of hydrolysis, volatile fatty acids and biogas, 
respectively;

3. Considering that both H2 and CO2 are rapidly consumed by 
methanogenic bacteria, their role as intermediate products was ne-

glected (Karakashev et al., 2006);

4. The reactions are irreversible and follow first order kinetics, which 
implies that the saturation effects are neglected. 𝑘𝑅, 𝑘𝐿, 𝑘2 and 
𝑘3 are first order kinetic constants and correspond to the conver-

sion of rapidly degradable components of the substrate into VFA, 
the conversion of slowly degradable components of the substrate 
into hydrolysis products, the conversion of the hydrolysis products 
associated with the slowly degradable fraction into VFA, and the 
conversion of total VFA into biogas, respectively;

5. Due to the complexity and variability of substrate composition, 
mass balances are based on the chemical oxygen demand unit 
(COD) (Deveci and Çiftçi, 2001; Shin and Song, 1995).

With these assumptions, the kinetics of substrate degradation over 
the different stages of the process is expressed by the following set of 
differential equations ((10a), (10b) and (10c)):

𝑑𝑆𝐴

𝑑𝑡
= −

(
𝛼𝑘𝑅𝑆𝐴 + (1 − 𝛼)𝑘𝐿𝑆𝐴

)
(10a)

𝑑𝑆𝐵

𝑑𝑡
= (1 − 𝛼)

(
𝑘𝐿𝑆𝐴 − 𝑘2𝑆𝐵

)
(10b)

𝑑𝑆𝐶

𝑑𝑡
= 𝑘2𝑆𝐵(1 − 𝛼) + 𝛼𝑘𝑅𝑆𝐴 − 𝑘3𝑆𝐶 (10c)

In order to obtain 𝑆𝐴, 𝑆𝐵 , 𝑆𝐶 and 𝑆𝐷 concentrations as a function 
of time, the differential equations previously presented were integrated. 
The degradation of the organic fraction of the substrate over time is thus 
expressed by equation (11):

𝑆𝐴 = 𝑆𝐴0
(
𝛼𝑒−𝑘𝑅𝑡 + (1 − 𝛼)𝑒−𝑘𝐿𝑡

)
(11)

The intermediate function associated with the rate of accumulation 
of hydrolysis products from the rapidly degradable fraction of the sub-

strate is described by equation (12):

𝑆𝐵 = 𝑆𝐴0
[
(1 − 𝛼)𝑘𝐿

𝑒−𝑘𝐿𝑡 − 𝑒−𝑘2𝑡
]

(12)

𝑘2 − 𝑘𝐿

4

Assuming that the initial concentration of volatile fatty acids is zero, 
𝑆𝐶 (𝑡 = 0) = 0, the accumulation of VFA as a function of time is described 
by equation (13):

𝑆𝐶 = 𝑆𝐴0

[
𝛼𝑘𝑅

𝑒−𝑘𝑅𝑡 − 𝑒−𝑘3𝑡
𝑘3 − 𝑘𝑅

+ (1 − 𝛼)𝑘𝐿𝑘2

(
𝑘3 − 𝑘2

)
𝑒−𝑘𝐿𝑡 −

(
𝑘3 − 𝑘𝐿

)
𝑒−𝑘2𝑡 +

(
𝑘2 − 𝑘𝐿

)
𝑒−𝑘3𝑡(

𝑘2 − 𝑘𝐿
)(
𝑘3 − 𝑘𝐿

)(
𝑘3 − 𝑘2

) ]
(13)

The 𝑆𝐶 function is of particular interest because it allows to describe 
the accumulation of volatile fatty acids along the process. The concen-

tration of VFA should be closely monitored because these compounds 
can inhibit the development of methanogenic bacteria, due to changes 
in the pH of the medium (He et al., 2006). Finally, the biogas concen-

tration results from the mass balance of the components involved in 
anaerobic digestion (equation (14)):

𝑆𝐷 = 𝑆𝐴0 − 𝑆𝐴 − 𝑆𝐵 −𝑆𝐶 (14)

Assuming that the whole substrate is converted into biogas, the max-

imum potential for biogas production is equal to the initial substrate 
concentration for an infinite retention time: 𝑆𝐴0 = 𝑆𝑚𝑎𝑥. Thus, the cu-

mulative biogas production function is expressed by equation (15):

𝑆𝐷 = 𝑆𝑚𝑎𝑥

[
𝛼

(
1 − 𝑒−𝑘𝑅𝑡 − 𝑘𝑅

𝑒−𝑘𝑅𝑡 − 𝑒−𝑘3𝑡
𝑘3 − 𝑘𝑅

)

+ (1 − 𝛼)

(
1 − 𝑒−𝑘𝐿𝑡 − 𝑘𝐿

𝑒−𝑘𝐿𝑡 − 𝑒−𝑘2𝑡
𝑘2 − 𝑘𝐿

− 𝑘𝐿𝑘2
(𝑘3 − 𝑘2)𝑒−𝑘𝐿𝑡 − (𝑘3 − 𝑘𝐿)𝑒−𝑘2𝑡 + (𝑘2 − 𝑘𝐿)𝑒−𝑘3𝑡

(𝑘2 − 𝑘𝐿)(𝑘3 − 𝑘𝐿)(𝑘3 − 𝑘2)

)]
(15)

The final 𝑆𝐷 function, which describes the cumulative production 
of biogas over time and its maximum potential, is thus composed of 6 
parameters.

2.1. Parameter determination

In order to ensure realistic simulations, the 6 parameters of the cu-

mulative biogas production function (𝑆𝐷) should be adjusted according 
to the substrate used in the batch anaerobic digestion test. The un-

known parameters can be determined using a numerical optimization 
procedure (Isermann and Münchhof, 2010). However, it is important to 
point out that the choice of the algorithm, objective function and ini-

tial conditions influences the value of the estimated parameters and the 
accuracy of the model.

In order to initialise the optimization procedure it is necessary to 
provide an initial estimate for the model parameters. Considering that 
the problem in question is non-convex, a methodology was established 
according to the following steps, where the initial estimate for the pa-

rameters of the proposed model was provided by the simplest 1st order 
model:

1. Set random initial conditions for the parameters of the 1st order, 
single-phase model (𝑆 = 𝑥 and 𝑘1𝑎 = 𝑦).

2. Run the optimization algorithm until the final estimate for the 
parameters of the simplest model is obtained (𝑆𝑥 and 𝑘𝑦). The 
parameters obtained for this model will always be the same, re-

gardless of the initial conditions chosen.

3. Use the values obtained in step 2 as the basis for the initial estimate 
of the parameters of the proposed model, according to Table 1.

In this study, the unknown parameters were determined using the 
Levenberg-Marquardt algorithm (Lourakis et al., 2005; Moré, 1978), 
which was executed in Matlab® software version 9.5.0 (R2018b) 
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Table 1. Selected initial conditions for the model parameters.

Model Parameters

1st order, single-phase 𝑆 𝑘1𝑎

x y

Proposed model 𝑆𝑚𝑎𝑥 𝑘𝐿 𝑘𝑅 𝑘2 𝑘3 𝛼

𝑆𝑥 𝑘𝑦∕2 𝑘𝑦 𝑘𝑦 × 2 𝑘𝑦 × 3 0.5

through the non-linear optimization function [lsqcurvefit]. This algo-

rithm was chosen due to its suitability to solve non-linear optimization 
problems. In this case, a least squares problem, where the set of un-

known parameters (𝜂) were iteratively determined by minimizing the 
objective function 𝜓 (given by equation (16)), which measures the 
square of the difference between the experimental values (𝑦𝑒𝑥𝑝) and 
the values predicted by the model (𝑆𝐷):

𝜓(𝜂) = min
𝑁∑
𝑡=0

[
𝑦𝑒𝑥𝑝(𝑡) −𝑆𝐷(𝑡, 𝜂)

]2
(16)

Where 𝑁 is the number of experimental measurements performed. 
The optimization process ended when the variation in the residual was 
less than the specified tolerance of 1 × 10−6.

3. Results & discussion

In order to evaluate the ability of the developed model to reproduce 
the experimental data in a realistic and accurate way, three case studies 
with published experimental data were analysed.

3.1. Case study 1

The first case study aimed to evaluate not only the ability of the 
model to describe the biogas production kinetics, but also the realism 
of the estimate reproduced for the VFA accumulation profile, obtained 
from the model’s mass balances.

Experimental data regarding biogas production from municipal solid 
waste (MSW) were collected from the work published by Rao et al. 
(2000). The batch tests were conducted under room temperature con-

ditions (26 ± 4 °C), in a reactor with a working volume of 2 L.

The optimal solution found for the model parameters, resulting from 
the simulation between the 𝑆𝐷 function and the experimental data, was 
the following: 𝑆𝐴0 = 38.1625 gCOD/L; 𝑘𝐿 = 0.0133 d-1; 𝑘𝑅 = 0.1532 d-1; 
𝑘2 = 0.1274 d-1; 𝑘3 = 0.1181 d-1; and 𝛼 = 0.3532. As expected, given the 
heterogeneity of the substrate in question (municipal waste), the kinetic 
constant 𝑘𝐿 indicates the lowest value and therefore hydrolysis is the 
rate-limiting step of the process. The graphical representation of this 
simulation is shown in Fig. 4, where it is possible to observe that the 𝑆𝐷
function accurately reproduces the kinetics of biogas production. The 
coefficient of determination (𝑅2) is approximately 0.999. Therefore, it 
can be concluded that the choice of using 1st order reactions to describe 
the different phases of the digestion process was appropriate.

The dashed lines correspond to the substrate degradation (𝑆𝐴) and 
volatile fatty acid accumulation (𝑆𝐶 ) profiles, obtained from the same 
set of parameters. These profiles present a typical pattern for batch 
anaerobic digestion (Shin and Song, 1995; Mottet et al., 2009). How-

ever, from Fig. 4 alone it is not possible to guarantee that these profiles 
describe the experimental information with the same accuracy. Taking 
this into account, the estimates produced by the 𝑆𝐴 and 𝑆𝐶 functions 
of the developed model were compared with the respective experimen-

tal data. For this purpose, VFA were considered as acetic acid and the 
data associated with the concentration of acetic acid were converted 
using the theoretical conversion coefficient: 𝑌𝑐𝑜𝑛𝑣 = 1.07𝑔𝑂2

∕𝑔𝐶𝐻3𝐶𝑂𝑂𝐻
, 

obtained from the oxidation reaction of acetic acid. The simulation re-

sults are graphically represented in Fig. 5.

As can be observed, the proposed substrate degradation and volatile 
fatty acid accumulation functions show concordance with the experi-

mental results, confirming the potential of the model. The 𝑆𝐴 function 
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Fig. 4. Graphical representation of the model performance, resulting from the 
simulation between the 𝑆𝐷 function and experimental data of biogas production 
published by Rao et al. (2000).

presents a coefficient of determination of 0.973, while for the 𝑆𝐶 func-

tion, 𝑅2 = 0.980.

The model seems to produce estimates consistent with the experi-

mental results. However, for a better understanding of the behaviour of 
its parameters, two more case studies were analysed.

3.2. Case study 2

In order to assess the consistency of the parameters estimated by 
the optimisation algorithm, in the second case study it was analysed 
the kinetics of biogas production of waste activated sludge, generated 
in wastewater treatment plants (WWTPs). Experimental data were col-

lected from the work published by Maamri and Amrani (2014). The 
batch tests were conducted under thermophilic conditions (55 °C), in a 
reactor with a working volume of 4.5 L. The simulation results between 
the developed model and the experimental data are presented in Fig. 6, 
where 3 different amounts of total solids (TS) were analysed in order to 
understand their effect on the kinetic constants of the model.

It can be observed that the 𝑆𝐷 function accurately reproduces the 
kinetics of biogas production. The coefficient of determination is ap-

proximately 0.999 for the 3 tests, which means that the model can 
explain about 99.9% of the variability of the experimental information.

The relative error between the model and the experimental data, de-

fined as the quotient between the residual (𝑆𝐷 − 𝑦𝑒𝑥𝑝) and 𝑦𝑒𝑥𝑝, never 
exceeds 3.64% (maximum value found for TS1=23.28 g/L) and oscil-

lates around 0 over the 3 tests, as can be seen in Fig. 6. Taking into 
account that the empirical model developed is an approximation of a 
complex system of biochemical processes, the results obtained are quite 
satisfactory.

3.2.1. Parameter interpretation

The parameters of the model, obtained with the considered nonlin-

ear optimization algorithm, are shown in Table 2. From these values, 
the following conclusions can be drawn:

1. The 𝑆𝑚𝑎𝑥 value identified by the model is higher than the last value 
measured experimentally for the 3 batch tests. The estimate for 
the maximum potential of biogas produced is therefore a reliable 
approximation. According to Weinrich et al. (2018), the biogas po-

tential is the basis for the analysis of the performance of biogas 
plants.
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Fig. 5. Graphical comparison between model predictions and the respective ex-

perimental data published by Rao et al. (2000): a) substrate degradation profile; 
b) volatile fatty acid accumulation profile.

Table 2. Optimal solution obtained for the parameters of the developed model 
and coefficient of determination for each test. Simulation of the 𝑆𝐷 function 
with the experimental data from Maamri and Amrani (2014).

Experimental tests

TS1 TS2 TS3

𝑆𝑚𝑎𝑥 (𝐿) 3.818 4.775 6.998

𝑘𝐿 (𝑑−1) 0.421 0.340 0.301

𝑘𝑅 (𝑑−1) 3.262 2.139 1.932

𝑘2 (𝑑−1) 0.422 0.417 0.413

𝑘3 (𝑑−1) 3.262 2.314 2.180

𝛼 0.221 0.265 0.289

𝑅2 0.999 0.999 0.999

2. Biogas production started almost immediately, which indicates the 
presence of rapidly biodegradable components. The hierarchy of 
values registered for parameter 𝛼 is coherent. Taking into account 
that the same type of substrate was used in all tests, it would be 
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expected that for compositions with higher TS there would be a 
higher concentration of rapidly degradable components.

3. The parameter 𝑘𝐿 registers the lowest value among the kinetic con-

stants in every test, and therefore hydrolysis is the rate-limiting 
step of the process. In the presence of solid substrates like the one 
we are dealing with (waste activated sludge), hydrolysis often cor-

responds to the slowest stage of the process (Vavilin et al., 2008).

4. The kinetic constants (𝑘𝐿, 𝑘𝑅, 𝑘2 and 𝑘3) decrease with the increase 
of the total solids concentration. The decrease in the overall kinet-

ics of biogas production verified throughout the 3 tests is explained 
by the fact that the amount of biodegradable organic matter is suc-

cessively higher. With more organic matter available, more time is 
needed to achieve the same percentage of degradation, which leads 
to a slower process (Koch and Drewes, 2014). According to Brulé 
et al. (2014), in 1st order models the parameters do not necessar-

ily describe the growth rate of the bacteria but rather the kinetics 
of substrate degradation.

Although the identified parameters reproduce an estimate consistent 
with the experimental data, they should be reviewed for a larger num-

ber of tests. Given the variability of the chemical composition of the 
mixtures inside the reactor, it is necessary to define a reasonable range 
of values for the constants in order to take these variations into account.

3.3. Case study 3

In the third case study the developed model was compared with 
some of the empirical models mentioned in the introductory section. 
For this purpose, it was analysed the effect of thermal pre-treatment 
(175 °C, 30 min) on the kinetics of biogas production of secondary 
sludge from municipal WWTPs. Experimental data were collected from 
the work published by Donoso-Bravo et al. (2010). The batch tests were 
carried out in glass bottles with a liquid volume of 120 mL, under 
mesophilic conditions (35 °C). The simulation results between the 𝑆𝐷
function and the experimental data, with and without pre-treatment, 
are represented in Fig. 7.

In both cases, the model describes the experimental information 
with high precision, being able to follow the kinetics of biogas pro-

duction throughout the process. Once again, the coefficient of determi-

nation is around 0.999 for both tests.

3.3.1. Parameter interpretation

The parameters of the model, obtained with the considered opti-

mization algorithm, are presented in Table 3. From these values, the 
following conclusions can be drawn:

1. With the introduction of pre-treatment there was a significant in-

crease in biogas production. The biogas potential for the test with 
pre-treatment almost doubled compared to the test where no pre-

treatment was performed. Once again, the 𝑆𝑚𝑎𝑥 value estimated by 
the model is higher than the last value measured experimentally 
for the 2 cases.

2. The 𝛼 parameter increased about 40% with the pre-treatment. 
This is explained by the fact that thermal pre-treatment causes the 
solubilization of the particulate material, and therefore a greater 
amount of organic matter is available to be immediately converted 
into biogas.

3. The parameter 𝑘𝐿 registers the lowest value among the kinetic con-

stants in every test, and therefore hydrolysis is the rate-limiting 
step of the process. The presence of solid particles in the sludge 
makes hydrolysis the slowest stage of the anaerobic digestion pro-

cess.

4. The kinetic constants (𝑘𝐿, 𝑘𝑅, 𝑘2 and 𝑘3) decreased with the 
introduction of pre-treatment. As previously explained, the pre-

treatment enhanced the solubilization of suspended solids. With 
more organic matter available, more time is needed to achieve the 
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Fig. 6. Graphical representation of the model performance, resulting from the simulation between the 𝑆𝐷 function and experimental data of biogas production 
published by Maamri and Amrani (2014) (top). Relative error expressed by (𝑆𝐷 − 𝑦𝑒𝑥𝑝)∕𝑦𝑒𝑥𝑝 (bottom).
Fig. 7. Simulation results between the 𝑆𝐷 function of the developed model and 
experimental data published by Donoso-Bravo et al. (2010).

same percentage of degradation, leading to slower global process 
kinetics (Koch and Drewes, 2014).

3.3.2. Performance comparison

After being applied in the interpretation of experimental data, the 
developed model was then compared with the most complete 1st order 
model available in the literature, the 3-phase model (Deveci and Çiftçi, 
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Table 3. Optimal solution obtained for the parameters of the developed model 
and coefficient of determination for each test. Simulation of the 𝑆𝐷 function 
with the experimental data from Donoso-Bravo et al. (2010).

Experimental tests

Without pre-treatment With pre-treatment

𝑆𝑚𝑎𝑥 (𝑚𝐿∕𝑔𝑉 𝑆 ) 287.155 571.579

𝑘𝐿 (𝑑−1) 0.076 0.047

𝑘𝑅 (𝑑−1) 1.378 0.553

𝑘2 (𝑑−1) 0.892 0.094

𝑘3 (𝑑−1) 1.262 0.450

𝛼 0.511 0.718

𝑅2 0.999 0.999

2001), and the widely used Modified Gompertz model (Zwietering et 
al., 1990).

Structurally, the 3-phase model of Deveci and Çiftçi has the advan-

tage of being composed by only 4 parameters, in comparison with the 
6 parameters of the proposed model. Regarding the Modified Gompertz 
model, it offers the advantage of requiring only 3 parameters to esti-

mate the cumulative production of biogas. However, it is not possible 
to obtain any information about substrate degradation or VFA accumu-

lation profiles.

In order to compare the performance of both models, equation (3) of 
the 1st order, 3-phase model and equation (7) of the Modified Gompertz 
model were simulated with the same experimental data obtained from 
Donoso-Bravo study, as was done in the previous section for the pro-

posed model. The results of these simulations are shown in Fig. 8, where 
it can be observed that the developed model allows a more accurate re-

production of the experimental information. It is therefore concluded 
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Fig. 8. Simulation results obtained with the experimental data published by Donoso-Bravo et al. (2010), using the cumulative biogas production function of the 1st

order, 3-phase model (Eq. (3)), the Modified Gompertz model (Eq. (7)), and the proposed model (Eq. (15)).
Table 4. Optimal solution obtained for the parameters of the 1st order, 3-phase 
model (Eq. (3)) and the Modified Gompertz model (Eq. (7)), and respective coef-

ficient of determination for each test. Simulations performed with experimental 
data from Donoso-Bravo et al. (2010).

Experimental tests

Without pre-treatment With pre-treatment

1st order, 3-phase

𝑆𝑚𝑎𝑥 (𝑚𝐿∕𝑔𝑉 𝑆 ) 252.568 477.679

𝑘3𝑎 (𝑑−1) 0.215 0.220

𝑘3𝑏 (𝑑−1) ≫ 1 1.730

𝑘3𝑐 (𝑑−1) ≫ 1 6.981

𝑅2 0.984 0.997

Modified Gompertz

𝑃 (𝑚𝐿∕𝑔𝑉 𝑆 ) 244.463 465.702

𝜇 (𝑚𝐿∕𝑔𝑉 𝑆 ⋅ 𝑑) 35.399 62.981

𝜆 (𝑑) 0 0.412

𝑅2 0.954 0.992

that the introduction of the concept that the organic fraction of the sub-

strate has different degradation speeds, has a significant impact on the 
results.

From Fig. 8, it is also possible to observe that in the beginning of 
the process, biogas production is not zero for the Modified Gompertz 
model, which is not realistic. This model was not designed from the 
process of anaerobic digestion, it is a re-parametrization of the original 
Gompertz model designed in the field of human mortality (Tjørve and 
Tjørve, 2017).

From Table 4 it can also be noticed that for both the 1st order, 3-

phase model and the Modified Gompertz model, the estimated values 
for the maximum potential of biogas production are inferior to the last 
value registered experimentally, which is obviously impossible. In addi-

tion to this, the optimal solution found for the Deveci and Çiftçi model 
parameters suggests very high values of 𝑘3𝑏 and 𝑘3𝑐 , for the test without 
pre-treatment. According to these results, the optimal solution occurs 
when the concentrations of hydrolysis products and VFA compounds 
are practically zero throughout the process, which is not in agreement 
with reality.

On the whole, it is possible to conclude that the developed model 
allows a more realistic and approximate reproduction of the kinetics of 
biogas production, during the process of anaerobic digestion.
8

Fig. 9. Prediction error at a given time 𝑡 during the experiment expressed by |𝑆𝑢
𝐷
− 𝑦𝑢

𝑒𝑥𝑝
|∕𝑦𝑢

𝑒𝑥𝑝
. Simulations performed with experimental data from Donoso-

Bravo et al. (2010).

3.3.3. Predictive capacity

Empirical models require experimental data on biogas production 
to be able to estimate the biogas potential for infinite retention times. 
When properly calibrated, they can allow a reduction in the number of 
tests, as well as their duration (Weinrich et al., 2018).

In order to evaluate the predictive capacity of the developed model 
in comparison with the 1st order, 3-phase model and the Modified Gom-

pertz model, simulations were performed for different instants during 
the experimental tests. Fig. 9 shows the results obtained for the test 
without pre-treatment, where the prediction error is the relative and ab-

solute difference between the total measured biogas production (𝑦𝑢
𝑒𝑥𝑝

) 
and the respective estimate provided by the model (𝑆𝑢

𝐷
) based on the 

available data at a given time 𝑡. For example, the prediction error on 
day 3 corresponds to the estimate made by the model based only on the 
experimental data of the first 3 days.

Throughout the test, the developed model provides systematically 
more accurate estimates compared to the other models. For a retention 
time of 20 days, with about 30% left to the end of the experiment, 
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Table 5. Time reduction obtained assuming a prediction error under 5%. Sim-

ulations performed for all case studies.

Time reduction (%)

Proposed model 1st order 3-phase Modified Gompertz

Case study 1 58.3 33.3 0

Case study 2
TS1 46.1 30.8 23.1

TS2 53.9 30.8 23.1

TS3 53.9 38.5 7.9

Case study 3
Without pre-treatment 28.5 0 0

With pre-treatment 57.5 17.5 0

the model shows a prediction error of only 2.73%, suggesting that it is 
possible to obtain quite reasonable estimates within a shorter period of 
time. In fact, this pattern was verified for all the tests mentioned in this 
study. In Table 5 it is shown the time reduction that can be obtained 
using the different models, assuming as acceptable a prediction error 
under 5%.

From Table 5 it can be found that the proposed model requires less 
experimental data to accurately estimate the total biogas production, 
leading to significant reductions in experimental time. For all the case 
studies, the model presented the best performance revealing a great 
flexibility and adaptability to different kinetic behaviours.

On the other hand, the Modified Gompertz model presents a lower 
predictive capacity in comparison with the 1st order models. In many 
tests it was not even possible to reach a prediction error of less than 5% 
using all the experimental data. This model is more rigid because it is 
not based on the kinetics of the digestion process.

Considering the results obtained, the developed model presents itself 
as an interesting tool to reduce the number of laboratory tests as well 
as their duration.

4. Conclusions

The developed model allows to describe the process of anaerobic 
digestion in a more complete and precise way compared to other pub-

lished empirical models. The assumption that the organic fraction of the 
substrate has different degradation speeds proved to be a good hypoth-

esis. Given its accuracy in describing the biogas production kinetics, the 
model can be used as an auxiliary tool in determining the biogas poten-

tial, reducing the duration of laboratory tests through extrapolations for 
infinite retention times. Moreover, the model also provides information 
about the accumulation of VFA inside the reactor.

Declarations

Author contribution statement

Bruno Gouveia: Conceived and designed the experiments; Performed 
the experiments; Analyzed and interpreted the data; Wrote the pa-

per. Elizabeth Duarte: Contributed reagents, materials, analysis tools 
or data. Aires dos Santos, Edgar Fernandes: Conceived and designed the 
experiments.

Funding statement

This research did not receive any specific grant from funding agen-

cies in the public, commercial, or not-for-profit sectors.

Data availability statement

Data included in article/supplementary material/referenced in arti-

cle.
9

Declaration of interests statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

Adl, M., Sheng, K., Gharibi, A., 2015. Examining a pretty simple and low cost method for 
modeling of biogas production from biodegradable solids. Energy Proc. 75, 748–753.

Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J., Guwy, A., Kalyuzhnyi, 
S., Jenicek, P., Van Lier, J., 2009. Defining the biomethane potential (bmp) of solid 
organic wastes and energy crops: a proposed protocol for batch assays. Water Sci. 
Technol. 59, 927–934.

Appels, L., Baeyens, J., Degrève, J., Dewil, R., 2008. Principles and potential of the anaer-

obic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 34, 755–781.

Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S., Pavlostathis, S., Rozzi, A., Sanders, 
W., Siegrist, H., Vavilin, V., 2002. The iwa anaerobic digestion model no 1 (adm1). 
Water Sci. Technol. 45, 65–73.

Browne, J.D., Allen, E., Murphy, J.D., 2014. Assessing the variability in biomethane pro-

duction from the organic fraction of municipal solid waste in batch and continuous 
operation. Appl. Energy 128, 307–314.

Brulé, M., Oechsner, H., Jungbluth, T., 2014. Exponential model describing methane pro-

duction kinetics in batch anaerobic digestion: a tool for evaluation of biochemical 
methane potential assays. Bioprocess Biosyst. Eng. 37, 1759–1770.

Deepanraj, B., Sivasubramanian, V., Jayaraj, S., 2015. Kinetic study on the effect of tem-

perature on biogas production using a lab scale batch reactor. Ecotoxicol. Environ. 
Saf. 121, 100–104.

Demirel, B., Yenigün, O., 2002. Two-phase anaerobic digestion processes: a review. J. 
Chem. Technol. Biotechnol.: Int. Res. Process Environ. Clean Technol. 77, 743–755.

Deveci, N., Çiftçi, G., 2001. A mathematical model for the anaerobic treatment of baker’s 
yeast effluents. Waste Manag. 21, 99–103.

Dijkstra, J., Forbes, J.M., France, J., et al., 2005. Quantitative Aspects of Ruminant Diges-

tion and Metabolism. CABI Pub., Cambridge.

Donoso-Bravo, A., Pérez-Elvira, S., Fdz-Polanco, F., 2010. Application of simplified mod-

els for anaerobic biodegradability tests. Evaluation of pre-treatment processes. Chem. 
Eng. J. 160, 607–614.

Dursun, D., Jimenez, J., Bratby, J., 2011. Moving forward in process modeling: inte-

grating anaerobic digester into liquid stream models. In: Proceedings of the Water 
Environment Federation 2011, pp. 728–741.

El-Mashad, H.M., 2013. Kinetics of methane production from the codigestion of switch-

grass and spirulina platensis algae. Bioresour. Technol. 132, 305–312.

Fagerström, A., Al Seadi, T., Rasi, S., Briseid, T., 2018. The Role of Anaerobic Digestion 
and Biogas in the Circular Economy. IEA Bioenergy.

Gerber, M., Span, R., 2008. An analysis of available mathematical models for anaerobic 
digestion of organic substances for production of biogas. In: Proc. IGRC. Paris.

Gustafsson, M., Ammenberg, J., Murphy, J.D., 2020. Iea bioenergy task 37—country re-

ports summaries 2019.

He, P.J., Lü, F., Shao, L.M., Pan, X.J., Lee, D.J., 2006. Enzymatic hydrolysis of 
polysaccharide-rich particulate organic waste. Biotechnol. Bioeng. 93, 1145–1151.

Isermann, R., Münchhof, M., 2010. Identification of Dynamic Systems: an Introduction 
with Applications. Springer Science & Business Media.

Jokela, J., Vavilin, V., Rintala, J., 2005. Hydrolysis rates, methane production and nitro-

gen solubilisation of grey waste components during anaerobic degradation. Bioresour. 
Technol. 96, 501–508.

Kafle, G.K., Kim, S.H., 2013. Anaerobic treatment of apple waste with swine manure for 
biogas production: batch and continuous operation. Appl. Energy 103, 61–72.

Karakashev, D., Batstone, D.J., Trably, E., Angelidaki, I., 2006. Acetate oxidation is the 
dominant methanogenic pathway from acetate in the absence of methanosaetaceae. 
Appl. Environ. Microbiol. 72, 5138–5141.

Koch, K., Drewes, J.E., 2014. Alternative approach to estimate the hydrolysis rate constant 
of particulate material from batch data. Appl. Energy 120, 11–15.

Kusch, S., Oechsner, H., Jungbluth, T., 2008. Biogas production with horse dung in solid-

phase digestion systems. Bioresour. Technol. 99, 1280–1292.

Kythreotou, N., Florides, G., Tassou, S.A., 2014. A review of simple to scientific models 
for anaerobic digestion. Renew. Energy 71, 701–714.

Lauwers, J., Appels, L., Thompson, I.P., Degrève, J., Van Impe, J.F., Dewil, R., 2013. 
Mathematical modelling of anaerobic digestion of biomass and waste: power and 
limitations. Prog. Energy Combust. Sci. 39, 383–402.

Li, Y., Jin, Y., Li, H., Borrion, A., Yu, Z., Li, J., 2018. Kinetic studies on organic degradation 
and its impacts on improving methane production during anaerobic digestion of food 
waste. Appl. Energy 213, 136–147.

Lourakis, M.I., et al., 2005. A brief description of the Levenberg-Marquardt algorithm 
implemented by levmar. Found. Res. Technol. 4, 1–6.

Lyberatos, G., Skiadas, I., 1999. Modelling of anaerobic digestion–a review. Glob. NEST, 
Int. J. 1, 63–76.

http://refhub.elsevier.com/S2405-8440(22)00482-0/bib3530D3E98DA6E0671B5A93CE91331C35s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib3530D3E98DA6E0671B5A93CE91331C35s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib3BBA6D5633B73C340A344D91432F9C94s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib3BBA6D5633B73C340A344D91432F9C94s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib3BBA6D5633B73C340A344D91432F9C94s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib3BBA6D5633B73C340A344D91432F9C94s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibEC690FC0ED3BFBEAE562BFFB057ED87Ds1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibEC690FC0ED3BFBEAE562BFFB057ED87Ds1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibFE733241F6584F23A43E7024A87AC789s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibFE733241F6584F23A43E7024A87AC789s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibFE733241F6584F23A43E7024A87AC789s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib67F87D4583EB6F6B24EB3A0D88271EF7s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib67F87D4583EB6F6B24EB3A0D88271EF7s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib67F87D4583EB6F6B24EB3A0D88271EF7s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib40C2FBB8AD028789CA13211E8E60C405s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib40C2FBB8AD028789CA13211E8E60C405s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib40C2FBB8AD028789CA13211E8E60C405s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib6D111CEBA79469934F973A783A0F009Fs1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib6D111CEBA79469934F973A783A0F009Fs1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib6D111CEBA79469934F973A783A0F009Fs1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib7B079860E1E831165F65E46C1E300573s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib7B079860E1E831165F65E46C1E300573s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib1504866E641108CA55A1C67EFD83DCEBs1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib1504866E641108CA55A1C67EFD83DCEBs1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib05362416612414DDEEF485FAA0AB4389s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib05362416612414DDEEF485FAA0AB4389s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibF51A732208F5012FB49A689C1859F81As1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibF51A732208F5012FB49A689C1859F81As1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibF51A732208F5012FB49A689C1859F81As1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib5C08979B1C97BE97E10266371DAB8808s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib5C08979B1C97BE97E10266371DAB8808s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib5C08979B1C97BE97E10266371DAB8808s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib0570A38C619E7DE398F584F54918E86Ds1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib0570A38C619E7DE398F584F54918E86Ds1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibEFCF35505CA641F2AD6106D58B8178A3s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibEFCF35505CA641F2AD6106D58B8178A3s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib9BE6430D9C63DB1ED9B4DCDEEB94D1F8s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib9BE6430D9C63DB1ED9B4DCDEEB94D1F8s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib63F129C43C627B8BF955E3CFE4B773E0s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib63F129C43C627B8BF955E3CFE4B773E0s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibF7FDFB3946F721D71A44F4696D44AF20s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibF7FDFB3946F721D71A44F4696D44AF20s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibCBC5C7AB60574C4C77CCFA8BDAE2E033s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibCBC5C7AB60574C4C77CCFA8BDAE2E033s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib236899FB72839BCCAB5F9145BCB169EEs1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib236899FB72839BCCAB5F9145BCB169EEs1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib236899FB72839BCCAB5F9145BCB169EEs1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibBA92F30CF6F74477E28D5C6E313066ACs1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibBA92F30CF6F74477E28D5C6E313066ACs1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib7AC9105B31149059EE7F179C24DC40D2s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib7AC9105B31149059EE7F179C24DC40D2s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib7AC9105B31149059EE7F179C24DC40D2s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibB4971A29D18C583060DEA68C85F77AA1s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibB4971A29D18C583060DEA68C85F77AA1s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibF00D55ECEBAA49AA28645B8C1D357ACCs1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibF00D55ECEBAA49AA28645B8C1D357ACCs1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibA78338513AEF3A1416EFB18728F962BBs1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibA78338513AEF3A1416EFB18728F962BBs1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib9D0B75C4BAB5A3B3DC39CAD6AE915DF3s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib9D0B75C4BAB5A3B3DC39CAD6AE915DF3s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib9D0B75C4BAB5A3B3DC39CAD6AE915DF3s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib8202118091E917CB3EB02A79682A2798s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib8202118091E917CB3EB02A79682A2798s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib8202118091E917CB3EB02A79682A2798s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib84D53FCDC5D8AF125704A9CD90D057B5s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib84D53FCDC5D8AF125704A9CD90D057B5s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibE9E70D1AED29873D346DBE3140D2E5D7s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibE9E70D1AED29873D346DBE3140D2E5D7s1


B. Gouveia, E. Duarte, A. dos Santos et al. Heliyon 8 (2022) e09194
Maamri, S., Amrani, M., 2014. Biogas production from waste activated sludge using cattle 
dung inoculums: effect of total solid contents and kinetics study. Energy Proc.

Martin, M., Parsapour, A., 2012. Upcycling wastes with biogas production: an exergy 
and economic analysis. In: Venice 2012: International Symposium on Energy from 
Biomass and Waste.

Mertens, D., Dijkstra, J., Forbes, J., France, J., 2005. Quantitative Aspects of Ruminant 
Digestion and Metabolism. Book Chapter, pp. 13–47.

Moré, J.J., 1978. The Levenberg-Marquardt algorithm: implementation and theory. In: 
Numerical Analysis. Springer, pp. 105–116.

Mottet, A., Steyer, J.P., Déléris, S., Vedrenne, F., Chauzy, J., Carrère, H., 2009. Kinetics of 
thermophilic batch anaerobic digestion of thermal hydrolysed waste activated sludge. 
Biochem. Eng. J. 46, 169–175.

Paolini, V., Petracchini, F., Segreto, M., Tomassetti, L., Naja, N., Cecinato, A., 2018. En-

vironmental impact of biogas: a short review of current knowledge. J. Environ. Sci. 
Health, Part A 53, 899–906.

Rao, M., Singh, S., 2004. Bioenergy conversion studies of organic fraction of msw: kinetic 
studies and gas yield–organic loading relationships for process optimisation. Biore-

sour. Technol. 95, 173–185.

Rao, M., Singh, S., Singh, A., Sodha, M., 2000. Bioenergy conversion studies of the organic 
fraction of msw: assessment of ultimate bioenergy production potential of municipal 
garbage. Appl. Energy 66, 75–87.

Rasi, S., Veijanen, A., Rintala, J., 2007. Trace compounds of biogas from different biogas 
production plants. Energy 32, 1375–1380.

Safari, E., Jalili Ghazizade, M., Shokouh, A., Nabi Bidhendi, G.R., 2011. Anaerobic re-

moval of cod from high strength fresh and partially stabilized leachates and applica-

tion of multi stage kinetic model. Int. J. Environ. Res. 5, 255–270.

Shin, H.S., Song, Y.C., 1995. A model for evaluation of anaerobic degradation character-

istics of organic waste: focusing on kinetics, rate-limiting step. Environ. Technol. 16, 
775–784.

Tjørve, K.M., Tjørve, E., 2017. The use of Gompertz models in growth analyses, and new 
Gompertz-model approach: an addition to the unified-Richards family. PLoS ONE 12, 
e0178691.

Tsapekos, P., Kougias, P.G., Kuthiala, S., Angelidaki, I., 2018. Co-digestion and model 
simulations of source separated municipal organic waste with cattle manure under 
batch and continuously stirred tank reactors. Energy Convers. Manag. 159, 1–6.

Turick, C.E., Peck, M.W., Chynoweth, D.P., Jerger, D.E., White, E.H., Zsuffa, L., Ken-

ney, W.A., 1991. Methane fermentation of woody biomass. Bioresour. Technol. 37, 
141–147.

Vavilin, V., Fernandez, B., Palatsi, J., Flotats, X., 2008. Hydrolysis kinetics in anaerobic 
degradation of particulate organic material: an overview. Waste Manag. 28, 939–951.

Veeken, A., Hamelers, B., 1999. Effect of temperature on hydrolysis rates of selected 
biowaste components. Bioresour. Technol. 69, 249–254.

Weinrich, S., Schäfer, F., Bochmann, G., Liebetrau, J., 2018. Value of batch tests for biogas 
potential analysis: Method Comparison and Challenges of Substrate and Efficiency 
Evaluation of Biogas Plants.

Zwietering, M., Jongenburger, I., Rombouts, F., Van’t Riet, K., 1990. Modeling of the 
bacterial growth curve. Appl. Environ. Microbiol. 56, 1875–1881.
10

http://refhub.elsevier.com/S2405-8440(22)00482-0/bib1E660A41C08689E13CEC315505B8122Cs1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib1E660A41C08689E13CEC315505B8122Cs1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibB973EEC930C5DEF3C92D922E14F307BCs1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibB973EEC930C5DEF3C92D922E14F307BCs1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibB973EEC930C5DEF3C92D922E14F307BCs1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibD07E2CC0F6AD228A3DD4D5697722F2B9s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibD07E2CC0F6AD228A3DD4D5697722F2B9s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibDE4043D6176F3BF04ECEFBA96A72729Cs1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibDE4043D6176F3BF04ECEFBA96A72729Cs1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibE411C243653E93733B5FBF559331D587s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibE411C243653E93733B5FBF559331D587s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibE411C243653E93733B5FBF559331D587s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibA2F37064B58D2CF197B166241D929DF6s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibA2F37064B58D2CF197B166241D929DF6s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibA2F37064B58D2CF197B166241D929DF6s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibC7590FCCED36F26A610876726633BBE4s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibC7590FCCED36F26A610876726633BBE4s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibC7590FCCED36F26A610876726633BBE4s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibEFD757055A228F1EBCAC43367046F75As1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibEFD757055A228F1EBCAC43367046F75As1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibEFD757055A228F1EBCAC43367046F75As1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibA5E2074F6E27FE32926BED3DF499EB08s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibA5E2074F6E27FE32926BED3DF499EB08s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib9BFDDA7A996523E09754951EED90F0D6s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib9BFDDA7A996523E09754951EED90F0D6s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib9BFDDA7A996523E09754951EED90F0D6s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib5E790627F1BCE6B1C07B8E95C28CEC3As1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib5E790627F1BCE6B1C07B8E95C28CEC3As1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib5E790627F1BCE6B1C07B8E95C28CEC3As1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib7F64F4976E7BA392C9CEF84A985119FBs1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib7F64F4976E7BA392C9CEF84A985119FBs1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib7F64F4976E7BA392C9CEF84A985119FBs1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibE3519D6F881BC8D89AC222F881D0C805s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibE3519D6F881BC8D89AC222F881D0C805s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bibE3519D6F881BC8D89AC222F881D0C805s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib6184982EBE8E701EDC4D34A878B70DAEs1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib6184982EBE8E701EDC4D34A878B70DAEs1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib6184982EBE8E701EDC4D34A878B70DAEs1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib0E994FE22523E5C24B6269063B2D0CEEs1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib0E994FE22523E5C24B6269063B2D0CEEs1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib24C6FC1878AA774EC9A0A8BDC1D45318s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib24C6FC1878AA774EC9A0A8BDC1D45318s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib66D40109F08047396B5405B2203D07F6s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib66D40109F08047396B5405B2203D07F6s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib66D40109F08047396B5405B2203D07F6s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib2D4E56FB0B7F1367F430C4C654FBDB73s1
http://refhub.elsevier.com/S2405-8440(22)00482-0/bib2D4E56FB0B7F1367F430C4C654FBDB73s1

	Dual-pool, three-phase kinetic model of anaerobic digestion in batch mode
	1 Introduction
	1.1 Kinetic models of batch AD

	2 Model development
	2.1 Parameter determination

	3 Results & discussion
	3.1 Case study 1
	3.2 Case study 2
	3.2.1 Parameter interpretation

	3.3 Case study 3
	3.3.1 Parameter interpretation
	3.3.2 Performance comparison
	3.3.3 Predictive capacity


	4 Conclusions
	Declarations
	Author contribution statement
	Funding statement
	Data availability statement
	Declaration of interests statement
	Additional information

	References


