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Tanya Araijo
REM/UECE, ISEG, Universidade de Lisboa

Abstract

Networks with long-range connections, obeying a distance-dependent
power law of sufficiently small exponent, display superdiffusion, Lévy
flights and robustness properties very different from the scale-free net-
works. It has been proposed that these networks, found both in society
and in biology, be classified as a new structure, the fractional networks.
Particular important examples are the social networks and the modular
hierarchical brain networks where both short- and long-range connections
are present. The anomalous superdiffusive and the mixed diffusion behav-
ior of these networks is studied here as well as its relation to the nature
and density of the long-range connections.

1 Introduction

The human brain contains up to 86 billion neurons connected by close to a
million kilometers of axons and dendrites. Most of these connections (~80%)
are short range on the order of a few hundred microns, the rest (~20%) being
long-range myelinated fibers on the order of several centimeters. The insulating
myelin sheath increases conduction velocity of the action potentials but at the
cost of taking up more volume in the brain as well as rendering axons unable to
synapse onto nearby neurons. That evolution has found profitable to accept this
additional hardware cost, highlights the importance of long-range connections.

From a network point of view the brain has a modular and hierarchical struc-
ture [1] [2]. Each module is associated to a specialized function mediated by
short-range connections whereas global integration, for higher cognition func-
tions, relies on the long-range connections between modules.
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The existence and importance of long-range connections in the brain has
been much studied in recent years [3] [4] [5] [6] [7] [8], having been found that
diminished long-range functional connectivity is associated to cognitive disor-
ders [9]. Of course, by itself, existence of long-range connections between the
specialized nodes does not guarantee global integration of the cognitive func-
tions. It is also necessary that the flow of information be sufficiently fast for the
stimulus integration to be performed in a timely manner. This seems of par-
ticular relevance for the forward and backwards loops in the predictive coding
mode [10] [11] [12] [13] [14] [15] of brain operation. One may therefore ask what
type of communication short- and long-range connections establish and whether
it depends or not on the structure and density of the long-range connections.

The network modules in the brain are in fact repertoires of many neurons
and, when dealing with the interactions of these intrinsic connectivity networks
(ICN’s), a continuous diffusion approximation might be a good modelling hy-
pothesis. In another paper [16] the nature of the diffusion processes associ-
ated to short and long-range connections have been analyzed. In particular
it was concluded that whereas for short-range connections information propa-
gates as a normal diffusion, for long-range connections of a certain type, one
has anomalous diffusion, sub- or super-diffusion depending on the power law
distance-dependence of the connections. The interplay of short and long range
connections and their role on the propagation of information might also be
modelled by a Levy flight scenario.

Networks with long-range connections leading to superdiffusion display prop-
erties very different from scale-free and hub dominated networks. Distance de-
pendent connections are also important for the structure of social and economic
networks [17] [18] [19], for the evolution of epidemics [20] and for the small
world properties of networks [21]. A particular important issue is the relation of
the diffusion rates to the distance-dependence of the connections in real world
networks [22].

Some authors have already studied dynamics on networks involving jumps
over many links or cascades of many unit jumps, leading to anomalous diffusion
(see for example [23] [24] [25] [26] [27]). What here and in the past [16] we
wanted to emphasize is that, rather than imposing a multijump dynamics on
a regular network, anomalous diffusion and other phenomena emerge naturally
as structural properties in networks with long range connections. Hence these
networks might be classified as a new network class, the fractional networks.

The term fractional networks has been used before in the literature (see for
example [28] [29]) to denote networks where the coupling between the nodes fol-
lows a fractional differential equation. Therefore the fractional law is explicitly
included on the dynamics and on the couplings. In contrast, we are here refer-
ring not to fractionally-coupled networks but to networks with non-fractional
couplings, but which nevertheless display fractional dynamics features.

The central phenomena that is studied in this paper is the interplay of
dynamical contributions that, in isolation, would lead either to normal or to
anomalous diffusion. Modeling this by a diffusion equation, with both Lapla-
cian anf fractional Laplacian terms, we find out that even a small amount of



fractionality changes in a very distinct manner the nature of the dynamics, with
much shorter propagation times. This being shown by explicitly displaying the
solutions is then also confirmed by an asymptotic analysis. This is the subject
of Section 3. Section 2 simply sets the notation and definition of fractionality.
Finally in Section 4 we carry out a numerical experiment of propagation of a
signal in networks with several power-law connection laws, comparing it with a
similar propagation in a nearest-neighbor connected network. The importance
of the power law connection law for long range connections is once more put
into evidence.

2 Short vs. long range connections

Consider first a network with only nearest-neighbor connections. The Laplacian
matrix is

L=3G - A, (1)

G being the degree matrix (G;; = 6;;x number of connections of node ¢) and
A the adjacency matrix (A;; = 1 if ¢ and j are connected, A;; = 0 otherwise).
Let v (i) for each node 7 be the intensity of some function v across the network.
For a node i connected along some coordinate to two other nearest neighbor
nodes 7 + 1 and ¢ — 1 the action of the Laplacian matrix on a vector leads
to = (i—1) + 2¢ (i) — ¢ (i + 1), which is a discrete version of —d? (minus
the second derivative). It is reasonable to think that ¢ diffuses from i to j
proportional to v (i) — v (j) whenever ¢ and j are connected. Then,

difi;i) _ _kZAij W () — 9 () = -k z/J(i)ZAij — ZAij¢(j) (2)

which in matrix form is

i B
— kLY =0, (3)

a heat-like equation. Therefore the Laplacian matrix controls the diffusion of
quantities in the network and in the continuous approximation and for short-
range connections the propagation of signals in the network may be represented
by a normal diffusion equation

di

— =kA 4

L= kAy, @
A being the Laplacian in the dimension of the space where the network is
embedded.

However, for long-range connections the situation is different and we fall in

the framework of nonlocal diffusion [30] [31], which is described by an equation

% - /p(x,y)w(y,t) d"y = (z,t) (5)



where p (z,y) is the jumping probability density from y to z and the last term
accounts for jumps from z to all other locations. For networks where the prob-
ability of establishment of a link to a distance d = |z — y| is proportional to a
power of the distance

p(xy)=cle—yl™", (6)

(c being a normalization constant such that }° p(x,y) = 1) it is reasonable to
assume that this is also the probability for the flow of information or activation
between nodes. Then, in the continuous approximation, which we are assuming
applies for the average field in a network with many nodes, the nature of the
nonlocal diffusion is obtained by comparing the functional dependence of the
probability density with the kernel of the the symmetrized Griinwald-Letnikov
representation of the fractional derivative. This was done in [16] (see also the
Appendix). The conclusion is that one obtains fractional diffusion of exponent
B =~v—1, B = 2 being normal diffusion and all § < 2 corresponding to
superdiffusions,
dy 8

&= —k(-a)F . @

Anomalous diffusion and other phenomena [16] emerge naturally as a struc-
tural property in long-range connection networks with distance dependence as
in (6).

3 Mixed diffusion

In the case of networks characterized by a modular hierarchical structure one
has both short and long range connections. This is the structure that occurs
in brain networks and also in some social networks. Whereas in the networks
studied in [16] the uniform scaling law of the connections leads to pure anoma-
lous diffusion, here one faces a mixture of both normal and anomalous diffusion.
This is the central phenomena that is studied in this paper with emphasis on
the nature of the time scales of propagation of information. This is discussed
in the framework of the continuous approximation to the network leading to
a fractional differential equation, which, as stated before, is a reasonable ap-
proximation for very large networks. However it is also found that qualitatively
similar results are obtained even for small discrete networks. This is illustrated
in Section 3.
In the mixed case the diffusion equation will be

W: (ad = b(=2)%) v (z.1), (8)
with x € R”, n being the dimension of the embedding FEuclidean space. Linear
and nonlinear fractional diffusion studies are nowadays very rich mathematical
fields both for functional (see for example [32]) and stochastic analysis [33]. Not
so explored however is their dominant role in networks with a particular type
(power law) of distance-dependence on the intensity of the connections. Here



our concern is to estimate how information propagates in a network and, in
particular, how that depends on the exponent in the distance-dependence of
the connections. Of importance is also the interplay of short and long-range
connections. For this purpose it suffices to consider the propagation of a single
pulse in the linear equation (8).

With the Fourier transform

Dt = [ dav @ pye e, (9)
Eq.(8) becomes N
dy (k, ~
WL (—alkl® ~bIK) T (k1) (10)
with solution _ _ )
B (k, 1) = 0 (k, 0) e~ (el H0IR") (11)

QZ(]C, 0) = 1 corresponds to ¢ (x,0) = 6™ (z), that is, an initial localized distur-
bance at the origin. This is the situation of interest to study the propagation of
information in the network. Computing the inverse Fourier transform one has
the following exact solution in integral form,

(oo}
e pp— 2/ d|k| k|t et alk* oIk
2m)™% Jo

Ja 1 (k| ]x])
(k] z)*

As in the purely fractional multidimensional solution [34] one notices the strong
dependence on the dimension n.

Numerical evaluation of the exact solution (12) shows the remarkable dif-
ference in the speed of propagation of information between normal and mixed
diffusion. For n = 3, Figures 1 and 2 compare the propagation of a delta signal
at (x =0,t =0) to distances x = 10 and 100 for normal and mixed diffusion.
One sees that whereas for normal diffusion it takes a long time for the signal to
be detected at a distance, for mixed diffusion the behavior is qualitatively very
different.

Figures 3 and 4 show that this effect is obtained even with a very small
amount of fractional diffusion.

Some of these effects may also be inferred by direct analytic estimates in
Eq.(12). Let n = 3. Being interested in the large = behavior one sees that the
term J1 (|k||x]), having large sign fluctuations, a stationary phase estimate is
possible. For f = 2 one obtains

2

1 z
Y (z,t) ~ Ee_f (13)

z°

meaning that the signal only starts to be detected when ¢ ~ %

sion). On the other hand for a,b # 0 and 8 =1

zb 1 zb 2_,2,2
b (@1) ~ (COS(%) L a’) o (14)

(normal diffu-
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Figure 1: Comparison of the propagation time of a delta signal at (z = 0,¢
to a distance « = 10 for normal (¢ = 1,b = 0) and mixed diffusion (5 = 1.1
0.7,b=10.3)
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implying ¢t ~ # That is, there is asymptotic ballistic motion for any b # 0.
However, an effect that is not obvious from these asymptotic estimates, but is
observed in the numerical solutions of Eq.(12), is the fact that even for small
times the signal starts to be noticeable when § < 2 and b # 0.

Of course superdiffusion exists only if 3 < 2. For 8 > 2 the behavior would
be practically indistinguishable from normal diffusion. This puts into evidence
the fact that the mere existence of long-range connections does not guarantee
the existence of fractional superdiffusion. That is, a sufficient small density
decay of the long-range connections is required. This is an important hint to be
taken into account on the relation of functional connectivity to brain cognitive
disorders.
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Figure 2: Comparison of the propagation time of a delta signal at (x = 0,¢ = 0)
to a distance x = 100 for normal (¢ = 1,b = 0) and mixed diffusion (8 =
1.1,a=0.7,b=0.3)
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Figure 3: Comparison of the propagation time of a delta signal at (x = 0,¢ = 0)
to a distance « = 10 for normal (¢ = 1,b = 0) and mixed diffusion (5 =1.1,a =

0.9,b=0.1)



Figure 4: Comparison of the propagation time of a delta signal at (z = 0,¢
to a distance = 100 for normal (¢ = 1,0 = 0) and mixed diffusion (

1.1,a=0.9,b=0.1)
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4 Signal propagation in a discrete fractional net-
work: Numerical results

So far we have discussed the diffusion behavior of fractional networks in the
framework of the continuous approximation to the network. Here, by numeri-
cally simulating the propagation of a pulse of information in a discrete network,
we show that the results are qualitatively consistent with those obtained from
the continuous approximation modeled by the fractional differential equations.
We consider 40000 agents (nodes) placed in a two-dimensional 200x200 grid
and establish connections among the nodes with a distance-dependent power-

law distribution
pide_’Y' (15)

Namely, we pick a node at random and establish a connection to another node
at a distance d

log (dh] — Cy)

d= 16
exp T , (16)
y being a random number in the interval [0, 1] and C' a constant
(i — b2
C=—————"=. (17)

v

In Fig.5 we show the pattern of connections, that is, the graphical represen-
tation of the adjacency matrix, for the networks with v = 2, v = 3 and also
for a nearest-neighbor (NN) network. All networks have the same number of
connections, meaning that the sparsity index of the first two networks is 9.95
1075. The topological parameters of the networks are listed in the table,

Network | Size | Avg. Degree | Avg. Path Length | Clustering | Assortiveness
v=2 | 39541 4.02 10.71 0.0667 0.022
vy=3 | 39899 3.99 24.84 0.161 0.041
vy=4 | 39982 3.98 56.08 0.225 0.083

NN 40000 3.98 133.33 0 0.66

For the y—networks the parameters, as well as the signal propagation ex-
periments, are performed for the largest connected component.

To study the signal propagation in the fractional network, we consider, at
time zero, a unit pulse at one node (the source) and study how it propagates
throughout the network until it reaches a distant node (the target). The source
and target nodes are chosen among the most distant ones in the networks,
that is, nodes near diagonally opposite corners, but not exactly at the corners
to avoid boundary effects. It is also important to choose source and target
nodes in the largest connected component of the networks, which we check
using Tarjan’s algorithm [35]. At each time step the pulse is transmitted to
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Figure 5: Connection patterns for network with v = 2 and 3 and a nearest-
neighbor (NN) one. All networks have the same total number of connections
nz. The numbers in the axis are the node labels.

the neighbors of each activated node, with a "no information cycle” condition
being imposed. That is, after a node transmits the pulse to its neighbors it no
longer transmits the same pulse even if it receives it back through some cycle
in the network. In the Fig.6 we show the results of a typical simulation for
networks with v = 2, 3,4 and the nearest-neighbor one. As expected the speed
of transmission diminishes with increasing . Not only is the signal transmitted
much faster in the fractional network, but also its coherent nature is preserved,
instead of being spread over a very large number of distinct times as it might
occur in a sparse random network. Although for v > 3 one might expect from
the continuous approximation to have normal diffusion, one sees that for v =3
and 4 one has much faster propagation that in the nearest-neighbor network.
It means that even a small number of long distance connections may speed-up
the signal propagation.

In these numerical experiments we have studied the arrival of the emitted
pulse rather than the establishment of the diffusion wave in the network!. It
makes sense if one is concerned with the flow of news in the networks. In
the continuous approximation it would correspond roughly to the arrival of the
maximal intensity in the diffusion wave.

LCf. the no information cycle condition.
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Figure 6: Propagation of a unit pulse between two distant nodes for networks
with exponents v = 2, 3,4 and a nearest-neighbor one. The label t is the number
of time steps, different intensities (at the vertical axis) for the target node
meaning that the signal may arrive simultaneously through different paths
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5 Remarks and conclusions

1. As has been experimentally confirmed, existence of long-range connections
between the brain intrinsic connectivity networks (ICN’s) is critical for integra-
tion and interpretation of sensory stimuli and higher cognitive functions. One
view of brain integration and consciousness [36] [37] is based on a percolation
model. For percolation, that is, for the formation of a global cluster, it suffices
that connections exist between the local clusters. However for the establishment
of higher cognitive functions, and in particular in the predictive coding mode,
it is necessary that the interaction between the ICN’s be established at a suffi-
ciently fast rate. Therefore the mere existence of long-range connections is not
sufficient, it also necessary that they have, for example, a power-law dependence
with v < 3.

2. The additional hardware cost of myelinated long-range connections in
the brain is compensated by the integration of information and higher cognitive
functions. Another puzzling additional energetic cost is that, when tested with
fMRI, the resting brain is in fact turbulent and restless [38]. There is a good
reason for that, probably related to speed of reaction. With the operating time
scales of individual neurons and their low average firing rate, pattern recogni-
tion by evolution towards an equilibrium fixed point or minimizing an energy
function would be much too slow for practical living purposes. As has been con-
jectured, for example from the studies of the olfactory bulb [39], a much faster
recognition is achieved by replacing the low-level chaos that exists in the ab-
sence of an external stimulus by, in the presence of a signal, a pattern of bursts
with different intensities in different regions. A network of Bernoulli units [40]
is a model confirmation of this conjecture.

3. Finally, as already discussed in [16], the robustness and controllability
properties of the fractional networks are so very different from the scale-free
networks that they deserve a detailed study. This is relevant not only for brain
functions but also concern the uses and misuses of information flow in the social
networks.

6 Appendix: Power-law long-range connections
and fractional diffusion

For completeness we include here a short derivation of the relation between
power-law long-range connections and fractional diffusion equations, already
discussed in Ref.[16].
Let the probability of a link at distance d be proportional to a power of the
distance
Py =cd;;’ with v < 3.

Consider now a block renormalized network N* where each set of ¢ nearby
nodes in the original network N are mapped to a node of the N* network.
With the block renormalization, the power-law connection probability leads to

12



actual connection strengths in the renormalized network. In the N* network
the connections are

* -

Aij ~ chij ,

with the Laplacian L* and degree G* matrices of the N* network being

L*y (i) = Gip (i) — cq Y di " (j) -
J#i

Compare the distance dependence of the elements of the Laplacian matrix L*
along one of the coordinate axis with a discrete one-dimensional representation
of a fractional derivative. The symmetrized Griinwald-Letnikov representation
of the fractional derivative (@ < x < b) (see [41]) is

DAy (x) = %lim% Z(—l)n<§)w(x—nh)

n=0
(7] 5
+ Y (-1)”( . )w(x—i—nh) , (18)

with coefficients

‘(ﬁ)‘:F(BH)Sin(ﬂB)IF(n—B) L TG+ EB) o

n s F(TL+ 1) n large ™

(19)

and sign g ) = (—1)"*"

Comparing (18-19) with the expression for L*i) (7), the conclusion is that
diffusion in the N* network is fractional diffusion of exponent § =~v—1. § =2
would be normal diffusion, all 8 < 2 corresponding to superdiffusions. Notice
however that the calculations here only lead to a rough estimation of the frac-
tionality index of the networks. A better estimation requires a detailed study of
the nonlocal diffusion equation at asymptotic and intermediate large times [22].
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