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ABSTRACT

Every year, thousands of passengers flying through U.S. airports file claims to the
Transportation Security Administration (TSA). The objective of this dissertation is to
use copulas to model dependencies in counts and severities for TSA claims, during the
years 2007-2015. Initially, monthly claim counts and amounts are aggregated from daily
records, according to their type and site. These monthly series are detrended and fit
into different probability distributions using Maximum Likelihood Estimation (MLE), to
obtain the corresponding parameters.

Once the marginal distributions are obtained, it is possible to fit them into different
bivariate copulas. These bivariate copulas are used to determine different tail dependence
measures and to highlight non-linear dependencies between the variables. The final proce-
dure involves fitting multivariate copulas and performing simulations. These simulations
contrast risk measures like monthly Value at Risk (VaR) and Tail Value at Risk (TVaR)
estimates for the different copulas used, along with the independence case and historical
values.

The results show modelling claims with copulas can yield higher risk measures than
the historical values, for random variables with heavy-tailed distributions. The choice
of the copula used is also important in this sense, as different copulas generate different
simulated risk measures. All of the data processing and modelling is performed using
different open source Python libraries.

KEYWORDS: Copulas; Risk Modelling; Airport Claims; Dependencies
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1 INTRODUCTION

Every day, the TSA screens more than 2 million passengers in the U.S.. These screen-
ings involve security checkpoints for passengers, luggage scans, among others. Passen-
gers may file a claim if they are injured, and if their property is lost or damaged during
the screening process. These claims fall under different types and occur not just in differ-
ent airports, but also in different sites within each airport. Thus, each claim type can be
viewed through different random variables, with their own probability distributions that
model claim severity and frequency.

The objective of this dissertation is to model the TSA claim counts and severities
using copulas. This procedure involves two main steps. The first step is to determine
the best parametric distribution for each individual claim frequency and severity random
variables. Afterwards, these marginal distributions are incorporated into different copulas,
that model the non-linear claim dependencies. This methodology is different than the
traditional risk model approach, which assumes independence between claim counts and
severities.

Through the use of copulas, it is possible to identify that checked baggage claim
counts and severities have upper tail dependence, for example. Furthermore, the copu-
las are used to simulate more sensitive estimates of risk measures like VaR and TVaR.
These copula-based estimates are then contrasted with the historical values, along with
the independence case. Thus, this dissertation also presents a practical component in
terms of loss reserving using copulas.

The results show modelling claims with copulas can yield higher risk measures than
the historical values, in the case of random variables modeled with heavy-tailed distribu-
tions. The simulated risk measures also show sensitivity to the type of copula used. All
of the data transformation and modelling is performed with open source Python libraries.
The general outline of this work is as follows.

Chapter 2 consists of a theoretical overview of copulas, including applications for
modelling claim dependencies. Chapter 3 is dedicated to reviewing the TSA database,
and the data transformation that allows the modelling of claim dependencies. Chapter
4 presents the univariate data analysis, first for the claim types, and then for the claim
sites. Chapter 5 focuses on the copulas used to model the TSA claims, presenting the
main results obtained in terms of tail dependence and the simulations performed. Lastly,
Chapter 6 presents the main conclusions.
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2 LITERATURE REVIEW

There are various approaches in actuarial science for modelling claim counts, sever-
ities, and dependencies between different types of risk. In the case of claim counts and
claim amounts for a given risk, traditional risk theory assumes independence among these
variables (see Valdez (2014)). This approach can involve modelling claim frequency and
severity through separate Generalized Linear Models (GLM), as covered in Frees et al.
(2016). The issue with the independence assumption is that risks often have common
elements, or dependencies, which can jointly affect their distributions. Dorey & Joubert
(2005) provides a theoretical overview of how dependencies can be modelled.

Thus, copulas may be used to model the dependence structure between different types
of risks, as well as between claim counts and claim severities. From the most basic def-
inition, copulas can be regarded as functions that join multivariate distribution functions
to their one-dimensional marginals (Nelsen (2006)). Specifically, a n-dimensional copula
C is a multivariate distribution function on the n-dimensional hyper-cube [0, 1]n with uni-
formly distributed marginals, per Czado (2018). This can be formalized in the following
way:

C(u1, u2, ..., un) = Pr(U1 ≤ u1, U2 ≤ u2, ..., Un ≤ un) (1)

where U1, U2, ..., Un are n uniform random variables on (0,1) and their joint distribution
function is represented by the copula C(u1, u2, ..., un).

The flexibility of copulas is that they also allow for applications in data that is not uni-
formly distributed. According to Sklar (1973), if G is an n-dimensional joint distribution
function with 1-dimensional margins F1, F2, ..., Fn, then there exists a copula function C
from the unit cube to the unit interval such that:

G(x1, x2, ..., xn) = C(F1(x1), F2(x2), ..., Fn(xn)) (2)

for all real n-tuples of the random variables x1, x2, ..., xn

This is the definition that will be used in this dissertation. The copula contains in-
formation about the structure of the dependency in a standardized form across the unit
square, while the marginal distributions help to characterize individual risks (Hochrainer-
Stigler et al. (2018)). Thus, this approach to modelling claim dependencies essentially
consists of two parts.

The first part involves determining the appropriate marginal distribution for each risk
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that will be modelled. This includes a parametric estimation of different pre-defined sta-
tistical distributions, using MLE for the estimation of the corresponding parameters. A
clear example of this procedure can be found in Omari et al. (2018). The authors selected
different statistical distributions and fit them to automobile claims. A similar procedure
will be shown in Chapter 4.

The second part involves selecting and fitting a copula for these marginal distributions.
Manner (2007) provides a concise overview of different copulas belonging to the elliptical
and Archimedean families. Since the copulas being considered are parametric families of
functions, the process of fitting also involves parameter estimation and goodness-of-fit
testing. For two dimensional copulas, Vandenberghe et al. (2010) demonstrates how to
estimate parameters through Canonical Maximum Likelihood (CML). Chapter 5 will be
dedicated to this analysis.

In the case of copulas with higher dimensions, Oh (2014) includes a general theoret-
ical overview of copula parameter estimation using composite likelihood estimation. An
application of composite likelihood to estimate the parameters of a multivariate Gaussian
copula can be found in Shi et al. (2016). Meanwhile, Hofert et al. (2012) present the like-
lihood estimation for the parameters of high dimensional Archimedean copulas. In this
dissertation, the parameter estimation for higher dimensional copulas was done by MLE,
using the Copulae Python library, developed by Bok (2019).

Once the parameters have been estimated, either for the bivariate or the high dimen-
sional case, copulas provide a flexible framework to analyze the dependence structure of
different variables. In the simplest case, copulas allow for the exploration of asymptotic
tail dependence, as the association of variables may be stronger at the tails and go beyond
correlation (Shemyakin et al. (2019)). A summary of asymptotic tail dependence, espe-
cially of non-parametric estimation, is presented by Ferreira (2013). Furthermore, Nelsen
(1997) includes a comprehensive deduction of asymptotic tail dependence coefficients for
Archimedean copulas. Such measures are presented with more detail in Chapter 5.

Other applications of modelling dependencies with copulas include the use of simu-
lations. Aussenegg & Cech (2012) used copulas to simulate returns for different financial
assets, obtaining non-parametric estimates of a portfolio’s VaR. A similar application can
be found in Cheng et al. (2007), where the authors used copulas to simulate risk measures,
like VaR, for the Chinese stock market. Brechmann et al. (2013) provides a more general
deduction of conditional simulations using elliptical and Archimedean copulas. Chapter
5 is dedicated to presenting the results from similar simulations using the TSA data.

It is important to highlight some alternative approaches within the copula framework,
such as the use of vine copulas. This approach utilizes a pair-copula construction, to

3
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decompose multivariate density into products of conditional densities, known as vines
(Czado (2018)). While vine copulas are beyond the scope of this dissertation, Haff et al.
(2010) provide a thorough introduction into pair-copula constructions. An application of
vine copulas can also be found in Hernández et al. (2016), who estimated asymptotic tail
dependencies between different macro-economic sectors.

Another alternative approach is the use of copula regressions, which apply the prin-
ciples of GLM regressions into the copula framework. Ding (2015) presents a compre-
hensive overview of copula regressions, while Masarotto & Varin (2017) focus on the
computational estimation of Gaussian copula regressions. An application of copula re-
gressions for insurance claim counts can be found in Safari-Katesari & Zaroudi (2020).

The different methodological approaches presented above demonstrate the flexibility
of the copula framework. This dissertation will focus on parametric copula estimation,
using conditional simulations to calculate risk measures for the monthly severity of dif-
ferent claim types and sites. The next chapter describes the TSA database, detailing the
methods used to process it.

4



ROBERTO CARCACHE FLORES ACTUARIAL SCIENCE DISSERTATION

3 METHODS AND DATA

This chapter describes the TSA database and the methods used to process it. In the
first section, a general introduction to the database is provided. The second section details
the sample that was used for this dissertation, along with statistics for key variables. The
third section deals with the aggregation of daily claim records into monthly series. In the
final section, an overview of the detrending process of the aggregated series is given.

3.1 Introduction to the database

The main database compiles different records of TSA claims, published by the Depart-
ment Department of Homeland Security (2019). This database is comprised of 204,262
claims made during the years 2002-2015. Each claim includes the following 11 variables:

1. Claim number: a unique identifier for each claim.

2. Date received: the date the claim was received by the TSA.

3. Incident date: the date the claim incident took place.

4. Airport code: a code for the airport where the incident took place.

5. Airport name: the name of the airport where the incident took place.

6. Airline name: the name of the passenger’s airline.

7. Claim type: a categorical label used by the TSA to identify the type of claim.

8. Claim site: a categorical label used by the TSA to identify the site within the airport
where the claim took place.

9. Item: a written description of the passenger’s item that was damaged or lost.

10. Close amount: the monetary amount the TSA agrees to pay for the claim, should
the claim be fully or partially paid.

11. Disposition: this is the status of the claim, specifying if it will be paid in full,
settled, or denied.

The close amount is the target variable for this dissertation, in order to model claim
severity. This variable is closely related to the claim disposition, as claims that were
rejected had zeros or were left blank. Figure 1 presents a breakdown of all claims by their
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disposition. We can see most claims are denied, approximately 47%. The claims that
were approved in full and settled represented around 40% of all claims. The remaining
claims, shown in purple, were missing values. Therefore, a subset of the claims approved
in full and settled will be taken, as these represent the claims paid by the TSA.

FIGURE 1: TSA claims by disposition

The removal of claims that were denied is justified, since the objective of this disser-
tation is not to use this data for rate-making purposes, but to study the dependencies of
the claims that were paid. Additionally, from a technical standpoint, this is also feasible
as this is a very big database. The following subsection details the characteristics of this
sample and provides statistics of key variables.

3.2 Details on the main data subset used

The subset generated for the claims paid by the TSA includes a total of 81,107 obser-
vations. The first key variable that will be analyzed is the close amount paid by the TSA.
This series had to be cleaned, using Python, as it included unwanted characters like semi-
colons and dollar signs. A histogram is presented in Figure 2 of all the close amounts,
along with a table with some general statistics.

It is important to remark that Figure 2 is truncated for aesthetic purposes, as there are
very low frequencies for close amounts above $2000. Furthermore, it is also possible to
appreciate the high dispersion for this data, as the coefficient of variation is approximately
3.80. The range for the data is also very high. Notice how the mode of the claims is $50,
but the maximum amount the TSA paid to a passenger was $125000.

6
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Statistic Value in USD

Minimum 0
Maximum 125,000

Mean 199
Median 80

Standard Deviation 755
Mode 50

FIGURE 2: Histogram and descriptive statistics of daily close amounts paid

These close amounts can be broken down into claims by type, or by site. Figure 3
illustrates the distribution of claims by type. Most claims fall into the passenger property
loss and property damage claim types. In fact, these two claim types represent approxi-
mately 94% of all claims for the data subset used.

FIGURE 3: TSA claims by type for the data subset used

7
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A similar result occurs when plotting the TSA claims by site in Figure 4, as most
claims take place in the checked baggage and security checkpoint claim sites. These sites
represent approximately 98% of all claims in the subset.

FIGURE 4: TSA claims by site for the data subset used

The following section is dedicated to explaining the aggregation procedure for obtain-
ing claim counts and severities, using the close amounts of the two main claim types and
sites, shown in Figures 3 and 4, respectively.

3.3 Monthly aggregation of claim counts and severities

The aggregation process consists initially in formatting the received dates on Python,
and then aggregating close amounts from daily to monthly records. This is done twice for
each target variable. First, the aggregation is done using sums, in order to obtain the claim
severities for the defined period. Then, the aggregation is performed using frequencies, to
obtain the number of claims for each month. The data allows for monthly records, starting
from January, 2003 until December, 2015; a total of 156 months.

This aggregation generates the following variables: Property Damage Claim Counts
(PDX), Property Damage Claim Severity (PDS), Property Loss Claim Counts (PLX),
Property Loss Claim Severity (PLS), Checked Baggage Claim Counts (CBX), Checked
Baggage Claim Severity (CBS), Security Checkpoint Claim Counts (CPX), and Security
Checkpoint Claim Severity (CPS). The plots in Figure 5 show the counts for the claims
by type, followed by the claims by site. We can observe that property loss and property

8
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damage claim counts are closely related. This is not the case for the claim counts by site,
as the checked baggage claims are clearly higher until around 2008.

(a) Counts by type (b) Counts by site

FIGURE 5: Monthly TSA claim counts from 2003-2015

Table I includes some descriptive statistics for the aggregated claim counts using the
abbreviation presented earlier. It confirms the clear differences in scale of the checked
baggage and security checkpoint claims. The table also shows the similarities between
the two claims types, as illustrated in Figure 5(a). In the case of the aggregated claim
counts, none of the series have a coefficient of variation above 1.

Statistic PDX PLX CBX CPX

Minimum 15.0 14.0 14.0 14.0

Maximum 873.0 1007 1670.0 337.0

Mean 229.7 255.4 388.1 120.9

Standard Deviation 182.1 208.6 377.3 56.0

Coefficient of Variation 0.79 0.82 0.97 0.46

Skewness 1.70 1.29 1.55 0.98

Kurtosis 2.17 0.82 1.39 1.38

TABLE I: Descriptive statistics for aggregated TSA claim counts

One potential issue with these aggregated series, is the clear trend component that is
observed for all of the claim counts. This may be due to changes in how the claims were
registered, as there were inconsistencies in the database from 2009 onward, in compari-
son to the previous years. This trend component is addressed in the final section of this
chapter.

Figure 6 shows the aggregate severities obtained for the claims by type, followed by

9
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the claims by site. All of the series are given in U.S. dollars. There is less of a difference
when it comes to the severities of the two claim sites. The graph also shows a clear
negative trend component for all series.

(a) Severities by type (b) Severities by site

FIGURE 6: Monthly TSA claim severities in USD from 2003-2015

Table II highlights some descriptive statistics for all of the aggregate claim severities
and illustrates the real cost incurred by the TSA during this period. For example, in the
case of the property damage claims, the TSA paid an average $43,393.38 per month to
settle property damage claims. This sum is $520,720.56 per year.

Statistic PDS PLS CBS CPS

Minimum 4465.96 2033.88 1964.96 4121.36

Maximum 133835.07 196328.29 261424.43 137850.99

Mean 43393.38 45801.33 59298.65 37450.70

Standard Deviation 23012.96 41028.61 59463.31 18528.23

Coefficient of Variation 0.53 0.90 1.00 0.49

Skewness 1.40 1.50 1.70 1.35

Kurtosis 2.80 1.64 2.05 4.96

TABLE II: Descriptive statistics for aggregated TSA claim severities

It is important to note that the claims by type will be separated from those by site
when modelling. This is done to prevent double counting, especially when it comes to
calculating risk measures. The next section summarizes the detrending process used for
all the series.

10



ROBERTO CARCACHE FLORES ACTUARIAL SCIENCE DISSERTATION

3.4 Overview of claim detrending process

As discussed in the previous section, all of the claim counts and severities exhibited
a negative trend component. This trend was corrected using a polynomial detrending
method. The method consists in setting up a linear regression, and uses exponentiated
time indexes (t) to estimate the values of an indexed variable, ỹ. For this detrending
process, a third order exponentiated time index is used in the regression:

ỹ = α0 + α1t+ α2t
2 + α3t

3 + ε (3)

where each αj=0,1,2,3 represents a coefficient and ε is an error term.

The detrended series are obtained by subtracting these estimates from the observed
values, i.e. y − ỹ. In practice, this was done on Python using the scikit-learn library,
developed by Pedregosa et al. (2011). A visual example is shown in Figure 7 of how the
property damage counts are detrended. The yellow line, shown in Figure 7(a), is the trend
obtained through equation (3). The detrended counts, shown in Figure 7(b), represent the
difference between the observed values and the trend.

(a) Detrending process (b) Detrended property damage counts

FIGURE 7: Illustration of detrending process for property damage counts

This explains why there are negative values in the detrended series, a drawback of this
method. It is less intuitive to estimate risk measures for detrended severities, for example,
as these do not represent monetary values, just trend deviations. Therefore, results for
both the raw and detrended claims will be presented from now on. Additionally, for a
statistical summary of all the detrended series, see Appendix A.

11
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4 UNIVARIATE DATA ANALYSIS

This chapter is dedicated to univariate data analysis, particularly the process used
to determine the marginal distributions for the claim counts and severities. First some
preliminaries to the main data analysis are presented.

4.1 Preliminaries

As highlighted in the literature review, this dissertation looks to fit predefined marginal
distributions into different copulas. To determine the best marginal for each variable, the
process of fitting distributions was facilitated through the use of SciPy, a Python library
developed by Virtanen et al. (2020). The fit process with MLE is detailed in Omari et al.
(2018) as follows.

Suppose X1, X2, .., Xn is a random sample of independent and identically distributed
observations drawn from an unknown population. Let X = x denote a realization of a
random variable or vector X, with probability mass or density function f(x; θ); where θ is
a vector or a scalar of unknown parameters which will be estimated. The likelihood func-
tion L(θ), is the probability mass or density function of the observed data x, expressed as
a function of the unknown parameter(s) θ.

Given that X1, X2, ..., Xn have a joint density function f(X1, X2, ..., Xn|θ) for every ob-
served sample of independent observations {xi=1,2,...,n}, the likelihood function is defined
by:

L(θ) = L(θ|x1, x2, ..., xn) = f(x1, x2, ..., xn|θ) =
N∏
i=1

f(xi|θ) (4)

The maximum likelihood estimate θ̃ of parameter(s) θ is obtained through maximizing
the likelihood function L(θ):

θ̃ = argmax
θ
L(θ) (5)

Since the logarithm of the likelihood function is a monotonically non-decreasing function
of X, maximizing L(θ) is equivalent to maximizing the log of the likelihood function
lx(θ), given by:

lx(θ) = logL(θ) = log
N∏
i=1

f(xi|θ) =
N∑
i=1

log f(xi|θ) (6)

12
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Once the parameters are estimated for different distributions, these distributions are
compared using the χ2 test for the goodness-of-fit (see page 475 of Klugman et al. (2008)).
Under the null hypothesis of the test, the data follows the specified distribution that is
being tested. To compute the χ2 test, the data is grouped into k bins or classes. The test
statistic is defined as:

χ2 =
k∑
j=1

(Ej −Oj)
2

Ej

a∼ χ2
(k−1−v) (7)

where j = 1, 2, ..., k represent predetermined bins, Oj is the observed frequency in the
data for bin j, and Ej is the expected frequency for bin j, given by:

Ej = N(F (XU)− F (XL)) (8)

where F is the cumulative distribution function for the distribution tested,XU is the upper
bound for bin j, XL is the lower bound for bin j, and N is the sample size.

Under the null hypothesis, the test statistic is asymptotically distributed as a χ2 dis-
tribution. Thus, the critical value for the test comes from upper tail of the χ2 distribution
with k − 1− v degrees of freedom, where k is the total number of bins, and v is the total
number of parameters for the distribution being tested. This test is sensitive to the choice
of the bins selected. For this dissertation, 20 bins were selected using a quantile based
approach; see Appendix 2 for more details on this procedure.

4.2 Demonstration of marginal selection process for property damage claims

The objective of the marginal selection process is to find the distributions that best
model different series. To illustrate the selection process, an example will be done with
the raw property damage claims, depicted in Figure 8.

FIGURE 8: Histogram of property damage counts
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A Python loop is used to test 8 different distributions, including the Poisson, Negative
Binomial, Geometric, and Binomial. This loop estimates parameters, using a SciPy MLE
optimizer proposed by Haberland (2020) specific to discrete distributions. Then, the χ2

statistic from equation (7) is calculated for a distribution with these estimated parameters,
along with its p-value1.

Table III summarizes the results for the property damage counts, including notation
for the Probability Mass Function (PMF) of four distributions tested, and the estimated
parameters. The four discrete distributions are poor fits, as all they have p-values of zero.
For the purposes of this work, the distribution with the lowest χ2 statistic will be used,
although future research could include exploring mixture distributions to find better fits.
This was not expanded upon as the purpose of this dissertation is to model dependencies
and simulate risk measures which focus on the claim severities.

Distribution SciPy PMF notation Parameter(s) χ2 statistic p-value

Poisson f(k) = exp(−µ)µ
k

k!
µ = 526.31 2015.36 0.00

Geometric f(k) = (1− p)k−1p p = 0.0003 1429.73 0.00

Binomial f(k) =
(
n
k

)
pk(1− p)n−k

n = 323220;
p = 0.0007

1344.43 0.00

Negative Binomial f(k) =
(
k+n−1
n−1

)
pn(1− p)k

n = 2.14;
p = 0.01

110.52 0.00

TABLE III: Parametric estimation of distributions for raw property damage counts

Figure 9 shows a histogram for the property damage counts in light blue. The bins or
intervals from this histogram, are then used to obtain the probabilities for the distributions
from Table III. The Negative Binomial, shown in blue, seems to be a relatively better fit
to the observed, than the other distributions. For example, the Poisson distribution prob-
abilities center around an interval of 400-600 claims, which is a poor fit to the observed.
The Binomial distribution, meanwhile, has a similar behavior as its probabilities center
around an interval of 150-250 claims, showing it is also a very poor fit to the observed.

1The complete code used for this process and for the dissertation is available in this repository: https:
//github.com/rcarcacheflores/ISEG-Dissertation

14

https://github.com/rcarcacheflores/ISEG-Dissertation
https://github.com/rcarcacheflores/ISEG-Dissertation


ROBERTO CARCACHE FLORES ACTUARIAL SCIENCE DISSERTATION

FIGURE 9: Distribution comparison of property damage counts

A similar procedure is used for the severity series, making use of the built-in SciPy

optimizer to test 27 continuous distributions. The results are presented in Table IV.2

The table shows the four continuous distributions with the lowest χ2 statistic, but only the
Log-Laplace and Johnson SU distributions are statistically significant at a 1% significance
level:

Distribution Parameter(s) χ2 statistic p-value

Log-Laplace
c = 2.48;

S = 37891.93
23.73 0.095

Johnson SU
a = −2.88; b = 2.44

S = 27045.30
26.68 0.031

Generalized Logistic
c = 8.71

S = 16070.20
34.66 0.004

Lognormal
s = 0.59;

S = 37495.36
36.82 0.003

TABLE IV: Parametric estimation of distributions for raw property damage severities

Figure 10 shows the densities for severity values ranging from 0 to 200000, for each
distribution presented in Table IV, and compares them with the original. The Log-Laplace
distribution, shown in red, mirrors the peak density of the property damage severity.

2See Appendix 3 for an exhaustive presentation of the distributions used with SciPy notation
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FIGURE 10: Distribution comparison of property damage severities

This example shows the general procedure used to perform the univariate data analy-
sis. The next section summarizes these findings for all the claims by type.

4.3 Results for the univariate analysis of claims by type

After performing the selection process, the best fit marginal distributions for the raw
claim types are presented in Table V. This table shows only the distributions found for
the severities were good fits at a 1% significance level. Both claim count series are best
modelled with Negative Binomial distributions, at least in comparison to the discrete dis-
tributions tested.

Variable Best fit Parameter(s) χ2 statistic p-value

PDX Negative Binomial
n = 2.14;
p = 0.01

110.52 0.00

PLX Negative Binomial
n = 1.76;
p = 0.007

97.06 0.00

PDS Log-Laplace
c = 2.48;

S = 37891.93
23.73 0.11

PLS Lognormal
s = 0.91;

S = 31402.12
29.39 0.02

TABLE V: Parametric estimation of distributions for raw claims by type

Figure 11(b) shows the two distributions fit for the claim severities, while the discrete
distributions used for the counts are shown in Figure 11(a). The Log-Laplace distribution,
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used to model property damage severity, has a heavier tail than the Lognormal distribution
used for property loss severity.

(a) Distributions for raw counts by type (b) Distributions for raw severity by type

FIGURE 11: Best fit distributions for raw claims by type

These results will now be contrasted by fitting distributions for the detrended claims
by type. The only difference in the Python loop programmed for the detrended claims,
is the inclusion of a location parameter for all the continuous distributions tested. This is
done to allow for distributions with supports containing negative values. As before, the
selection criteria is the χ2 test with (20− 1− v) degrees of freedom.

Table VI summarizes the best fits for the detrended claims by type. The shapes of
these estimated distributions are visualized in Figure 12. Overall, detrending the claim
types yields distributions with good fits, according to the χ2 test. The distributions used
to model detrended property loss counts and severity have heavier tails, compared to those
distributions used for property damage.

Variable Best fit Parameter(s) χ2 statistic p-value

DPDX Student t
df = 2.33;L = 0.60;

S = 45.41
17.33 0.36

DPLX NCT
df = 4.96;nc = 0.16;
L = −16.63;S = 89.65

19.64 0.19

DPDS Johnson SU
a = 0.11; b = 1.05;

L = 1211.59; S = 9305.03
13.45 0.56

DPLS NCT
df = 2.36;nc = 0.66;

L = 11186.73;S = 11886.15
17.11 0.31

TABLE VI: Parametric estimation of distributions for detrended claims by type
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(a) Distributions for detrended counts by
type

(b) Distributions for detrended severity by
type

FIGURE 12: Best fit distributions for detrended claims by type

As for the best fit distributions, the Student t and the Noncentral Student t distribution
(NCT), were studied by Choi & Yoon (2020) for their use in modelling equity linked
securities, which also have positive and negative values.

4.4 Results for the univariate analysis of claims by site

The same procedure from Section 4.3 is applied to the claims by site. Table VII
summarizes the best fits found for the raw claim sites. The fits are poor according to the
χ2 test, except for the Log-Laplace distribution used to model the Security Checkpoint
Severity.

Variable Best fit Parameter(s) χ2 statistic p-value

CBX Negative Binomial
n = 1.40;
p = 0.004

147.49 0.00

CPX Negative Binomial
n = 4.68;
p = 0.037

47.83 0.00

CBS Log-Laplace
c = 1.41;

S = 30811.30
47.56 0.00

CPS Log-Laplace
c = 2.47;

S = 34138.79
21.37 0.16

TABLE VII: Parametric estimation of distributions for raw claims by site

Figure 13 shows the Log-Laplace distribution, used to model the checked baggage
severity, has a heavier tail than the Log-Laplace distribution used for the security check-
point severity.
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(a) Distributions fit for raw counts (b) Distributions fit for raw severity

FIGURE 13: Best fit distributions for raw claims by site

The last step of this chapter is to verify these results for the detrended claims by site,
using the methods highlighted in Section 4.3. Table VIII summarizes the best distributions
fit for the detrended claims by site. All of the distributions are good fits according to the
χ2 test at a 1% significance level.

Variable Best fit Parameter(s) χ2 statistic p-value

DCBX Hyperbolic Secant
L = 1.52;
S = 106.49

32.21 0.01

DCPX NCT
df = 3.89;nc = −0.51;
L = 12.84;S = 20.32

11.44 0.72

DCBS Student t
df = 2.22;L = −1857.89;

S = 15819.19
16.82 0.42

DCPS Double Gamma
a = 2.21;L = −1857.88;

S = 15819.19
16.82 0.39

TABLE VIII: Parametric estimation of distributions for detrended claims by site

Meanwhile, Figure 14 illustrates the considerable differences between these distribu-
tions. Notice how the checked baggage counts and severity distributions have heavy tails,
in comparison to those distributions of the security checkpoints. This makes sense as
there are also clear differences in the observed values of these series (recall Figure 6(b)).
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(a) Distributions for detrended counts by
site

(b) Distributions for detrended severity by
site

FIGURE 14: Best fit distributions for detrended claims by site

Overall, these results suggest detrending the series facilitates finding good distribution
fits, for both the claim types and sites. This insight on the marginal distributions of all
these series is carried on to the next chapter. The marginals obtained are used in bivariate
and higher dimensional copulas, to model claim dependencies by type and by site.
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5 MODELS FOR CLAIM DEPENDENCE

This chapter presents the copulas used to model the claim dependencies for the TSA
database. The first section is dedicated to preliminary definitions, mainly related to the
formulation of asymptotic tail dependence coefficients. The second and third sections
summarize the results obtained using bivariate copulas for the claims by type and by site,
respectively. The main simulation results for the multivariate copulas (n > 2 dimensions)
for the claims by type are included in section 4, while those for the claims by site are
shown in the final section.

5.1 Preliminary definitions

As highlighted in Chapter 2, one of the most immediate uses of copulas is the estima-
tion of asymptotic tail dependence coefficients. Upper tail dependence relates to depen-
dence in the upper-right-quadrant of a bivariate distribution, while lower tail dependence
takes place in the lower-left-quadrant. Frahm et al. (2005) provides the following general
definition for both measures.

Let (X, Y ) be a random pair with joint cumulative distribution function F , along with
marginals G(X) and H(Y ). The UTDC, provided this limit exists, is given by:

λU = lim
t→1−

P{G(X) > t|H(Y ) > t} (9)

Meanwhile, Lower Tail Dependence Coefficient (LTDC) follows a similar deduction:

λL = lim
t→0+

P{G(X) ≤ t|H(Y ) ≤ t} (10)

These coefficients estimate the probability that one margin exceeds a high or low
threshold under the condition that the other margin exceeds a high or low threshold. Two
variables are said to be upper tail dependent if λU > 0 and upper tail independent if
λU = 0. The same logic applies to lower tail dependence. As we are modelling claims,
more emphasis will be placed on estimating upper tail dependence coefficients.

These definitions can also be expressed in copula notation. If the copula C defines
the joint distribution of these two variables such that F (x, y) = C(G(X), H(y)); then the
upper tail dependence is given by:

λU = lim
t→1−

1− 2t+ C(t, t)

1− t
(11)
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These coefficients can be estimated empirically through the use of the empirical cop-
ula 3. This process requires the selection of a threshold or quantile ( k

N
), which can be

optimized as shown by Frahm et al. (2005), or be selected a priori. Computationally,
the estimation of both the optimal and empirical tail coefficients is available in the Pycop

library, developed by Nicolas (2021).

Furthermore, parametric estimates of the tail dependence coefficients can also be
made, depending on the copula used to model the joint distribution. For example, in
the case of the Archimedean copulas used in this chapter, the Clayton copula only has a
LTDC, while the Gumbel copula only has an UTDC. The next section presents the results
for the bivariate copulas used to model the TSA claims by type.

5.2 Bivariate copulas for claims by type

The first test performed is estimating the empirical UTDC for different pairs of raw
claim types. For example, the first pair includes property damage and property loss
counts. This pair will be denoted as C̃(Fe(PDX), Fe(PLX)), where C̃ is the empirical
copula, and Fe are the empirical distributions of each random variable. For these claim
types, a threshold of k

N
= 0.90 will be used to find the upper tail dependence coefficients.

This threshold is selected as there are relatively few observations for each variable,
and choosing a higher threshold may yield unreliable UTDC, per Frahm et al. (2005).
For example, Figure 15 plots the UTDC for C̃(Fe(PDX), Fe(PLX)) using different
thresholds ( k

N
). Notice how from around the 92% quantile, the UTDC becomes unstable,

which may be due to a low number of observations in the data for these quantiles.

FIGURE 15: Empirical UTDC for C̃(Fe(PDX), Fe(PLX))

3See Appendix 4 for a complete formulation of the copulas used and their tail dependence coefficients
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Table IX summarizes the UTDC obtained with k
N

= 0.90 for these claim type pairs.
This table indicates the property damage counts and severities have a high UTDC of 0.91.
In the case of the property loss counts and severities, the two variables have strong upper
tail dependence with an UTDC of 0.97.

Empirical Copulas Empirical UTDC

C̃(Fe(PDX), Fe(PLX)) 0.6538

C̃(Fe(PDS), Fe(PLS)) 0.7179

C̃(Fe(PDX), Fe(PDS)) 0.9102

C̃(Fe(PLX), Fe(PLS)) 0.9743

TABLE IX: Empirical upper tail coefficients for each copula pair of raw claim types

The next step is to compare these results by finding the best parametric copulas Cp,
to model the marginal distributions found in Table V of Chapter 4, denoted Fp, for each
random variable. The selection process of the best fitted copula is done using the copulas

library, developed by Alvarez et al. (2018). This library compares the fit of copulas from
the Archimedean family, while also testing against the independence case.

The results obtained for these variable pairs are summarized in Table X. All of the
pairs are best modelled with Gumbel’s copula, which has upper tail dependence, confirm-
ing the results from Table IX. The only diverging result is the copula for property damage
and property loss severities, best modelled by Clayton’s copula, which only has lower tail
dependence. In future research, copulas with both upper and lower tail dependence could
be tested to verify if this may explain this result.

Parametric Copulas Best Fit Parameter (θ) LTDC UTDC

Cp(Fp(PDX), Fp(PLX)) Gumbel 3.5358 0 0.7834

Cp(Fp(PDS), Fp(PLS)) Clayton 3.4264 0.8168 0

Cp(Fp(PDX), Fp(PDS)) Gumbel 4.0587 0 0.8137

Cp(Fp(PLX), Fp(PLS)) Gumbel 6.3517 0 0.8847

TABLE X: Summary of bivariate copulas modelled with marginals for raw claim types

Figure 16 visualizes the densities in three dimensions for the copulas from Table X.
This plot helps to visualize the dependence structure for these Archimedean copulas.
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(a) Copula for PDX and PLX (b) Copula for PDS and PLS

(c) Copula for PDX and PDS (d) Copula for PLX and PLS

FIGURE 16: Densities for bivariate copulas modelling raw claim types

These results will now be contrasted for the detrended claims by type. Table XI shows
the UTDC at the 90% quantile for the detrended claims. The results for the detrended
claims also show strong tail dependence for the property loss counts and severities. In
the case of detrended property damage counts and severities, the UTDC is lower than the
coefficient found in Table IX.

Empirical Copulas Empirical UTDC

C̃(Fe(DPDX), Fe(DPLX)) 0.5897

C̃(Fe(DPDS), Fe(DPLS)) 0.4615

C̃(Fe(DPDX), Fe(DPDS)) 0.6538

C̃(Fe(DPLX), Fe(DPLS)) 0.8461

TABLE XI: Empirical upper tail coefficients for each pair of detrended claim types

Table XII summarizes the best fit copulas used to model these detrended claim types,
after incorporating the marginals from Table VI. These results differ from those found
in Table XI, as the detrended property loss counts and severities are best modelled with
Clayton’s copula, which has lower tail dependence.
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Parametric Copulas Best Fit Parameter (θ) LTDC UTDC

Cp(Fp(DPDX), Fp(DPLX)) Clayton 2.0748 0.7159 0

Cp(Fp(DPDS), Fp(DPLS)) Gumbel 1.6089 0 0.4615

Cp(Fp(DPDX), Fp(DPDS)) Gumbel 2.4345 0 0.6706

Cp(Fp(DPLX), Fp(DPLS)) Clayton 6.5805 0.9000 0

TABLE XII: Summary of bivariate copulas modelled for detrended claim types

These findings are explored with more detail in Figure 17. This plot visualizes the
dependence structure of the first Clayton’s copula, used to model the two detrended claim
counts by type (Cp(Fp(DPDX), Fp(DPLX))). The observed values from the paramet-
ric marginals of these detrended counts, are shown in red. This plot illustrates the lower
tail dependence of the marginals is effectively modelled with Clayton’s copula.

FIGURE 17: Simulated and observed values for Cp(Fp(DPDX), Fp(DPLX))

Although the results changed for the detrended claim types, in comparison to the raw
claims, the most important finding is that all the variable pairs show some form of tail
dependence. This confirms the importance studying non-linear dependence structures
between different types of risks such as these ones.

5.3 Bivariate copulas for claims by site

The first step is to calculate the empirical UTDC. This was estimated for a threshold
of k

N
= 0.89, as there were fewer observations for higher quantiles in the case of the claim

sites. Table XIII summarizes these results. This table shows the checked baggage counts
and severities have the strongest tail dependence with a probability of 0.95. The rest of
the variable pairs have similar coefficients with probabilities around 0.60-0.66.

25



ROBERTO CARCACHE FLORES ACTUARIAL SCIENCE DISSERTATION

Empirical Copulas Empirical UTDC

C̃(Fe(CBX), Fe(CPX)) 0.6596

C̃(Fe(CBS), Fe(CPS)) 0.6013

C̃(Fe(CBX), Fe(CBS)) 0.9510

C̃(Fe(CPX), Fe(CPS)) 0.6596

TABLE XIII: Empirical tail coefficients for each copula pair of raw claims by site

The next step is to find the best fitting parametric copulas for these pairs, summa-
rized in Table XIV. This table confirms the checked baggage counts and severity are best
modelled with Gumbel’s copula, which has an UTDC, showcased in Table XIII.

Parametric Copulas Best Fit Parameter (θ) LTDC UTDC

Cp(Fp(CBX), Fp(CPX)) Frank 10.7825 0 0

Cp(Fp(CBS), Fp(CPS)) Clayton 1.8235 0.6837 0

Cp(Fp(CBX), Fp(CBS)) Gumbel 7.6771 0 0.9055

Cp(Fp(CPX), Fp(CPS)) Clayton 3.9156 0.8377 0

TABLE XIV: Summary of bivariate copulas modelled for raw claim sites

Figure 18 visualizes these dependencies by plotting the densities of the copulas shown
in Table XIII, and 18(c) illustrates the UTDC for Gumbel’s copula.

(a) Copula for CBX and CPX (b) Copula for CBS and CPS

(c) Copula for CBX and CBS (d) Copula for CPX and CPS

FIGURE 18: Densities for bivariate copulas modelling raw claim sites
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The last step of this section is to contrast these results with the detrended claims by
site, recalling the parametric distributions for these variables are presented in Table VIII.
In this case, only the parametric tail dependence coefficients will be shown, along with
the copulas with the best fits.

Table XV summarizes the results obtained for the detrended claim sites. This table
shows that the variable pairs for the detrended claim sites all have some form of tail
dependence. This table also confirms the existence of upper tail dependence between the
checked baggage counts and severity, a result shown in Table XIV for the raw claim sites.

Parametric Copulas Best Fit Parameter (θ) LTDC UTDC

Cp(Fp(DCBX), Fp(DCPX)) Clayton 1.1649 0.5515 0

Cp(Fp(DCBS), Fp(DCPS)) Clayton 0.4155 0.1886 0

Cp(Fp(DCBX), Fp(DCBS)) Gumbel 5.6024 0 0.8683

Cp(Fp(DCPX), Fp(DCPS)) Clayton 1.6393 0.6552 0

TABLE XV: Summary of bivariate copulas modelled for detrended claim sites

Figure 19 illustrates in more detail the dependence structure for the Gumbel’s copula
used to model the detrended checked baggage claim counts and severity. The observed
values obtained from the parametric marginal distributions of each series are shown in
red. In this case, the fit does not seem as adequate as the one shown in Figure 17.

FIGURE 19: Simulated and observed values for Cp(Fp(DCBX), Fp(DCBS))

In the next two sections, the final analysis is performed using multivariate copulas, in
order to simulate risk measures for the TSA claims.
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5.4 Simulating risk measures for claim types with copulas

This section is dedicated to using multivariate copulas to simulate risk measures for
the claim types. This analysis is performed for the raw claims, as it is more intuitive to
work with these severities, in comparison to the detrended claims. The first step is fitting
the copulas to the raw claims and finding their parameters with MLE using the copulae

library, developed by Bok (2019).

Each copula has four dimensions, corresponding to the marginals of the raw claim
counts and severities. Using the notation from the previous section, this can be written
as: Cp(Fp(PDX), Fp(PLX), Fp(PDS), Fp(PLS)). Thus, the copula models the depen-
dence structure of these four marginals.

According to Hasebe (2013), if the marginal distributions are fixed, and the numbers
of estimated copula parameters are the same, choosing the copula with the smallest infor-
mation criterion is equivalent to choosing the copula with the largest log-likelihood value.
This is a useful way to compare the fit of the Archimedean copulas, as they only have one
parameter and the same marginals.

Table XVI summarizes the estimated parameters and log-likelihood values for the
copulas fit. This table shows Gumbel’s copula is a better fit than Clayton’s copula for the
raw claim types. Additionally, the two elliptical copulas have higher likelihoods than the
Archimedean copulas, and although they are not directly comparable just based on this
measure, they can be considered better fits. All of these copulas will be used to contrast
how different dependence structures can affect two risk measures.

Type of copula Parameter(s) Log-likelihood

Gaussian Σ =


1 0.92 0.91 0.91

0.92 1 0.84 0.95

0.91 0.84 1 0.88

0.91 0.95 0.88 1

 484.23

Student t
Σ =


1 0.90 0.93 0.90

0.90 1 0.83 0.96

0.93 0.83 1 0.85

0.90 0.96 0.85 1

;

df = 7.75

468.64

Clayton θ = 2.77 330.74

Gumbel θ = 3.07 405.79

TABLE XVI: Summary of multivariate copulas for marginals of raw claim types
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The first risk measure estimated is the Value at Risk (VaR). The V aRp of random
variable X, at the 100p% level, is the 100p quantile of X. For example, Solvency II sets
p = 99.5% for loss reserving purposes, where an insurer must be prepared to cover a loss
at this level.

The second risk measure estimated is the Tail Value at Risk (TVaR), which is the
expected loss given that a loss has exceeded the 100p quantile of X. This can be expressed
as TV aRp = E(X|X > V aRp). Thus, the TVaR focuses on the tail of X, as it measures
the expectation of values superior to the VaR. If a variable has heavy tails, then there
could be considerable differences between the VaR and TVaR, as will be shown later on.

Both risk measures are estimated for the right tails of the simulated series, as the
purpose is to analyze risky scenarios, of high losses, for each claim type. The basic
Python code for this simulation has been included in Appendix 5, but can be summarized
in the following steps:

1. Use a given copula to simulate a vector (length = 156) of random conditional
probabilities.

2. Revert these probabilities into claim severities using the inverse cdf of the respective
marginal distribution.

3. Estimate the VaR and TVaR for this simulated series at a predetermined confidence
level. This result is saved in a Python dictionary.

4. Reiterate this loop 10,000 times. A mean estimate is then taken of the VaR and
TVaR.

5. Repeat this process for the next confidence level. The confidence levels tested
ranged from 95% to 99.5% in increments of 0.5%.

Figure 20 compares the simulated V aRp and TV aRp for property damage and prop-
erty loss claims, through the use of Gumbel’s copula. This plot illustrates that property
loss has a heavier tail than property damage, as it has a higher simulated TV aRp and
V aRp, for all p values. This result is consistent with the data, as the property loss severity
had a much higher maximum than the property damage severity.
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FIGURE 20: Simulated V aRp and TV aRp for raw claim types using Gumbel’s copula

Another interesting analysis is to compare the simulated risk measures for one series
using different copulas. Figure 21 illustrates the simulated TV aRp for the property loss
claims. This plot shows all of the copulas yield more conservative TV aRp values than
the historical values after the 95% quantile.

Clayton’s copula does not seem to be a good fit, as suggested by Figure 21, estimating
an unrealistically high TV aRp, compared to the other copulas. Furthermore, Gumbel’s
copula yields TV aRp values higher than the two elliptical copulas, starting from the 97%
quantile. This may be due to the upper tail dependence of Gumbel’s copula.

FIGURE 21: Simulated TV aRp for property loss claims using different copulas

These differences are not quite as pronounced when analyzing the simulated V aRp for
the property loss claims, illustrated in Figure 22. In this plot, the simulated V aRp from
the copulas only exceed the historical values starting at the 98% quantile. This finding
illustrates a limitation of the VaR, as it undervalues extreme events for random variables
with heavy tails, such as this one.
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FIGURE 22: Simulated V aRp for property loss claims using different copulas

Additional analysis can quantify the impact the marginal distributions, used in the
copulas, have on the simulated risk measures. This is done by generating the Empirical
Cumulative Distribution Function (ECDF) for all the claim types. These empirical distri-
butions are then fit into a given copula, to generate simulations with the same procedure as
before. If the copula type is the same, but one includes parametric and the other empirical
marginals, the resulting simulated risk measures provide insights on the tail of a random
variable.

This is best illustrated in Figure 23. The plot includes simulated TV aRp from two
Gumbel’s copula. The first Gumbel’s copula contains parametric marginals and has been
used in Figures 19-21. The second Gumbel’s copula contains the empirical marginals,
and its TV aRp estimates are plotted with dotted lines.

For both severity series, the copula TV aRp estimates using parametric marginals are
significantly higher than those obtained with empirical marginals. This highlights the
heavy-tail nature of the two distributions used to model the property loss and property
damage severities. The choice of the copula used can further accentuate these differences,
as previously highlighted in Figure 20.

FIGURE 23: Simulated TV aRp using Gumbel’s copula with different marginals
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Table XVII summarizes these results and presents all the monthly risk measures ob-
tained at the 99.5% confidence level. The table confirms Clayton’s copula is a bad fit
for these marginals, as it overestimates the risk measures for property loss, and under-
estimates the risk measures for property damage, compared to the historical values. In
contrast, the risk measures of the other copulas exceed the historical values of the V aRp

and TV aRp.

For example, Gumbel’s copula yields a V aRp estimate for PLS that is 172% higher
than the historical, and a TV aRp 207% higher than the historical. Both of the elliptical
copulas are more conservative in this regard. The Student t copula has a TV aRp for PLS
that is 151% higher than the historical. For the Gaussian copula, this TV aRp estimate is
149% higher than the historical value.

The results for the independence copula are also interesting, though perhaps a larger
number of iterations is needed to see if they diverge more strongly from the other copulas.
What is significant, is that the independence case also yields higher risk measures than
the historical values. This can be attributed to the heavy-tailed nature of the marginals
included in the independence copula, as shown in Figure 23.

Measure Historical Gaussian cop T cop Clayton cop Gumbel cop Indep. cop

PLS VaR 181897.39 269656.82 288564.97 401826.30 313373.99 292540.70

PDS VaR 130443.56 155413.86 217871.75 125964.10 220262.34 226264.98

PLS TVaR 196328.29 292260.45 296987.34 1074281.08 407208.38 378359.62

PDS TVaR 133835.07 162481.01 274806.54 128396.17 298815.09 328110.80

TABLE XVII: Monthly risk measures obtained at 99.5% for raw claim types (USD)

Overall, the results suggest the differences between the historical risk measures and
the simulated estimates using copulas are due to two factors. The first factor is the choice
of the copula and its Goodness of Fit (GOF) with the marginals. Clayton’s copula seems
to be a poor fit and yields unreliable risk measures. The second factor is related to the
heaviness of the tail in the marginals used for each random variable. The final section
attempts to confirm these findings by simulating risk measures for the claim sites.

5.5 Simulating risk measures for claim sites with copulas

The first step is fitting different copulas for the raw claim sites. Table XVIII summa-
rizes the results from the copula fits for the raw claim sites. This table shows Gumbel’s
copula is also a better fit than Clayton’s, according to log-likelihood. Additionally, the two
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elliptical copulas have higher likelihoods than the Archimedean copulas, and although not
directly comparable just based on this measure, they can be considered better fits.

Type of copula Parameter(s) Log-likelihood

Gaussian Σ =


1 0.86 0.93 0.72

0.86 1 0.86 0.87

0.93 0.86 1 0.71

0.72 0.87 0.71 1

 376.84

Student t
Σ =


1 0.86 0.98 0.69

0.86 1 0.86 0.85

0.98 0.86 1 0.68

0.69 0.85 0.68 1

;

df = 3.66

298.81

Clayton θ = 2.01 247.85

Gumbel θ = 2.25 271.37

TABLE XVIII: Summary of multivariate copulas for marginals of raw claim sites

Figure 24 plots the simulated V aRp and TV aRp for the two claim sites using Gum-
bel’s copula. This plot shows the checked baggage claims have a much higher simulated
V aRp and TV aRp than the security checkpoints, for all p levels. This is to be expected,
as there are also large differences in the claim severities of the two sites. Both variables
were modelled with Log-Laplace distributions that appear to be heavy-tailed, as there are
large differences in the V aRp and TV aRp of each series.

FIGURE 24: Simulated V aRp and TV aRp for raw claim sites using Gumbel’s copula

Figure 25 compares the V aRp obtained for the security checkpoint claims using dif-
ferent copulas. This plot shows all of the copula estimates exceed the historical VaR. The
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two elliptical copulas also yield lower V aRp results than the other three copulas. In order
to verify this result, it is necessary to also focus on the tail of the security checkpoint
claims.

FIGURE 25: Simulated V aRp for security checkpoint claims using different copulas

Figure 26 focuses on the tail of the security checkpoint claims and plots the simulated
TV aRp with different copulas. This plot confirms Gumbel’s copula provides the most
conservative risk measures than the rest of the copulas. In this sense, the Gaussian copula
yields the lowest TV aRp for quantiles greater than 98%.

FIGURE 26: Simulated TV aRp for security checkpoint claims using different copulas

Figure 27 meanwhile, compares the TV aRp estimates from two Gumbel’s copulas
for the security checkpoint claims. The first copula includes the Log-Laplace distribution
used to model CPS, and the second copula includes the empirical marginals of all the
claim sites. This plot illustrates the copula containing parametric marginals generates
higher TV aR estimates for all p values, than the copula with empirical marginals. The
plot also suggest the Log-Laplace distribution selected for CPS is heavy-tailed, as its
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estimates are much higher than the historical values and those obtained with empirical
marginals.

FIGURE 27: Simulated TV aRp using Gumbel’s copula with different marginals

Table XIX summarizes these results and presents all the monthly risk measures ob-
tained at the 99.5% confidence level. The first result that stands out is the TV aRp obtained
for CBS using the independence copula, which is nearly 2 million. This value seems
unrealistic and is not comparable to those obtained with parametric copulas. A similar
conclusion could be made for the Gaussian copula, which yields high risk measures for
CBS but relatively low estimates for CPS, in comparison to Gumbel’s copula.

Measure Historical Gaussian cop T cop Clayton cop Gumbel cop Indep. cop

CBS VaR 259019.58 639220.33 482656.16 436257.96 445350.78 909156.41

CPS VaR 95929.58 162753.20 162753.20 184214.74 216060.15 205430.66

CBS TVaR 261424.43 910176.52 913644.30 834543.75 778463.95 1948296.78

CPS TVaR 137850.99 199462.25 277221.58 251982.85 421945.04 301612.57

TABLE XIX: Monthly risk measures obtained at 99.5% for raw claim sites (USD)

These results confirm the fitted claim sites have heavy tails, as all the simulated risk
measures exceed the historical values. In some cases, like those obtained with the inde-
pendence copula, the estimates seem too conservative and unrealistic. Thus, the choice
of which copula should be used has a qualitative element, as there has to be a certain
balance. The "ideal" copula should yield risk estimates that are higher than the histori-
cal values, but not unrealistic for loss reserving purposes. Future research could perform
these simulations with additional copulas, or select heavy-tailed marginals for the claim
severities a priori.
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6 CONCLUSIONS

This dissertation highlights the usefulness of modelling dependencies with copulas us-
ing the TSA claims database. The initial aggregation of claims in months evidences that
most claims concentrate in two types (property damage and property loss), and also take
place in mostly two airport sites (checked baggage and security checkpoints). The pres-
ence of non-stationary time series is also detected, and corrected through a polynomial
detrending process.

Furthermore, by finding the best parametric distributions for the aggregated series in
Chapter 4, it is also possible to appreciate differences between each risk. In the case of
the claim counts, the Negative Binomial distribution is a better fit than the traditionally
used Poisson. The inclusion of detrended series also allows for the use of distributions
with positive and negative supports, with better goodness-of-fit than those distributions
used for the raw series.

The application of bivariate copulas demonstrates the existence of tail dependence
between the different claim counts and severities. This result challenges the traditional
risk modelling approach of assuming independence between claim counts and amounts.
The Archimedean copulas applied to the data helped in visualizing non-linear dependence
structures.

Lastly, the results from the multivariate copula simulations show that modelling claims
with copulas can produce more conservative risk estimates, for both the claim sites and
claim types. These results are influenced by the heaviness of the tails of the parametric
marginal distributions included in the copulas. All of the severity series are best modelled
with heavy-tailed distributions, which yield V aRp and TV aRp estimates that exceed the
historical values.

These results also show sensitivity to the type of copula used, and evidences how
different assumptions on claim dependencies can lead to different risk measures for loss
reserving purposes. Additionally, knowing these dependence structures could also be
useful for insurance pricing purposes, such as estimating premiums, among other aspects
of risk management.

Future research can focus on using alternative distributions to model the claim counts,
such as fitting discrete mixtures, in order to improve the goodness of fit. With more com-
putational power it could also be useful to perform more iterations to confirm if these
results are consistent. Furthermore, the use of vine copulas could also be analyzed, to
contrast its simulated risk measures with the parametric approach adopted in this disser-
tation.
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A APPENDICES

A.1 Descriptive statistics of all the detrended series

Appendix A.1 goes into further detail of the detrended series presented at the end of
Chapter 3. The graphs in figure A.1 show the detrended claim counts cycle around the y
axis at zero.

(a) Detrended counts by type (b) Detrended counts by site

FIGURE A.1: Monthly detrended TSA claim counts from 2003-2015

To confirm their mean is zero and the detrending process was successful, Table A.1
presents some descriptive statistics obtained using Python. This table shows all of the se-
ries have a mean of zero, indicating the third order polynomial detrending was successful
in eliminating the negative trend component.

Statistic DPDX DPLX DCBX DCPX

Minimum −422.36 −437.84 −1036.66 −87.47

Maximum 364.01 477.95 750.79 128.99

Mean 0.00 0.00 0.00 0.00

Standard Deviation 89.81 116.70 198.10 28.76

Skewness −0.34 0.08 −0.95 −0.02

Kurtosis 6.89 2.91 7.94 2.88

TABLE A.1: Descriptive statistics for detrended TSA claim counts

The issue here is that the detrended series have negative values, which cannot be
readily interpreted. This also occurs with the detrended severities, as demonstrated in
Figure A.2. These graphs both show how the detrended claim severities cycle around the
y axis at zero.
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(a) Detrended severities by type (b) Detrended severities by site

FIGURE A.2: Monthly detrended TSA claim severities from 2003-2015

The ranges for all series are much more pronounced, due to the scale, as reflected in
Table A.2. This table displays the high ranges of the claim severities, especially for CBS.

Statistic DPDS DPLS DCBS DCPS

Minimum −46348.60 −79007.97 −165131.60 −26816.67

Maximum 56741.45 94453.69 119657.70 74654.35

Mean 0.00 0.00 0.00 0.00

Standard Deviation 13940.64 22305.52 32757.34 12515.92

Skewness 0.50 0.54 −0.48 1.55

Kurtosis 3.19 4.06 7.48 7.41

TABLE A.2: Descriptive statistics for detrended TSA claim severities

Thus, it is difficult to use a measure like VaR, as it is a tail based measure which will
take into account positive severity deviations from the trend.
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A.2 Details of the bin selection process for the chi-squared tests

As stated in Chapter 4, 20 bins were selected to perform the χ2 tests, using a quantile
approach. This means that each bin has a 5% probability of occurring for the distribution
being tested. The upper and lower bounds for each bin are generated using the corre-
sponding inverse cumulative distribution function; for ranges from 0-5%, 5-10%, and so
on. Thus, each expected observationE{j=1,2,...,k} has approximately uniform values across
all bins, but the bins themselves depend on the distribution being tested.

For example, the first distribution tested for the property damage counts is a Poisson
with λ = 526.32. Table A.3 illustrates the first 10 bins obtained for this distribution by
quantile, along with the observed values Oj , and the expected values from this Poisson
distribution Ej . .

Quantile Lower bound Upper bound Oj Ej

0− 5% 0 489 136 8.2638

5− 10% 489 497 1 7.9218

10− 15% 497 503 0 8.7721

15− 20% 503 507 1 7.2924

20− 25% 507 511 0 8.3996

25− 30% 511 514 0 6.9510

30− 35% 514 517 0 7.4188

35− 40% 517 520 0 7.7815

40− 45% 520 523 0 8.0218

45− 50% 523 526 1 8.1286

TABLE A.3: Sample bins estimated for property damage counts using a Poisson

The SciPy library includes a function to estimate the χ2 statistic and its p-value. Recall
that in this case, the critical value has (20−1−1 = 18) degrees of freedom, as the Poisson
has a single parameter. The results from the test are: χ2 = 2105.36 with p = 0.00. The
null hypothesis is rejected and the Poisson distribution cannot be considered a good fit
for the property damage counts. This is the basic process used to test the remaining
distributions used throughout this dissertation.
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A.3 Notation for SciPy probability distribution functions

This appendix is dedicated to outlining the SciPy notation for the continuous distribu-
tion functions used throughout the dissertation, including how location (L) and scale (S)
parameters are incorporated. The probability density functions (f(x)) are as follows:

1. Log-Laplace distribution:

f(x, c) =

 c
2
xc−1 for 0 < x < 1

c
2
x−c−1 for x ≥ 1

where c is a shape parameter and c > 0, f(x, c, L, S) is equal to f(y, c)/S with y = (x−L)
S

2. Johnson SU distribution:

f(x, a, b) = b√
x2−1

φ(a+ b log(x+
√
x2 + 1))

where x, a, and b are real scalars, a and b are shape parameters, b > 0, φ is the standard
normal, and f(x, a, b, L, S) is equal to f(y, a, b)/S with y = (x−L)

S

3. Generalized Logistic distribution:

f(x, c) = c exp(−x
)

(1 + exp(−x))c+1

for x ≥ 0, where c is a shape parameter and c > 0, and f(x, c, L, S) is equal to f(y, c)/S

with y = (x−L)
S

4. Lognormal distribution:

f(x, s) = 1
sx
√

2π
exp (− log2(x)

2s2
)

for x > 0, where s is a shape parameter and s > 0, and f(x, s, L, S) is equal to f(y, s)/S

with y = (x−L)
S

5. Student t:

f(x, df) = Γ((df+1)/2)√
πdfΓ(df/2)

(1 + x2/df)−(df+1)/2;

where x is a real number, df are the degrees of freedom and df > 0, Γ is the gamma
function, and f(x, df, L, S) is equal to f(y, df)/S with y = (x−L)

S

6. Non-central t (NCT):

If Y is a standard normal variable and V is an independent χ2 random variable with df
degrees of freedom, then:

X = Y+nc√
V/df

has a non-central Student t distribution

where df > 0, nc is the non-centrality parameter and must be a real number, and
f(x, df, nc, L, S) is equal to f(y, df, nc)/S with y = (x−L)

S
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7. Hyperbolic Secant:

f(x) = 1
π

sech(x)

where x is a real number, sech is the hyperbolic secant function, and f(x, L, S) is equal
to f(y)/S with y = (x−L)

S

8. Double Gamma:

f(x, a) = 1
2Γ(a)
|x|a−1 exp(−|x|)

for a real number x, where a is a shape parameter and a > 0, Γ is the gamma function,
and f(x, a, L, S) is equal to f(y, a)/S with y = (x−L)

S

A.4 Definitions of the copulas used and their tail dependence coefficients

This appendix formulates the copulas used in chapter 5, along with their tail depen-
dence coefficients. The definitions for the empirical copula are retrieved from Caillault &
Guegan (2005) and Frahm et al. (2005). Alvarez et al. (2018) is the reference for the three
Archimedean copulas. The two elliptical copulas considered for the final two sections of
Chapter 5 are retrieved from Bok (2019).

1. Empirical copula:

If z = {(z1k , z2k)}Nk=1 denotes a sample of sizeN from a continuous bivariate distribution,
the empirical copula is the function C̃ given by:

C̃(
i

N
,
j

N
) =

#((z1, z2), z1 ≤ z
(i)
1 and z2 ≤ z

(j)
2 )

N
(A.1)

where # is used for cardinal; z(i)
1 , z(j)

2 for 1 ≤ i, j ≤ N represent the order statistics
obtained from the sample.

The upper tail dependence coefficient for the empirical copula is then given by:

λ̃U = 2−
1− C̃(N−k

N
, N−k

N
)

1− N−k
N

(A.2)

for 0 < k ≤ N , where k
N

represents the threshold or quantile for the estimation.

2. Clayton’s copula:

Clayton’s copula, with parameter θ, is a member of the Archimedean family and has the
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following expression:

C(u, v) = (u−θ + v−θ − 1)−1/θ, for θ > 0 (A.3)

Along with the copula density function:

c(U, V ) = (θ + 1)(uv)−θ−1(u−θ + v−θ − 1)
2θ+1
θ , for θ > 0 (A.4)

Clayton’s copula only has a lower tail dependence coefficient, given by:

λ̃L = 2−
1
θ , for θ > 0 (A.5)

3. Gumbel’s copula:

Gumbel’s copula, with parameter θ, is a member of the Archimedean family and has the
following expression:

C(u, v) = e−((− lnu)θ+(− ln v)θ)
1
θ , for θ ≥ 1 (A.6)

Along with the copula density function:

c(U, V ) =
C(u, v)

uv

((− lnu)θ + (− ln v)θ)
2
θ
−2

(lnu ln v)1−θ (1 + (θ − 1)((− lnu)θ + (− ln v)θ)−
1
θ )

(A.7)
for θ ≥ 1

Gumbel’s copula only has an upper tail dependence coefficient, given by:

λ̃U = 2− 2−
1
θ , for θ ≥ 1 (A.8)

4. Frank’s copula:

Frank’s copula, with parameter θ, is a member of the Archimedean family with no tail
dependence, and has the following expression:

C(u, v) = −
ln (1+g(u)g(v)

g(1)
)

θ
, for −∞ < θ < +∞ (A.9)
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where g(x) = e−θx − 1. The copula density function is given by:

c(U, V ) =
−θg(1)(1 + g(u+ v))

(g(u)g(v) + g(1))2
, for −∞ < θ < +∞ (A.10)

5. Gaussian copula:

The Gaussian copula is an elliptical copula with equal weight placed on each tail. The
Gaussian copula is also determined exclusively by the correlation matrix of its marginals:

CΣ(u1, u2, ..., un) = ΦΣ(N−1(u1), N−1(u2), ..., N−1(un)) (A.11)

where Σ is the correlation matrix and must be non-negative, and N−1 is the quantile
function or inverse cumulative distribution function.

6. Student t copula:

The Student t copula is another elliptical copula, with heavier tails than the Gaussian cop-
ula. This copula is determined by the correlation matrix, Σ, and the degrees of freedom,
v, parameter:

CΣ,v(u1, u2, ..., un) = tΣ,v(t
−1
v (u1), t−1

v (u2), ..., t−1
v (un)), for v > 0 (A.12)

where t−1
v is the quantile or inverse cumulative distribution function. Although they were

not estimated for this dissertation, the tail coefficients for the t copula are equivalent and
given by:

λ̃U = λ̃L = 2t̄v+1

(√
(v + 1)(1ρ)

1 + ρ

)
, for v > 0 (A.13)

where ρ is the correlation coefficient between the variables, t̄v+1 = 1− tv+1(u), and tv+1

is the Student t distribution with v + 1 degrees of freedom.
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A.5 Basic Python code for simulation of risk measures

The first step of the simulation is to generate the four marginal distributions for the
series and to fit them into a given copula. For this example, the simulation is shown using
a Gaussian copula:

1 #loading the raw claims dataset:

2 df = pd.read_csv("aggregated_series.csv")

3

4 #adding the marginals to the existing dataframe

5 df['Fpdx'] = ss.nbinom.cdf(df['pdx'], 2.139883173181995, 0.00922814420430195)

6 df['Fplx'] = ss.nbinom.cdf(df['plx'], 1.7579089737306162, 0.006834721956499432)

7 df['Fpds'] = ss.loglaplace.cdf(df['pds'], 2.481704232311386, 0, 37891.93289315458)

8 df['Fpls'] = ss.lognorm.cdf(df['pls'], 0.9086819314521254, 0.0, 31402.11730335455)

9

10 from copulae import GaussianCopula

11

12 #setting the dimensions:

13 _, ndim = df.iloc[:,9:].shape

14

15 #initializing the copula:

16 g_cop = GaussianCopula(dim=ndim)

17

18 #fitting the copula to the marginals:

19 g_cop.fit(df.iloc[:,9:], to_pobs=False)

Additionally, two functions were also created to make the estimation of the VaR and
TVaR more direct in the simulation:

1 #making a VaR function:

2 def VAR(series, CL):

3 return series.quantile(CL, axis=0)

4

5 #Tail VaR function:

6 def TVAR(series, ci):

7 var = VAR(series, ci)

8 return series[series.gt(var, axis=1)].mean()

Both functions take dataframes, or tables in Python format, and confidence levels as
arguments. This allows VaR and TVaR estimates for all series in a given dataframe. In
this case, the risk measures are applied only to the two severity variables, PLS and PDS.

The simulation starts with the construction of a list containing the confidence intervals
tested. Afterwards, the conditional random probabilities are generated through the copula.
These vectors are converted back to the severities through the inverse cdf of the respective
marginals:
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1 ########################### GAUSSIAN COPULA SIMULATION#########

2 pi = [0.95, 0.955, 0.96, 0.965, 0.97, 0.975, 0.98, 0.985, 0.99, 0.995]

3

4 #generating 10000 simulations:

5 sims = {}

6 for it in range(0,10000):

7 sims[it] = g_cop.random(len(df))

8

9 #finding the inverse of the simulated series:

10 for key in sims:

11 sims[key]['pls'] = ss.lognorm.ppf(sims[key]['Fpls'], 0.9086819314521254, 0.0, 31402.1173033545)

12 sims[key]['pds'] = ss.loglaplace.ppf(sims[key]['Fpds'], 2.481704232311386, 0, 37891.93289315458)

The VaR and TVaR for the two series are then obtained by looping through this dic-
tionary containing the simulated series:

1 #creating VaR and TVaR dictionaries from the simulations:

2 vpl1 = []

3 tvpl1 = []

4 vpd1 = []

5 tvpd1 = []

6 for p in tqdm(pi):

7 vi = {}

8 vi2 = {}

9 tvi = {}

10 tvi2 = {}

11 for key in sims:

12 vi = list(VAR(sims[key].iloc[:,[4]], p))

13 vi2 = list(VAR(sims[key].iloc[:,[5]], p))

14 tvi = list(TVAR(sims[key].iloc[:,[4]], p))

15 tvi2 = list(TVAR(sims[key].iloc[:,[5]], p))

16 vpl1.append(mean(vi))

17 vpd1.append(mean(vi2))

18 tvpl1.append(mean(tvi))

19 tvpd1.append(mean(tvi2))

This process is then repeated using the different copulas shown in Chapter 5. The
Frank copula yielded highly volatile simulation results, so it is omitted from the analysis.
This copula seems to consistently generate conditional probabilities close to zero, so the
simulated risk measures were much lower than those generated by the other copulas.
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