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Abstract

In this thesis we are concerned with the study of American-style options in
presence of variable transactions costs. This leads to consider some general-
ized Black–Scholes equations with a nonlinear volatility function depending
on the product of the underlying asset price and the second derivative of
the option price. Mathematically, this involves the study of a free boundary
problem for a nonlinear parabolic equation. The fully nonlinear character
of the corresponding differential operator induces increased difficulties. By
overcoming adequately those difficulties, we obtain qualitative and quanti-
tative results regarding both types of American-style options, that is put
and call options, as described next. Firstly, we investigate the qualitative
and quantitative behaviour of a solution to the problem of pricing Ameri-
can style perpetual put options. We assume the option price is a solution
to a stationary generalized Black–Scholes equation with a nonlinear volatil-
ity function. We prove existence and uniqueness of a solution to the free
boundary problem. We derive a single implicit integral equation for the
free boundary position and a closed form formula for the option price. It
is a generalization of the well-known explicit closed form solution derived
by Merton for the case of constant volatility. We also present results of
numerical computations for the free boundary position, option price and
their dependence on model parameters. Secondly, we analyse a nonlinear
generalization of the Black–Scholes equation for pricing American-style call
options, with nonlinear volatility. This model generalizes the well-known
Leland model with constant transaction costs. Due to the fully nonlin-
ear nature of the differential operator that appears in the model, the direct
computation of the nonlinear complementarity problem becomes harder and
unstable. Therefore, we propose a new approach to reformulate the nonlin-
ear complementarity problem in terms of the new transformed variable for
which the differential operator has the form of a quasilinear parabolic oper-
ator. We derive the nonlinear complementarity problem for the transformed
variable in order to apply the Gamma transformation for American style
options. We then solve the variational problem by means of the modified
projected successive over relaxation (PSOR) for constructing an effective
numerical scheme for discretization of the Gamma variational inequality.
Finally, we present several computational examples of the nonlinear Black–
Scholes equation for pricing American-style call options in the presence of
variable transaction costs.

Keywords: American option pricing, nonlinear Black–Scholes equation,
variable transaction costs, PSOR method.



Resumo

Esta dissertação incide sobre o estudo de opções americanas admitindo a
existência de custos de transação variáveis. Tal estudo leva-nos a considerar
equações de Black-Scholes generalizadas, com uma função de volatilidade
não linear que depende do produto do preço do ativo subjacente e da segunda
derivada do preço da opção, o que, do ponto de vista matemático, implica
a análise de um problema de fronteira livre para uma equação parabólica
não linear. O caráter não linear do operador diferencial correspondente
gera dificuldades acrescidas. Contudo, um estudo adequado à condição de
não linearidade permite-nos estabelecer resultados qualitativos e quantita-
tivos sobre os dois tipos de opções americanas, mas precisamente, opções
de venda e de compra, conforme descrito a seguir. Em primeiro lugar, in-
vestigamos o comportamento qualitativo e quantitativo de uma solução do
problema de apreçamento de opções de venda perpétuas do tipo americano.
Assumimos que o preço da opção é uma solução para uma equação de Black-
Scholes generalizada estacionária com uma função de volatilidade não linear.
Provamos existência e unicidade de uma solução do problema da fronteira
livre. Derivamos uma equação integral impĺıcita para o valor de fronteira
livre e uma solução de forma fechada para o preço da opção. É uma general-
ização da conhecida solução de forma fechada expĺıcita derivada por Merton
para o caso de volatilidade constante. Também apresentamos resultados de
cálculo numérico para o valor de fronteira livre, assim como para preço da
opção e sua dependência dos parâmetros do modelo. Em segundo lugar,
analisamos uma generalização não linear da equação de Black-Scholes para
o apreçamento de opções de compra de tipo americano, com volatilidade não
linear. Este modelo generaliza o conhecido modelo de Leland com custos de
transação constantes. Devido à natureza totalmente não linear do operador
diferencial que aparece no modelo, o cálculo direto do problema de comple-
mentaridade não linear torna-se mais dif́ıcil e instável. Portanto, propomos
uma nova abordagem para reformular o problema de complementaridade
não linear em termos de uma nova variável para a qual o operador diferen-
cial tem a forma de um operador parabólico quase-linear. Derivamos o prob-
lema de complementaridade não linear para a variável transformada a fim de
aplicar a transformação Gama para opções de tipo americano. Em seguida,
resolvemos o problema variacional por meio do relaxamento projetado su-
cessivo modificado (PSOR) para construir um esquema numérico eficaz para
discretização da desigualdade variacional Gama. Finalmente, apresentamos
vários exemplos computacionais da equação não linear de Black-Scholes para
apreçamento de opções de compra no tipo americano em presença de custos
de transação variáveis.

Palavras-chave: Opção americana, equação de Black-Scholes não-linear,
custos de transação, método PSOR.
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1
Introduction

There are many types of financial markets where buyers and sellers partici-
pate in the trade of assets such as stocks, bonds, currencies and derivatives.
These markets are typically using the transparent pricing, basic regulations
on trading, costs and fees. While the market forces to determine the prices
of securities in trading which is the important issue in the financial markets.
A derivative is a contract between two or more parties whose value is based
on an agreed-upon underlying financial asset, index or security. Examples
of common derivatives are forwards, futures, swaps, and options. Deriva-
tives can be used to either mitigate risk (hedging) or assume risk with the
expectation of commensurate reward (speculation). Options are financial
derivatives that give the buyer the right to buy or sell the underlying asset
at a stated price within a specified period. The American option allows the
holder to exercise their right at any time prior to the contract’s expiration
date while European options can only be exercised at the maturity date.
Today, most securities traded on an exchange are American style of options.
These contracts will specify at least four variables:

• Underlying Asset: common and preferred stock, commodities, in-
terest rates.

• Premium: the price paid when an option is purchased.

• Strike Price: identifies the price at which the holder of the contract
has a right to sell (put option) or buy (call option) the underlying
asset.

• Maturity Date: also referred to as the expiry date; the option no
longer has any value if not exercised before or at that date.

3



4 CHAPTER 1. INTRODUCTION

These financial instruments come in two basic forms:
Call Options: generally referred to as calls, this contract gives the holder
the right to purchase the security at the strike price before the maturity
date.
Put Options: also referred to as puts, this contract gives the holder the
right to sell the security at the strike price before the maturity date.
Options provide their holder with certain rights, which are not obligations.
For example, a call option gives the holder the right to purchase securities
at the strike price. The holder is not required to complete this transaction.
Investors can also short (sell) a call option, giving the buyer of the call
option the right to purchase the asset at the strike price. The seller of the
call option is compensated by the premium paid by the buyer, regardless if
the buyer exercises their rights.
Options are extremely versatile securities that can be used in many different
ways. Traders use options to speculate which is relatively risky practice
while hedgers use options to reduce the risk of holding an asset. In terms
of speculation, option buyers and writers have conflicting views regarding
the outlook on the performance of an underlying security. For instance, the
option writer will need to provide the underlying shares in the event that
the stock’s market price will exceed the strike. An option writer that sells
a call option believes that the underlying stock’s price will drop relative
to the option’s strike price during the life of the option, as that is how he
or she will reap maximum profit. This is exactly the opposite outlook of
the option buyer. The buyer believes that the underlying stock will rise,
because if this happens, the buyer will be able to acquire the stock for a
lower price and then sell it for a profit. One of the most commonly used
methods of pricing stock options is the Black–Scholes method introduced by
Merton, Black and Scholes [6]. They derived a pricing model by means of a
solution to a certain PDE in 1973. The linear Black–Scholes equation with a
constant volatility σ has been derived under several restrictive assumptions
e.g., non-zero transaction costs, investors preferences, feedback and illiquid
markets effects and risk from unprotected portfolio. Our work is to study
the nonlinear Black–Scholes equation with a nonlinear volatility function
arises from option pricing models that caused by the presence of transaction
costs (see e.g., Hoggard, Whalley and Wilmott [21], Avellaneda and Paras
[2]), feedback and illiquid market effects (Frey and Patie [15], Schönbucher
and Wilmott [37]), imperfect replication and investor’s preferences (Barles
and Soner [4]), and risk from unprotected portfolio (Kratka [29], Ševčovič
[42], Jandačka and Ševčovič [23]).

The main goals of our thesis can be summed up as follows:

• Reviewing of some well-known nonlinear models. We review
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Blak–Scholes type of option pricing models with nonlinear volatility
function. While utilizing more realistic variable transaction costs fun-
cions concerning the amount of transactions, we followed the work of
Žitňanská [45], and also the work of Ševčovič, Stehĺıková and Mikula
[43]. As proven, these models provide more accurate prices than the
classical one in general by taking into account more realistic assump-
tions such as large investor’s preferences, transaction costs, etc.

• Pricing American Perpetual Put Options. In the joint work of
Grossinho, Faghan and Ševčovič [17, 18], we analyse American style of
perpetual put options considering non-trivial transaction costs while
trading in the financial stock market. We prove existence and unique-
ness of a solution to the free boundary problem. We derive a single
implicit equation for the free boundary position and the closed form
formula for the option price.

• Solving variational inequalities. We analyze a nonlinear Black–
Scholes equation for pricing American style of call option in which the
volatility may depend on the underlying asset price and the Gamma
of the option. We present that the generalized Black–Scholes equation
can be transformed to the so-called Gamma equation in which we re-
formulate the free boundary problem (variational inequality) in terms
of the solution to the Gamma equation. This result can be found in
the joint work of Grossinho, Faghan and Ševčovič [19].

• Numerical scheme and experiments.. In this part we first propose
efficient numerical discretization of the Gamma equation introduced
by Jandačka and Ševčovič [23] based on the finite volume method and
then use PSOR algoritm for solving variational inequalities for the
nonlinear Black–Scholes equation.
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Stochastic processes

2.1 Stochastic differential calculus . . . . . . . . . . . 7

2.2 Linear Black–Scholes model . . . . . . . . . . . . 10

2.3 European plain vanilla options . . . . . . . . . . 12

2.4 American plain vanilla options . . . . . . . . . . 13

2.5 Chapter conclusions . . . . . . . . . . . . . . . . . 14

In this chapter we present the Black–Scholes model for pricing financial op-
tions and review some basic concepts regarding to the mathematical frame-
work. We need to model the stochastic behavior of underlying assets in order
to deduce Black–Scholes equation. The Wiener process and its generaliza-
tion the Brownian motion are fundamental tools for modelling stochastic
evolution of asset prices that can be expressed using stochastic differential
equation (SDE). We furthermore derive explicit formulae for pricing basic
European options and finally discuss about the American plain vanilla op-
tions that can be exercised anytime before the expiration time T . This
revision presents the basic framework that will be used in the next chapters.
It is done in a very light way just to gather some notions and results that
will underly the next chapters. Complete study can be found in Lamberton
[33], Shreve [39], Privault [36], and Ševčovič, Stehĺıková and Mikula [43].

2.1 Stochastic differential calculus

In this section we review some basic concepts of stochastic calculus.
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8 CHAPTER 2. STOCHASTIC PROCESSES

Definition 2.1.1. A continuous stochastic process X is a t-parametric sys-
tem of random variables

(Xt, t ∈ T ) = (Xt(ω), t ∈ T, ω ∈ Ω)

defined on some proper probability spaces (Ω,A, P ), with T = [0,∞).

Markov process is a particular class of stochastic process that use only the
current value of a variable {X(s)} for predicting the future values X(t) for
{t > s}. Markovian stochastic processes are the basic tool for explaining
such a random evolution of the price of the asset. There is a wide range
of well-known Markov processes, but the most widely used are the Wiener
process and its generalization the Brownian motion.

Definition 2.1.2. A continuous time stochastic process {Xt}t≥0 in the prob-
ability space (Ω,A, P ) is called a Wiener process or (standard)Brownian
motion, if

• X0 = 0 almost surely.

• For any finite set of times 0 = t0 < t1 < · · · < tn, the increments

Xt1 , Xt1 −Xt0 , Xt2 −Xt1 , . . . , Xtn −Xtn−1

are independent.

• For s < t, the increments Xt − Xs has the Gaussian distribution
N(0,

√
t− s).

• For all ω in a set of probability one, Xt(ω) has continuous trajectories
of t.

Definition 2.1.3. Let µ ∈ R and σ > 0. A continuous-time stochastic
process {Xt}t≥0 is named a Brownian motion with drift µ and variance σ2

on [0, T ) if

• X0 = 0 almost surely.

• For s < t, the increments Xt −Xs has the Gaussian distribution with
mean µ(s− t) and variance σ2(s− t), N(µ(s− t), σ2(s− t)).

• For any finite set of times 0 = t0 < t1 < · · · < tn, the increments

Xt1 , Xt1 −Xt0 , Xt2 −Xt1 , . . . , Xtn −Xtn−1

are independent.

• For all ω in a set of probability one, {Xt(ω)} is a continuous function
of t.
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Remark 1. Note that the equation Xt = µt + σWt describes the relation
between Brownian motion and Wiener process.

Definition 2.1.4. If X(t), t ≥ 0 is a Brownian motion with parameters µ, σ
and y0 ∈ R+, then the system of random variables

Y (t) = y0e
X(t), t ≥ 0 (2.1)

is called a geometric Brownian motion.

We know that the Brownian path is not differentiable and also has un-
bounded variation. So the purpose is to manipulate these integrals that
differ from ordinary calculus. A key tools in stochastic processes are the
so–called Itô’s integral and Itô’s isometry.

Lemma 2.1.1. (Itô’s integral)
Assume that f(0, t) → R is a measurable function such that

∫ t
0 f

2(τ)τ <

∞. Then, there exists Itô’s integral
∫ t

0 f
2(τ)ω(τ) such that the following

properties hold:

E

[∫ t

0
f(τ)dω(τ)

]
= 0,

E

[(∫ t

0
f(τ) ω(τ)

)2
]

=

∫ t

0
f2(τ)τ.

The last identity is called Itô’s isometry.

Lemma 2.1.2. (Itô’s lemma)
Assume that {Xs(ω)} is an Itô’s process

dXs(ω) = a(s, ω)ds+ b(s, ω) dWs(ω) (2.2)

such that f(s, x) ∈ C2([0,∞)× R). Then

Zs(ω) = f(s,Xs(ω)) (2.3)

is again an Itô’s process and

dZt =
∂f

∂t
(s,Xs) ds+

∂f

∂x
(s,Xs) Xs +

1

2
b2
∂f2

∂x2
(s,Xs) ds. (2.4)

Itô’ lemma provides a way to construct new SDE. It plays a very important
role in pricing derivatives.
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2.2 Linear Black–Scholes model

Fundamental work on option pricing theory was published by Black and
Scholes and then by Merton. Although, this model is commonly used in
option pricing theory in financial industry, but it does not efficiently reflect
the financial market due to its restrictive assumptions. We list some of the
Black–Scholes model assumptions:

• Continuous trading in the market with respect to time.

• No dividend payment on the underlying asset.

• Constant risk-free interest rate r with respect to time.

• Perfectly divisible shares are assumed.

• Zero transaction costs.

• Limited risk and no loss of short position.

• No risk-free arbitrage opportunities.

For modeling the dynamic of the asset price we need to utilize the stochas-
tic differential equation (SDE) in order to present the geometric Brownian
motion

dS = (ρ− q)Sdt+ σSdW, (2.5)

where dS represent the change of asset price over the time interval of length
dt, ρ is the evolution of underlying asset price, the positive q is an annualized
dividend yield and σ is volatility. Now, we can deduce a SDE that describe
the evolution of an arbitrary smooth function V (S, t) of asset price and time.
We can write a stochastic differential equation for the function V (S, t) by
utilizing Itô’s lemma. Where the function V (S, t) of the stochastic process
S in (2.5) satisfies the following stochastic differential equation

dV =

(
∂tV + (ρ− q)S∂SV +

1

2
S2σ2∂2

SV

)
dt+ σS∂SV dW (2.6)

In this step we construct a portfolio involving underlying assets and one
option on these assets considering self-financing concept. Assume that at
time t, our portfolio has the amount of δ units assets with unit price S and
one long position in the option with unit price V .
Thus, our portfolio value is

Π = V + δS (2.7)

Then by using Itô’s lemma (Lemma 2.1.2) and equations (2.5) and (2.6), we
derive the equation in the form:
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dΠ =

(
∂tV + (ρ− q)S(∂SV + δ) + δqS +

1

2
S2σ2∂2

SV

)
dt+(∂SV +δ)σSdW

(2.8)
Now, by choosing the portfolio to be risk-free and take the parameter δ, i.e.
number of assets in the portfolio, as follows:

− ∂SV = δ (2.9)

and also by the no-arbitrage argument, the expected return of the portfolio
is equal to the risk-free yield r > 0 of bonds, i.e.

dΠ = rΠdt (2.10)

Applying above assumptions and some algebraic calculations, one can de-
rive the Black–Scholes PDE for an option price V (S, t) as an function of
underlying asset S > 0 and time t ∈ [0, T ].

Theorem 2.2.1. (Black–Scholes Equation) Assuming that

dXt = rXtdt (2.11)

dSt = Stα(t, St)dt+ Stσ(t, St)dWt, (2.12)

Then the unique pricing function V (St, t), where V is a smooth function
and consistent with no-arbitrage opportunities, is the solution of the folowing
boundary value problem with (t, St) ∈ [0, T ]× R+,

Vt(s, t) + rsVs(s, t) +
1

2
s2σ2(t, s)Vss(s, t)− rV (s, t) = 0 (2.13)

V (s, T ) = Φ(s). (2.14)

To evaluate a contingent claim Ψ = Φ(ST ), we propose the following result
which constructs the security price as the discounted value for presenting
the expected payoff by means of Q martingle measure.

Theorem 2.2.2. (Risk Neutral Valuation) The arbitrage free price of the
contingent claim Φ(S(T )) is given by Π(t; Φ) = V (t, S(t)), where V is given
by the formula

V (t, s) = e−r(T−t)EQt,s [Φ(S(T ))] ,

where the Q-dynamics of S is

dSt = Stα(t, St)dt+ Stσ(t, St)dW̃t

with W̃ a Q-Wiener process.
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Remark 2. In the Black–Scholes world it is assumed that there are no
arbitrage opportunities, i.e., any probable profit in the financial market leads
to risk of loss. And the process of the price for the derivative asset with
contingent claim Ψ has the form Π(t; Ψ) = V (St, t) where V is assumed to
be a smooth function.
More details can be seen in [5].

In the next section we briefly review the European plain vanilla options.

2.3 European plain vanilla options

In the case of European put option on a stock S, at expiration time T , the
pay-off function is:

VT = (K − ST )+ = max(0,K − ST ). (2.15)

If the price of the asset ST is greater than the strike price K then the option
value is the difference K − ST , thus we say that the option is in-the-money.
In another word, if the strike price K is less than the price of the aseet ST ,
then the option is out-of-the-money and is worthless. The same argument
is true for the call option where the terminal pay-off for the call option is of
the form:

VT = (ST −K)+ = max(0, ST −K). (2.16)

Where at expiry it values ST − K if St is greater than K, otherwise it is
worthless.

For the European put case, the boundary conditions for S = 0 and S →∞,
are

V (0, t) = Ker(T−t) and V (S →∞, t) = 0, ∀t ∈ (0, T ) (2.17)

Respectively, The boundary conditions for the European call option are
given by

V (0, t) = 0 and V (S →∞, t) = S, ∀t ∈ (0, T ) (2.18)

We present in Fig. 2.1 the value of both call and put options by using the
Black–Scholes PDE (2.13) with certain terminal conditions.
Here we give the following result which is well-known as the Black–Scholes
formula (see e.g., Bjork [5]).

Proposition 1. (Black–Scholes formula) The price of a European put (call)
option with exercise price K and time to maturity T is given by
V (t, S(t)), where
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European put: V (t, s) = Ke−r(T−t)N [−d2(t, s)]−Se−q(T−t)KN [−d1(t, s)].

European call: V (t, s) = Se−q(T−t)N [d1(t, s)]−Ke−r(T−t)N [d2(t, s)].

Here N is the cumulative distribution function (CDF) for the standardised
normal distribution N(0, 1) and

d1(t, s) =
1

σ
√
T − t

{
ln
( s
K

)
+

(
r +

1

2
σ2

)
(T − t)

}
,

d2(t, s) = d1(t, s)− σ
√
T − t.

The function N(x) is CDF

N(x) =
1√
2π

∫ x

−∞
e
−α2
2 dα

Where {q ≥ 0} is the dividend yield. Rest of the parameters and constants
must be familiar. The evolution of the solution in time, when time is passing
up to expiration, for both put and call options are shown in Fig. 2.1(d) and
Fig. 2.1(c), respectively.

In next section we give a brief introduction of the most basic American
options.

2.4 American plain vanilla options

A contract that allows the holder to exercise their options to sell or buy
the underlying derivaties at any time prior to the expiration date t ∈ [0, T ]
is called American option. The real advantage of American contract over
European contract is the flexibility that they offer. When you own this type
of contract, it gives you the right to exercise earlier than the expiration date
of the contract. But one may ask what is the the option premium at the
time t = 0 of contracting. For the American call (put) option the challenge
is to calculate the price V ac(S, t) of the American call option (V ap(S, t) for
the put option), at the time t ∈ [0, T ]. Thus, as compared to the European
one, the relation between values of these two types of contracts gives an
inequality presenting

V ac
t (S, t) ≥ V ec

t (S, t), V ap
t (S, t) ≥ V ep

t (S, t), (2.19)

at any time t ∈ [0, T ] and underlying asset price S ≥ 0. Furthermore, we can
describe the price of American call (put) option regarding to their prices at
expiration time given by the pay-off diagram:

V ac
t (S, t) ≥ V ec

t (S, T ) = (S −K)+, (2.20)
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V ap
t (S, t) ≥ V ep

t (S, T ) = (K − S)+, (2.21)

at any time t ∈ [0, T ] and underlying asset price S ≥ 0. Thus, if the price of
American call option before the expiration time is less than its pay-off then,
by purchasing such an option and exercising immediately, one can receive
underlying asset for the exercise price E and then sell it on the market to
pocket the difference S−K. In this case the holder of the option earning some
amounts without bearing any risk that may lead to an arbitrage opportunity.
Due to the demand for these types of options the market price for such an
option is higher or equal than its pay-off diagram. For the price of American
call option with no dividend payment on the underlying asset (q = 0), one
can write

if q = 0 then V ap
t (S, t) = V ep

t (S, t), for each S ≥ 0, t ∈ [0, T ]. (2.22)

It means that it is better not to exercise the option prior to the expiration
time. The condition is more sophisticated when the option paying dividends
on the underlying asset (q > 0). In this case the price V ec(S, t) of the
European call option (V ep(S, t) for the put option) intersects the pay-off
diagram. Hence the price of the American call (put) option can be expressed
as

if q > 0, r > 0 V ac(S, t) > V ec(S, t), for each S > 0, t ∈ [0, T ).
(2.23)

if q ≥ 0, r > 0 V ap(S, t) > V ep(S, t), for each S ≥ 0, t ∈ [0, T ).
(2.24)

More details can be found in [43].

2.5 Chapter conclusions

In section 2.1 we present the basic concept of stochastic calculus such as
random variables, stochastic processes and Itô’ calculus which are the core
mathematical tools for studying derivative pricing. In section 2.2 we give
the brief connection between SDE and certain PDE, in particular deriving
the Black–Scholes partial differential equation regarding to the model as-
sumptions, by using self financing-portfolio argument and Itô’ lemma. In
sections 2.3 we discuss the most basic European options where its prices can
be calculated as a solution of the Black–Scholes PDE and describe Ameri-
can plain vanilla option with dividend payment on the underlying asset in
section 2.4 .
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(a) American 3D call option (b) American 3D put option
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(e) American call option

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

P
(S

,t
)

S

(f) American put option

Figure 2.1: Plots of both American and European (put and call) options.
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In recent years the financial markets have become more complex that led to
the development of more sophisticated mathematical models. The classical
linear Black–Scholes equation was derived under several restrictive assump-
tions such as frictionless, liquid and complete markets, etc. Such assump-
tions have been relaxed in order to model the presence of transaction costs
(see e.g., Leland [35], Hoggard, Whalley and Wilmott [21], Avellaneda and
Paras [2]), feedback and illiquid market effects (Frey [14], Frey and Patie [15],
Frey and Stremme [16], Schönbucher and Wilmott [37]), imperfect replica-
tion and investor’s preferences (Barles and Soner [4]), risk from unprotected
portfolio (Kratka [29], Jandačka and Ševčovič [23]). In this chapter we re-
view some useful generalizations of the Black–Scholes equation where the
diffusion coefficient in the nonlinear model is a function of the expression
H = S∂2

SV , of the derivative price and of the time τ = T − t to maturity.

17
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Suppose that the dynamics of the underlying asset S is given by

dS = µSdt+ σSdw. (3.1)

where µ is return on asset, σ is volatiliy of underlying asset and w is a
standard Wiener process. Then, following the GBM and using self-financing
portfolio argument, a PDE to model the price of the option V (t, S) can be
deduced

∂tV + rS∂SV +
1

2
S2σ2∂2

SV − rV = 0 (3.2)

Here r is the riskless interest rate and σ is the volatility.

We will focus our attention to the case when the diffusion coefficient σ de-
pends on the product, S∂2

SV , of the asset price S and the second derivative
(Gamma) of the option price V , i.e.

σ = σ(S∂2
SV ) , (3.3)

In the Leland model (generalized for more complex option strategies [21])
the volatility is given by

σ2 = σ2
0(1 + Le sgn(∂2

SV ))

where σ0 > 0 is the constant historical volatility of the underlying asset
price process and Le > 0 is the so-called Leland number.
Another nonlinear Black–Scholes model has been derived by Frey model
(see [14, 15, 16]). In this model the asset dynamics takes into account the
presence of feedback effects due to a large trader choosing his/her stock-
trading strategy (see also [37]). The diffusion coefficient σ is again non-
constant:

σ(S∂2
SV )2 = σ2

0

(
1− µS∂2

SV
)−2

, (3.4)

where σ2
0, µ > 0 are constants.

Another example of the Black–Scholes equation with a non-constant volatil-
ity is the so-called Risk Adjusted Pricing Methodology (RAPM) model pro-
posed by Kratka [29] and revisited by Jandačka and Ševčovič [23]. In RAPM
the purpose is to optimize the time-lag between consecutive portfolio adjust-
ments in such way that the sum of the rate of transaction costs and the rate
of a risk from unprotected portfolio is minimal. In this model, the volatility
is as follows:

σ(S∂2
SV )2 = σ2

0

(
1 + µ(S∂2

SV )
1
3

)
. (3.5)

By σ0 > 0 we denoted the constant historical volatility of the asset price
returns and µ = 3(C2R/2π)

1
3 , where C,R ≥ 0 are non-negative constants

representing the transaction cost measure and the risk premium measure,
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respectively (see [23] for more details). The non-constant transaction cost
model has been generalized to more realistic transaction cost function by
Ševčovič and Žitňanská in the recent paper [44].
In [3], Bakstein and Howison investigated a parametrized model for liquidity
effects arising from the asset trading. In their model the volatility function
is a quadratic function of the term S∂2

SV :

σ(S∂2
SV )2 =σ2

0

(
1 + γ2(1− α)2 + 2λS∂2

SV + λ2(1− α)2
(
S∂2

SV
)2

+ 2

√
2

π
γ sgn

(
S∂2

SV
)

+ 2

√
2

π
λ(1− α)2γ

∣∣S∂2
SV
∣∣). (3.6)

The parameter λ corresponds to a market depth measure, i.e. it scales the
slope of the average transaction price. The parameter γ models the relative
bid–ask spreads and it is related to the Leland number through relation
2γ
√

2/π = Le. Finally, α transforms the average transaction price into the
next quoted price, 0 ≤ α ≤ 1.
Notice that if additional model parameters (e.g., Le, µ, κ, γ, λ) vanish, then
all the aforementioned nonlinear models are consistent with the original
Black–Scholes equation, i.e. σ = σ0. Furthermore, for call or put options,
the function V is convex in the S variable.
The above models have been developed in order to create better answers
to the practical financial application, in particular, to avoid some practi-
cal drawbacks raised by the restrictive conditions under which the classical
Black–Scholes model had been established. It is understandable that the
σ > 0 could not be constant any more as assumed in the linear Black–
Scholes model. Studying the nonlinear Black-Scholes PDE with a volatility
function as in (3.3) enables us to consider non-zero transaction costs, mar-
ket feedback and iliquid market effects, risk from investors preferences, etc.
From the financial market point of view, these types of assumptions make
the model more adequate to financial pratice. The rest of this chapter heav-
ily followed by the works of Ševčovič and Žitňanská [44, 45].
Following our discussion, in the next part we review some models dealing
with transaction costs in order to address nonlinear problems.

3.1 Leland model - proportional transaction costs

One of the most basic models dealing with transaction costs is Leland model
[35] which suggests a market with proportional transaction costs. That
is, considering |ν| the number of shares (it is positive if the agent buys
or negative if the agent sells) and S the price of the asset at time t, the
costs of the transaction of |ν| shares at time t is given by kS|ν|. Where
the constant k > 0 depends on the portion involved in the transaction.
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Leland ’s replication strategy is to use the common Black–Scholes formulae
in periodical revisions of the portfolio, but with an appropriately enlarged
volatility. This is a model widely accepted in the financial industry. The
diffusion coefficient of the model is given

σ2(1− Le (H)) =


σ2(1− Le), if H > 0,

σ2(Le+ 1), if H < 0,
(3.7)

where H = S∂2
SV and the Leland number is

Le =
C0

σ
√

∆t

√
2

π
. (3.8)

Here C ≡ C0 is a positive constant transaction cost per unit dollar of trans-
action in the assets market. The constant volatility is called σ and the time
leg between portfolio adjustment is ∆t. When (H) = 1, then the diffusion
coefficient becomes the same as in the original Black-Scholes equation with
the adjusted constant volatility:

σ2
Le = σ2(1− Le).

Furthermore, in the case of European plain vanilla options we have H > 0.
In order to specify the right sign of the diffusion coefficient for the plain
vanilla options, we need to establish the lower and upper bounds of the Le-
land number 0 ≤ Le < 1. The solution of Leland backward parabolic partial
differential equation with terminal condition, as discussed by Jandačka and
Ševčovič [23], is an increasing function on the volatility σ. More precisely,
the Leland model value is less than the one deduced from the Black–Scholes
model when the Leland number is positive. This comes from the fact that
the transaction costs are on the side of buyer or holder of the option. There-
fore, the maximum price that a buyer can pay is the price deduced by the
model which is called bid price. When the option is in short position in the
self-financing portfolio, then the obtained price by the model is called ask
price. This means that adjusted volatilities are:

σ2(1− Le) = σ2
bid and σ2(Le+ 1) = σ2

ask,

And the price difference between ask and bid is:

V ask(S, τ, σ(1 + Le)
1
2 )− V bid(S, τ, σ(1− Le)

1
2 ).

In Fig. 3.1(a) we depicted the plot of the relevant function such that C0 =
0.02.
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3.2 Models with variable transaction costs

We want to review a new approach where the amount of transactions, |∆δ|,
has a general form of a decreasing function, i.e. C = C(|∆δ|), which contains
and generalizes, Leland’s model.
In the Black–Scholes model continuity of the rehedging of the portfolio is
assumed to be continuous, but the problem is that hedging continuously
leads to infinitely large costs. One of the simple but essential modification
of the Black–Scholes model comprising transaction costs with discrete times
possibility of portfolio rearrangement is precisely the Leland model. In the
case of discrete time interval the whole transaction costs remain bounded.
Note that the model assumptions are generically the same as in the Black–
Scholes model with some extensions. The main idea of the derivation of the
option pricing model with transaction costs is the same as introduced by
Leland [35]. We mention that the underlying stock is sold at lower price (bid
price) Sbid and it is bought at a higher price (ask price) Sask. By considering
the case of small investor, the constant cost percentage of trading share is
given

C0 = 2
Sask − Sbid
Sbid + Sask

where S =
(Sbid + Sask)

2
(3.9)

then the adjusted expression of the bid and ask price of the share are

Sbid = S(1− C0

2
), Sask = S(

C0

2
+ 1). (3.10)

We compute the additional cost as follows,

Sask − Sbid
2

|∆δ| = S

2
C0 |∆δ| (3.11)

where we have the sales of ∆δ < 0 or buys of ∆δ > 0 shares at S price.
As a result, we derive the Leland equation given

Le =
C0

σ
√

∆t

√
2

π
. (3.12)

where the cost C per one transaction is constant, i.e.

C ≡ C0 = const. (3.13)

In the case of large amounts of transactions, there is an advantage when the
large investors can benefit from the more buying the less paying for every
underlying stock on trading market. Assume that the price of the option is
in the long position where keeping the option and then by trading underlying
stocks strategy hedges the portfolio. And riskless bonds yield is equal to the
expected return. If the option V is in long position and δ is the amount of
assets S, by buying ∆δ < 0 or selling ∆δ > 0 short positioned stocks, then
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following the Black–Scholes equation we may establish portfolio Π including
one option V and δ amount of stock shares S, i.e.

Π = δS + V. (3.14)

Utilizing self-financing portfolio argument, the riskless interest rate at the
time ∆t has to be equal to the change of the expected value of the portfolio
at the same time interval,

∆Π = rΠ∆t, (3.15)

where ∆Πt = Π∆t+t −Πt.
But practically replicating the portfolio, while trading assets, the portfolio
value changes in transaction costs rate. Consequently, the portfolio value
changes to:

∆Π = ∆(δS + V )−∆TC (3.16)

such that for the time interval of the length ∆t, the transaction costs is
∆TC.
Knowing that the paid amount of the transaction costs is given by

S

2
|∆δ|C(|∆δ|) = ∆TC (3.17)

Then the change of the portfolio in the time interval ∆t, given

δ∆S + ∆V − S

2
|∆δ|C(|∆δ|) = rΠ∆t (3.18)

while the portfolio adjustments are based on the δ-hedging strategy, i.e.

δ = −∂SV. (3.19)

Also remember that the dynamic of the underlying stock follows

∆S = µS∆t+ σS∆w, (3.20)

Here the increment of the Wiener process is ∆w = w(∆t+ t)−w(t). As the
number of assets ∆δ in the portfolio is a stochastic process, then utilizing
Itô ’s lemma on −∂SV , one can estimate ∆δ as

∆δ ≈ −σS∂2
SV∆w, (3.21)

where |∆δ| = α |Φ|, with Φ ∼ N (0, 1) and

α := σS
∣∣∂2
SV
∣∣√∆t. (3.22)

Here the stochastic term C(|∆δ|) |∆δ| is assumed to be,

C(|∆δ|) |∆δ| ≈ E[C(|∆δ|) |∆δ|].
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Remark 3. In the case of Leland model [35], ∆δ is given by:

|∆δ| ≈ αE[|Φ|] = α

√
2

π
.

where C ≡ C0 = const.

we can give the definition of transaction costs measure rTC utilizing the
general transaction costs function. Where we apply the expectation operator
E to relation (3.17) by using estimation (3.21) and equation (3.22), and some
straightforward calculations.

Definition 3.2.1. [45, Def 3.1.] The transaction cost measure, rTC , can be
expressed by using the expected value of the transaction costs:

rTC =
1

2

E[C(α |Φ|)α |Φ|]
∆t

(3.23)

where ∆δ is the number of the traded assets each unit time interval ∆t, C
is the function of the transaction costs, Φ ∼ N (0, 1) and α is defined in the
equation (3.22).

By using the delta hedging strategy (3.19) and applying the self-financing
portfolio argument (3.18), one may deduce the extended version of the
Black–Scholes equation

∂tV + rS∂SV +
1

2
S2σ2∂2

SV − rTCV = 0 (3.24)

where rTC is introduced in definition 3.2.1.
We want to introduce the new function C̃(α) in order to simplify the nota-
tion.

Definition 3.2.2. [45, Def 3.2.] Let C = C(ξ), C : R+ → R, be a transac-
tion cost function and consider

C̃(ξ) = E[C(ξ |Φ|) |Φ|], (3.25)

then, C̃(ξ) is called the modified transaction costs function, where Φ ∼
N (0, 1) and ξ ≥ 0.

Remark 4. We can apply equation (3.25) to the equation (3.23) in order
to derive new expression for transaction cost measure, rTC , given

rTC =
α

2

C̃(α)

∆t
(3.26)

Proposition 2. Assume that C : R+
0 → R is a measurable and bounded

function of the transaction costs. Then the price of the option under variable
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transaction costs is the solution of the nonlinear Black–Scholes PDE given
by

∂tV + rS∂SV +
1

2
σ̂2(H)S2∂2

SV − rV = 0, (3.27)

where the nonlinear diffusion coefficient σ̂2(H) is

σ̂2(τ, S,H) = σ2

(
1−

√
2

π
C̃(σS |H|

√
∆t)

(H)

σ
√

∆t

)
. (3.28)

In the next step we state some useful properties of the modified transaction
costs function C̃ based on the work of Žitňanská [45].

Proposition 3. Assume that the C(ξ) is a measurable and bounded trans-
action costs function. Then its modification function C̃(β) has the given
properties:

• C̃(0) = C(0).

• if C0 ≤ C(ξ) ≤ C0 for all ξ ≥ 0, then C0 ≤ C̃(ξ) ≤ C0 for all ξ ≥ 0.

• If C is increasing (decreasing) function, C̃(ξ) is then increasing (de-
creasing) function.

• If C is variable concave (convex) function, C̃(ξ) is then concave (con-
vex) function.

• If C(∞) = limξ→∞C(ξ), then C̃(∞) = C(∞).

• If C(ξ) is Ck smooth function, C̃(ξ) is then Ck smooth function.

Proposition 4. Suppose that the function C(ξ) is a decreasing and mea-
surable function of the transaction costs which is bounded for all positive ξ.
Then,

• if C(0) is positive, the function ξ 7→ C̃(ξ)
ξ is then strictly convex for

positive ξ.

• For all positive ξ if C0 ≤ C(ξ) ≤ C0, then

2C0 − C0 ≤ ξC̃ ′(ξ) + C̃(ξ).

At this point, we give some relevant examples of transaction costs functions.
More details can be found in [45].
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3.2.1 Non-increasing transaction costs function

Another interesting model is the one proposed by Amster, Averbuj and
Mariani [1] where individual transaction costs can be treated as a non-
increasing linear function. In this case the transaction cost decrease as the
number of traded shares growing inversely. In their model the transaction
cost function has the form

C(ξ) = C0 − κξ, (3.29)

where C0, κ are positive constants depending on the individual investor and
the volume of trading assets ξ = |∆δ| depends on the each time step of
stocks hold in the portfolio. The mean value modification function of the
model is given by:

C̃(ξ) = C0

√
2

π
− κξ where ξ ≥ 0, (3.30)

With this model the authors derived a nonlinear Black–Scholes PDE and
worked on the stationary problem with relevant boundary conditions. Fur-
thermore, the existence and uniqueness of the problem solution is proven
by the upper (lower) solution arguments. In the real market C(ξ) has to
be non-negative, but the function (3.29) may attain negative value provided
the transaction amount |∆δ| = ξ ≥ C0/κ. This is a limitation which will be
improved in the next section.
In Fig. 3.1(b) we depicted the plot of the relevant function when the param-
eter values are κ = 0.4 and C0 = 0.03.

3.2.2 Piecewise decreasing transaction costs function

In financial markets, the transaction costs function should not reach the
negative values. Therefore the previous model can be improved by using a
piecewise linear decreasing function which has the capability of excluding
the negative values. A piecewise linear decreasing transaction costs function
can be described as:

C(ξ) =


C0, if 0 ≤ ξ < ξ−,
C0 − κ(ξ − ξ−), if ξ− ≤ ξ ≤ ξ+,
C0, if ξ ≥ ξ+.

(3.31)

where C0 = C0 − κ(ξ+ − ξ−).
Here ξ−, κ, C0, ξ+ are given positive constants.
This transaction costs function seems to be more close to reality. It pays the
amount C0 for the small volume of traded assets. When the traded stocks
volume is higher, there is a discount for that and finally when the trades are
very large, it just pays a small constant C0.
The comparison between C̃(ξ) and C(ξ) can be seen in Fig. 3.1(c), with
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κ = 0.25, C0 = 0.03 and ξ+ = 0.12, ξ− = 0.06.
At this step, we give some results about the mean value modification function

C̃(ξ) related to the C(ξ) function in (3.31).

Proposition 5. Let C0, κ be the given positive constants. Then, for the
piecewise linear function (3.31), the modified mean value transaction costs
function is of the form,

C̃(ξ) = C0

√
2

π
− 2κξ

∫ ξ+
ξ

β−
ξ

e−u
2/2

√
2π

u, for ξ ≥ 0. (3.32)

Furthermore, there is a bound for this mean value transaction cost function
C̃(ξ).

Proposition 6. The modification transaction costs function in (3.32) ver-
ifies

C0

√
2

π
≤ C̃(ξ) ≤ C0

√
2

π
(3.33)

and

lim
ξ→∞

C̃(ξ) = C0

√
2

π
, (3.34)

where C0 = C0 − κ(ξ+ − ξ−).

In the last step, we discuss another realistc example of the transaction costs
function introduced by Ševčovič and Žitňanská [44].

3.2.3 Exponentially decreasing transaction costs function

We can consider the following exponentially decreasing transaction costs
function

C(ξ) = C0e
κξ for ξ ≥ 0, (3.35)

where κ,C0 are given positive constants. It is easy to compute the modifi-
cation transaction costs function by using (3.25):

C̃(ξ) =

√
2

π
E[C(ξ |Φ|) |Φ|] =

∫ ∞
0

C(ξu)ue−u
2/2du

= C0

∫ ∞
0

e−κξuue−u
2/2du

= C0

([
−e−ξκue−u2/2

]∞
0
−
∫ ∞

0
(e−ξκu)′(−e−u2/2)du

)
= C0

(
1− ξκ

∫ ∞
0

e−ξκu−u
2/2du

)
= C0

(
1− ξκeξ2κ2/2

∫ ∞
ξκ

e−t
2/2dt

)
= C0Φ(−

√
2ξκ),
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Here

Φ(u) =

√
π

2
ueu

2/4(1 + erf(u/2)) + 1

where the error function is erf(u/2) = 2√
π

∫ u/2
0 e−s

2
ds.

In Fig. 3.1(d) we illustrated the C̃(ξ), C(ξ) where the parameter values are
κ = 120 and C0 = 0.03.

In next part, we will follow the steps for modelling the risk arising from
a volatile portfolio.

3.3 Modelling with risk

The nonlinearity of the model can arise not only from introducing trans-
action costs but also from applying risk due to a volatile portfolio. This
model is the extended version of the RAMP model presented by Jandačka
and Ševčovič in [23] based on the Kratka’ s approach [29]. In financial mar-
kets, the portfolio is very volatile when it includes stocks and options. There
is a direct relation between the exposure to risk and time-lag of portfolio
adjustment. We require to measure the following risk which is proposed
by Jandačka and Ševčovič [23] where the volatility of the portfolio changes.
Assume that the replicating portfolio is Π = δS + V , then the volatility of
the portfolio changes are described by the term (∆Π/S). In other words,
the risk measure rV P from the unprotected portfolio can be expressed as:

rV P =
[∆Π/S]

∆t
R. (3.36)

It means, rV P is proportional to the variance of the relative change of a
portfolio per time interval ∆t. A constant R is called the risk premium
coefficient.
Then by utilizing Itô’ s lemma to the ∆Π = ∆V − δ∆S, we conclude

∆Π =
1

2
σ2S2∂2

SV (∆W )2 + σS(∂SV + δ)∆W + φ, (3.37)

where the deterministic term is φ = ∂tV∆t+ µS∆t(∂SV + δ). Therefore

∆Π− E[∆Π] = σS(∂SV + δ)Φ
√

∆t+
1

2
σ2S2∂2

SV (Φ2 − 1)∆t. (3.38)

Here E[φ] = φ is the lowest order ∆t-term opproximation and ∆W = Φ
√

∆t
such that Φ ∼ N(0, 1), is a normally distributed random variable. Hence
the variance can simply be calculated

[∆Π] = E
[
(∆Π− E[∆Π])2

]
= E

[(
σS(∂SV + δ)Φ

√
∆t+

1

2
σ2S2∂2

SV (Φ2 − 1)∆t

)2
]
.
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By assuming the delta hedging δ = −∂SV for portfolio adjustment and
applying the basic statistic rule E[(Φ2 − 1)2] = 2 we deduce that the risk
premium can be described as

rV P =
1

2
Rσ4(S∂2

SV )2∆t. (3.39)

where positive constant R describes the risk level of the risky portfolio.

In the next section we discuss the novel model including both non-trivial
transaction costs and the risk from volatile portfolio which leads to a non-
linear generalized Black–Scholes equation.

3.4 Modelling with risk and transaction costs

We want to present a nonlinear extended version of the Black–Scholes equa-
tion considering both the risky volatile portfolio and the transaction costs.
If we combine the risk premium rV P in equation (3.39) from the volatile
portfolio to the problem, then we derive the more complicated model with
the total risk measure rR as:

rR = rV P + rTC (3.40)

where rR follows the same assumption as both rV P and rTC .
We construct the derivation of the model by mimicking from the subsection
(3.2). We start by the portfolio changes, of the form

∆Π = ∆V + δ∆S − rRS∆t, (3.41)

Here the total risk defined in equation (3.40) consists of transaction costs
plus the risk level arising from the unprotected portfolio. From one side,
the large rearranging time interval leads to the lower transaction costs. But
from the other side, the portfolio is unprotected for a long time, so the trader
is in danger.
The transaction cost measure due to the variable transaction costs is given
by

rTC =
1

2
α
C̃(α)

∆t
where α = σS

∣∣∂2
SV
∣∣√∆t

and the risk measure from the volatile portfolio has the form

rV P =
1

2
Rσ4(H)2∆t where H = S∂2

SV

By inserting rR in (3.40) into the model we finally derive the new equation

∂tV + rS∂SV +
1

2
σ̂2(∆t,H)S2∂2

SV − rV = 0, (3.42)
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where the nonlinear diffusion coefficient can be described by the equation

σ̂2(∆t,H) = σ2

(
1− C̃(σ |H|

√
∆t)

(H)

σ
√

∆t
−Rσ2H∆t

)
. (3.43)

In the presented model we utilize the variable transaction costs with general
mean value modification function C̃, namely with piecewise linear decreas-
ing function introduced in subsection (3.2.2) or exponentially non-increasing
function defined in subsection (3.2.3). Furthermore, the positive constant
risk premium coefficient R is used to control the risk arises from the unpro-
tected portfolio.

This new model includes some well-known models with different choices
of R and C̃, respectively.

• RAPM model with variable transaction costs with fixed time
interval
Assuming a linearly non-increasing function from model proposed by
Amster, Averbuj and Mariani, i.e.

C(ξ) = C0 − κξ where ξ = ∆δ,

where the risk premium coefficient is not zero, R 6= 0, and the time-lag
∆t is given. Then the volatility function can be expressed by

σ̂2(∆t,H) = σ2

(
1−

(
C0

σ
√

∆t

√
2

π
(H) +Rσ2H∆t

)
+ κH

)
.

It is easy to check that the model includes both the volatility of Am-
ster, Averbuj and Mariani model and the RAPM model with undeter-
mined time-lag ∆t.

• RAPM model with optimal hedging time The goal is to min-
imize the total risk rR = rV P + rTC , which is equivalent to choose
optimal hedging time interval. The transaction costs can be mini-
mized by taking larger time interval ∆t, but choosing larger time-lag
∆t may lead to a higher risk exposure for the trader. Thus, we require
to choose an optimal hedging time interval between the portfolio ad-
justment introduced by Jandačka and Ševčovič [23]. We first derive
the transaction costs coefficient rTC . Recalling self-financing portfolio
argument and then utilizing Itô’ s lemma and δ-hedging argument to
the portfolio Π = δS + V , then the portfolio change can be presented
as

∆Π = ∆V + δ∆S − rRS∆t.
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Based on Leland’ s approach [35], one can obtain the transaction costs
coefficient rTC as follows:

rTC =
C0 |ΓσS|√

2π

1√
∆t

.

Now, we can state the equation derived in (3.39) for the risk premium
rV P which has the form

rV P =
1

2
Rσ4(H)2∆t. (3.44)

with R as positive constant explaining the risk level of the unprotected
portfolio. We have to find the solution of the problem of minimizing
the total risk value rR which is equal to minimize the value of function
g(∆t) according to ∆t,

g(∆t) = rV P + rTC =
1

2
Rσ4(H)2∆t+

C0 |H|σ√
2π

1√
∆t

.

The unique minimum attained solution of the function g at the time
interval ∆t is given by the formula

∆topt =
A2

σ2 |H|2/3
, where A =

(
C0

R
√

2π

)1/3

. (3.45)

Inserting the relation in (3.45) into the function g, we obtain

g(∆topt) = Bσ2 |H|4/3 where B =
3

2

(
C2

0R

2π

)1/3

. (3.46)

Finally by applying g(∆topt) = rR(∆topt) as the optimal value of to-
tal risk premium coefficient, we derive the generalized version of the
Black–Scholes equation

∂tV + rS∂SV +
1

2
σ2S2∂2

SV − rV − rRS = 0, (3.47)

which can simply be expressed as

∂tV + rS∂SV +
1

2
σ2
(
µ (H)1/3 + 1

)
S2∂2

SV − rV = 0, (3.48)

where µ = 3( C̄
2R

2π )1/3.

Remark 5. We state that the equation derived in (3.48) is a backward
parabolic PDE if and only if the β function

β(H) =
σ2

2
H(µH1/3 + 1) (3.49)

is a non-decreasing function according to the H = SΓ.

Here the remark (5) is true if both H and µ are non-negative.
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3.5 β(H) functions for the nonlinear models

We want to give the relevant β(H) function in the generalized nonlinear
Black–Scholes equation, given by

∂tV + rS∂SV + Sβ(H)− rV = 0,

where the function β(H) varies as the given model changes. General form
of the β(H) function can be written as

β(τ, S,H) =
1

2
σ̂2(τ, S,H)H. (3.50)

• Original Black–Scholes model
In the Black–Scholes model, the volatility is constant. Then σ̂2(H) =
σ2, so we can write the β(H) function as:

β(H) =
σ2

2
H. (3.51)

where there is no transaction costs in the model.

• Leland model
In this model transaction costs is included. The volatility function in
the Leland model has the form

σ̂2(H) =


σ2(1 + Le), if H < 0,

σ2(1− Le), if H > 0,

where the Leland number is Le = C0

σ
√

∆t

√
2
π .

Then the following β functions can be used for option pricing

βask(H) =
σ2

2
(1− Le)H and βbid(H) =

σ2

2
(1 + Le)H

• Model with non-increasing transaction costs
Here we present the function β for both ask and bid to derive the price
of the option:

βask(H) =
σ2

2
H (Le− κH + 1)

and

βbid(H) =
σ2

2
H (−Le+ κH + 1)

where Le = C0

σ
√

∆t

√
2
π is the Leland number.
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• Liquidity model
Howison and Bakstein [3] developed a parameterised model related to
the trading in an asset concerning liquidity effects. Where a combi-
nation of a trader’s individual transaction cost and a price slippage
impact describe the liquidity.

β(H) = σ2

(
1 + 2λH + γ̄2(1− α)2 + 2

√
2

π
γ̄(H) + λ2(1− α)2H2

+ 2

√
2

π
λ(1− α)2γ̄(H)

)
H

The market depth measure is shown by the parameter λ. Next, the
average transaction price transmitted into the next quoted price is
noted as α (0 ≤ α ≤ 1). Finally, the relative bid-ask price modeled by
γ = σγ̄

√
∆t.

• Risk adjustment pricing methodology model
We recall that in this model, the task was to find optimum value for the
hedging time interval in order to minimize the risk premium coefficien
rR. The relevant β function is given

βask(H) =
σ2

2
H(1 + µH1/3),

and

βbid(H) =
σ2

2
H(1− µH1/3),

where µ = 3
(
C2

0R
2π

)1/3
.

• Model with risk and transaction cost for option pricing
In the novel model, we present the diffusion coefficient as in (3.43),
then β function can be written:

β(H) =
σ2

2
H

(
1− C̃(σ |H|

√
∆t)

(H)

σ
√

∆t
−Rσ2H∆t

)

3.6 Chapter conclusions

In this chapter, our aim was to give a review of some nonlinear Black–Scholes
models, in particular, models with variable transaction costs. We recall some
well-known models such as Leland model [35], the Jumping volatility model
proposed by Avellaneda, Levy and Paras [2], non-arbitrage liquidity model
developed by Bakstein and Howison [3], Risk Adjusted Pricing Methodol-
ogy model (RAPM) introduced by Kratka [29] and its generalization by
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Jandačka and Ševčovič [23]. Furthermore, we focus on some more realistic
examples of variable transaction costs function such as the exponentially
decreasing function and the piecewise linear non-increasing function discov-
ered by Ševčovič and Žitňanská [44]. The most important feature of these
functions is actually to overcome the difficulty of possible negative transac-
tion costs in some known introduced models. The core concept of chapter
3 will be applied to evaluate the price of American style of options with a
nonlinear volatility functions in chapter 4 and 5.
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(a) Constant transaction costs.

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

Ξ

C
HΞ
L,

C�
HΞ
L

(b) Linearly decreasing costs.
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(c) Piecewise linear decreasing function.
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(d) Exponential transaction costs.
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(e) Function β(H) related to the graph (c).
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(f) Function β(H) related to the graph (d).

Figure 3.1: [45, Fig 4.1] The graph of different types of transaction costs
function C (blue line) with its modification C̃ (red line) and corresponding
function β(H) for the parameter values R = 10 and σ = 0.3.
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In a stylized financial market, the price of a European option can be com-
puted from a solution to the well-known Black–Scholes linear parabolic equa-
tion derived by Black and Scholes [6], and independently by Merton (cf.
Kwok [31], Hull [22], and Dewynne, Howison and Wilmott [11]). A Euro-
pean call (put) option is the right but not obligation to purchase (sell) an
underlying asset at the expiration price E at the expiration time T .
Despite the fact that a European option has fixed maturities, the owner
of an American option has the right to exercise it at any moment prior to
maturity. In fact, in contrast to European options, American style options
can be exercised anytime in the temporal interval [0, T ] with the specified
time of obligatory expiration at t = T .
This chapter concerns the qualitative and quantitative behavior of a solution
to the problem of pricing American style perpetual put options, assuming

35
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that the volatility may depend on the second derivative of the option price
itself. This will lead to consider a nonlinear Black–Scholes model. The re-
sults will follow from the study of a nonlinear free boundary problem. We
also present some numerical results. This is a contribution to the study of
option pricing models with variable volatility. More precisely, such nonlin-
ear Black–Scholes equation arises from option pricing models taking into
account nontrivial transaction costs, market feedbacks and/or risk from a
volatile (unprotected) portfolio. While the linear Black–Scholes equation
with constant σ had been derived under several restrictive assumptions like
frictionless, liquid and complete markets, etc.

In this chapter we mostly present the results from the joint work of Gross-
inho, Faghan and Ševčovič [17, 18].

4.1 Partial differential equation (PDE) approach

A mathematical model for pricing American put option leads to a free
boundary problem involves a function V = V (S, t) together with the early
exercise boundary profile Sf : [0, T ]→ R satisfying the following conditions:

1. V is a solution to the Black–Scholes partial differential equation:

∂tV +
1

2
σ2S2∂2

SV + rS∂SV − rV = 0 (4.1)

defined on the time dependent domain S > Sf (t) where 0 < t < T .
Here σ is the volatility of the underlying asset price process and r > 0
is the interest rate of a zero-coupon bond. A solution V = V (S, t)
represents the price of an option if the price of the underlying asset is
S > 0 at the time t ∈ [0, T ];

2. V satisfies the terminal pay-off condition:

V (S, T ) = max(E − S, 0); (4.2)

3. and the boundary conditions for the put option:

V (Sf (t), t) = E−Sf (t), ∂SV (Sf (t), t) = −1, V (+∞, t) = 0, (4.3)

for S = Sf (t) and S =∞. Here (x)+ = max(x, 0) denotes the positive
part of x.

If the diffusion coefficient σ > 0 in (4.1) is constant, then (4.1) is a classical
linear Black–Scholes parabolic equation derived by Black and Scholes [6]. If
we assume the volatility coefficient σ > 0 is a function of the solution V ,
then equation (4.1) with such a diffusion coefficient represents a nonlinear



4.2. PERPETUAL AMERICAN PUT OPTION 37

generalization of the Black–Scholes equation. We recall that the American
style of the put option has been investigated by many authors (c.f. Kwok
[31] and references therein). Accurate analytic approximations of the free
boundary position have been derived in Stamicar, Ševčovič and Chadam
[40], Zhu [46], Lauko and Ševčovič [34], Evans, Kuske and Keller [12] dealing
with analytic approximations on the whole time interval.
In this study we focus our attention to the case when the diffusion coefficient
σ2 may depend on the asset price S and the second derivative ∂2

SV of the
option price. More precisely, we assume that

σ = σ(S∂2
SV ) , (4.4)

i.e. σ depends on the product S∂2
SV of the asset price S and the second

derivative (Gamma) of the option price V . Recall that the nonlinear Black–
Scholes equation (4.1) with the volatility σ having the form of (4.4) arises
from option pricing models taking into account nontrivial transaction costs,
market feedbacks and/or risk from a volatile (unprotected) portfolio. With
this study we relax the conditions assumed for the derivation of the classical
linear Black–Scholes equation with constant σ like e.g., frictionless, liquid
and complete markets, etc. In the recent work [18] it has been investigated
the case when the volatility function may depend on S and ∂2

SV includ-
ing other models proposed by Frey and Patie [15], Frey and Stremme [16].
However, for these models there is no single implicit equation for the free
boundary position and numerical methods have to be adopted.

4.2 Perpetual American put option

Let us consider the problem of pricing the so-called perpetual put options.
By definition, perpetual options are options with a very long maturity
T →∞. Notice that both the option price and the early exercise boundary
position depend on the remaining time T − t to maturity only. Suppose that
there exists a limit of the solution V and early exercise boundary position
Sf for the maturity T → ∞. Recently, stationary solutions to generalized
Black–Scholes equation have been investigated [13, 20]. For an American
style put option the limiting price V = V (S) = limT−t→∞ V (S, t) and the
limiting early exercise boundary position ρ = limT−t→∞ Sf (t) of the perpet-
ual put option is a solution to the stationary nonlinear Black-Scholes partial
differential equation:

1

2
σ(S∂2

SV )2S2∂2
SV + rS∂SV − rV = 0, S > %, (4.5)

and
V (%) = E − %, ∂SV (%) = −1, V (+∞) = 0. (4.6)
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Figure 4.1: [17, Fig 1] A plot of the price V (S) of a perpetual American
put option and the pay-off diagram max(E − S, 0) for the parameters: E =
100, r = 0.1 and constant volatility σ0 = 0.3 and γ = 2r/σ2

0.

Our purpose is to analyze the system of equations (4.5)–(4.6). In what
follows, we will prove the existence and uniqueness of a solution pair (V (·), %)
to (4.5)–(4.6).
In the rest of this section, we will assume the volatility function

R+
0 3 H 7→ σ(H)2 ∈ R+

0 (4.7)

is non-decreasing, σ(0) > 0 and such that the function H 7→ σ(H)2H is
C1 smooth for H ≥ 0. Under these assumptions there exists an increasing
inverse function β : R+

0 → R+
0 such that

1

2
σ(H)2H = u iff H = β(u). (4.8)

which is an C1 continuous and non-decreasing function such that β(0) = 0,
and β(u) > 0 for u > 0. As u = 1

2σ(β(u))2β(u) ≥ 1
2σ(0)2β(u) we have

β(u) ≤M1u for all u ≥ 0, (4.9)

where M1 = 2/σ(0)2. Moreover, for any U0 > 0 there exists M0 > 0 such
that

β(u) ≥M0u for all u ∈ [0, U0]. (4.10)

Notice that the transformation H = S∂2
SV is a useful tool when analyz-

ing nonlinear generalizations of the Black–Scholes equations. For example,
using this transformation the fully nonlinear Black–Scholes equation with
a volatility function σ = σ(S∂2

SV ) can be transformed into a quasilinear
equation for the new variable H (more details can be checked in [23, 43]).

Remark 6. Typically, the nonlinear volatility function σ(H) is an increas-
ing function satisfying the bounds:

0 < σ2
0 ≤ σ(H)2 ≤ σ2

0(1 + µHa)
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for some constants σ0 > 0 and µ, a ≥ 0. Then it is easy to verify that, for
any U0 > 0 there are constants M0,M1 > 0 such that

M0u ≤ β(u) ≤M1u for 0 ≤ u ≤ U0, M0u
1

1+a ≤ β(u) ≤M1u for u ≥ U0.
(4.11)

The estimates (4.11) imply that the integral∫ ∞
U0

β(u)

u
du = +∞.

In this section we will focus our attention on existence and uniqueness of a
solution of the problem (4.5)–(4.6).

4.2.1 Existence and uniqueness of solution

Since β is the inverse function to 1
2σ(H)2H the pair (V (·), %) is a solution

to (4.5) if and only if

S∂2
SV = β(rV/S − r∂SV ).

Let us introduce the following transformation of variables

U(x) = r
V (S)

S
− r∂SV (S) = −rS∂S

(
V (S)

S

)
, where x = lnS.

(4.12)
Since

∂xU(x) = ∂S (rV (S)/S − r∂SV )
dS

dx
= −rS∂2

SV (S) + rS∂S

(
V (S)

S

)
the function U(x) is a solution to the initial value problem

∂xU(x) = −U(x)− rβ(U(x)), x > x0 = ln %, (4.13)

U(x0) =
rE

%
. (4.14)

The latter initial condition easily follows from the smooth pasting conditions
V (%) = E − % and ∂SV (%) = −1. Equation (4.13) can be easily integrated.
We have the following result:

Lemma 4.2.1. [17, Lemma 1] The solution U = U(x) to the initial value
problem (4.13)-(4.14) is uniquely given by

U(x) = G−1(−x+ x0), for x > x0 = ln %,

where

G(U) =

∫ U

U(x0)

1

u+ rβ(u)
du. (4.15)
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The useful properties of the function G are summarized in the following
lemma:

Lemma 4.2.2. [17, Lemma 2] The function G : R+
0 → R is nondecreasing

and G−1(0) = rE/%. Suppose there exist constants M0,M1, U0 > 0 such
that

• β(u) ≤M1u for all u ≥ U0. Then G(+∞) = +∞;

• β(u) ≥M0u for all u ≤ U0. Then G(0) = −∞,

where β : R+
0 → R+

0 is the inverse function to the function R+
0 3 H 7→

σ(H)2H ∈ R+
0 .

Henceforth we will assume that the inverse function β satisfies the growth
assumptions from Lemma 4.2.2 and so G(+∞) = +∞, G(0) = −∞ and,
consequently, G−1(−∞) = 0.
Since

−rS∂S
(
V (S)

S

)
= U(lnS) = G−1(− lnS + ln %)

we obtain, by taking into account the boundary condition V (+∞) = 0 that
the solution to equation (4.5) is given by

V (S) =
S

r

∫ ∞
S

G−1

(
− ln

(
s

%

))
ds

s
.

Using the substitution u = G−1(− ln(s/%)) we have

ds

s
= −G′(u)du = − 1

u+ rβ(u)
du.

As G−1(−∞) = 0 the expression for V (S) can be simplified as follows:

V (S) =
S

r

∫ G−1(− ln(S/%))

0

u

u+ rβ(u)
du. (4.16)

We derive a single implicit equation for the free boundary position % and the
closed form formula for the option price. And also the first order expansion
of the free boundary position with respect to the model parameter is also
derived.

4.2.2 Equation for the free boundary position

Using the expression (4.16) we can deduce a single implicit integral equation
for the free boundary position %. Clearly, V (%) = E − % if and only if

E − % =
%

r

∫ G−1(0)

0

u

u+ rβ(u)
du. (4.17)
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As G−1(0) = rE
% we obtain

rE

%
= r +

∫ rE
%

0

u

u+ rβ(u)
du = r +

rE

%
− r

∫ rE
%

0

β(u)

u+ rβ(u)
du (4.18)

Therefore the free boundary position % is a solution to the following implicit
equation: ∫ rE

%

0

β(u)

u+ rβ(u)
du = 1.

4.2.3 Main result

In this section we summarize the previous results and state the main result
on existence and uniqueness of a solution to the perpetual American put
option pricing problem (4.5)–(4.6).

Theorem 4.2.1. [17, Theorem 1] Suppose that the volatility function σ :
R+

0 → R+ is non-decreasing, σ(0) > 0 and such that the function H 7→
σ(H)2H is C1 smooth for H ≥ 0. Then the perpetual American put option
problem (4.5)–(4.6) has a unique solution (V (·), %) where the free boundary
position % is a solution to the implicit equation∫ rE

%

0

β(u)

u+ rβ(u)
du = 1, (4.19)

and the option price V (S) is given by

V (S) =
S

r

∫ G−1(− ln(S/%))

0

u

u+ rβ(u)
du, (4.20)

where β is the inverse function to the function H 7→ 1
2σ(H)2H.

Proof. According to results in Section 3.2 it suffices to prove that (4.19) has
the unique solution %. To this end, let us introduce the auxiliary function:

φ(y) =

∫ y

0

β(u)

u+ rβ(u)
du

we have φ′(y) > 0, φ(0) = 0. For a fixed U0 > 0 we have β(u) ≥ β(U0) > 0
for u ≥ U0, and

φ(+∞) =

∫ ∞
0

β(u)

u+ rβ(u)
du ≥

∫ ∞
U0

β(u)

u+ rβ(u)
du

≥ β(U0)

1 + rM1

∫ ∞
U0

1

u
du = +∞.
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Hence equation (4.19) has the unique solution % > 0. Clearly, % < E because
the right hand side of (4.17) is positive.
Since % is a solution to (4.18) we have V (%) = E − %. Moreover, as

U(x) = r
V (S)

S
− r∂SV (S), where x = lnS

(see (4.12)) we obtain, for x0 = ln %,

∂SV (%) =
V (%)

%
− U(x0)

r
=
E − %
%
− E

%
= −1.

Hence V is a solution to the perpetual American put option pricing problem
(4.5)–(4.6), as claimed.

Remark 7. [17, Remark 1] In the case of a constant volatility function
σ(H) ≡ σ0 we have β(u) = 2

σ2
0
u. It follows from equation (4.19) that

% = E
γ

1 + γ
, where γ =

2r

σ2
0

,

and,

V (S) =
S

r

∫ G−1(− ln(S/%))

0

u

u+ rβ(u)
du

=
S

r

1

1 + γ
G−1(− ln(S/%))

=
E

1 + γ

(
S

%

)−γ
because G(U) = 1

1+γ ln(U/U(x0)), U(x0) = rE/%, and so G−1(f) = rE
% e

(1+γ)f .
Hence the solution is identical with Merton’s explicit solution.

4.2.4 Sensitivity analysis

In this section we will investigate dependence of the free boundary position
on model parameters. We consider the volatility function of the form:

1

2
σ(H)2H =

σ2
0

2
(1 + µHa)H +O(µ2) as µ→ 0.

Here a ≥ 0 and µ ≥ 0 are specific model parameters. Our goal is to find
the first order expansion of the free boundary position % considered as a
function of a parameter µ, i.e. % = %(µ).
First, we derive expression for the derivative ∂µβ of the inverse function β.
For H = β(u;µ) we have u = 1

2σ(β(u;µ))2β(u;µ) and so

0 = ∂µ

(
σ2

0

2
(1 + µHa)H

)
=
σ2

0

2
(1 + µ(a+ 1)βa) ∂µβ +

σ2
0

2
βa+1 +O(µ)
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For µ = 0 we have β(u; 0) = 2
σ2
0
u. Therefore

∂µβ(u; 0) = −(σ2
0/2)−(a+1)ua+1.

The first derivative of the free boundary position % = %(µ) can be deduced
from the implicit equation (4.19). We have

0 =
d

dµ

∫ rE
%(µ)

0

β(u;µ)

u+ rβ(u;µ)
du

=
β(u;µ)

u+ rβ(u;µ)

∣∣∣∣∣
u= rE

%(µ)

(
− rE

%(µ)2
∂µ%(µ)

)
+

∫ rE
%(µ)

0

u∂µβ(u;µ)

(u+ rβ(u;µ))2
du.

Since, for µ = 0 we have %(0) = Eγ/(1 + γ) we conclude

∂µ%(0) = − E

a+ 1
γ(1 + γ)a−2.

In summary we have shown the following result:

Theorem 4.2.2. [17, Theorem 2] If the volatility function σ(H) has the

form 1
2σ(H)2H =

σ2
0
2 (1 + µHa)H + O(µ2) as µ → 0, where µ, a ≥ 0, then

the free boundary position % = %(µ) of the perpetual American put option
pricing problem has the asymptotic expansion:

%(µ) = E
γ

1 + γ
− µ E

a+ 1

γ

(1 + γ)2−a +O(µ2) as µ→ 0.

Remark 8. [17, Remark 2] In the case a = 0 we have σ(H)2 = σ2
0(1 + µ).

It corresponds to the constant volatility model. Thus %(µ) = E γ(µ)
1+γ(µ) =

E 1
1+1/γ(µ) where γ(µ) = 2r/(σ2

0(1 + µ)). Hence

%(µ) = E
1

1 +
σ2
0

2r (1 + µ)
, and, ∂µ%(0) = −E γ

(1 + γ)2
,

as claimed by Theorem 4.2.2.

4.3 Extended version of the problem

In the previous section we provided the result for the models such as the
RAPM model where the volatility function depends on H = S∂2

SV only, and
it has the form:

σ(H)2 = σ2
0(1 + λH

1
3 ) = σ2

0(1 + λ(S∂2
SV )

1
3 ), (4.21)

where σ0 > 0 is the constant historical volatility of the underlying asset
and λ is a model parameter depending on the transaction cost rate and the
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unprotected portfolio risk exposure. But there are some models like Barles
and Soner [4] in which investor’s preferences are shown by an exponential
utility function. In this model, the volatility function depends on H = S∂2

SV
as well as S, and it has the following form:

σ(S,H)2 = σ2
0

(
1 + Ψ(a2SH)

)
= σ2

0

(
1 + Ψ(a2S2∂2

SV )
)
, (4.22)

where the function Ψ is the unique solution to the ODE: Ψ′(x) = (Ψ(x) +
1)/(2

√
xΨ(x)− x),Ψ(0) = 0 and a ≥ 0 is a constant depending transaction

costs and investor’s risk aversion parameter (see [4] for more details). Notice
that Ψ(x) ≥ 0 for all x ≥ 0 and it has the following asymptotic: Ψ(x) =

O(x
1
3 ) for x → 0 and Ψ(x) = O(x) for x → ∞. In this part we prove that

under certain assumptions made on the volatility function the perpetual
American put option problem (4.5)–(4.6) has the unique solution (V (.), %).
where the volatility function is of the form

σ = σ(S,H) = σ(S, S∂2
SV ). (4.23)

Throughout this section we will assume that the volatility function σ =
σ(S,H) fulfills the following assumption:

Assumption 1. The volatility function σ = σ(S,H) in (4.5) is assumed to
be a C1 smooth nondecreasing function in the H > 0 variable and σ(S,H) ≥
σ0 > 0 for any S > 0 and H ≥ 0 where σ0 is a positive constant.
If we extend the volatility function σ(S,H) by σ(S, 0) for negative values of
H, i.e. σ(S,H) = σ(S, 0) for H ≤ 0 then the function

R 3 H 7−→ 1

2
σ(S,H)2H ∈ R

is strictly increasing and therefore there exists the unique inverse function
β : R→ R such that

1

2
σ(S,H)2H = w if and only if H = β(x,w), where S = ex.

(4.24)
Notice that the function β is a continuous and increasing function such that
β(0) = 0.

Concerning the inverse function we have the following useful lemma:

Lemma 4.3.1. [18, Lemma 1] Assume the volatility function σ(S,H) satis-
fies Assumption 1. Then the inverse function β has the following properties:

1. β(x, 0) = 0 and β(x,w)
w ≤ 2

σ2
0

for all x,w ∈ R;

2. β′w(x,w) ≤ 2
σ2
0

for all x ∈ R and w > 0.
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Proof. Clearly, β(x, 0) = 0. For w > 0 we have β(x,w) > 0 and

w = 1
2σ(ex, β(x,w))2β(x,w) ≥ σ2

0
2 β(x,w) and so β(x,w)

w ≤ 2
σ2
0
. If w < 0 then

β(x,w) < 0 and we can proceed similarly as before.

Differentiating the equality w = 1
2σ(ex, β(x,w))2β(x,w) ≥ σ2

0
2 β(x,w) with

respect to w > 0 yields:

1 =
1

2
σ2(ex, β(x,w))β′w(x,w) + ∂H

(
1

2
σ(ex, H)2

)
H ≥ 1

2
σ2

0β
′
w(x,w)

for H = β(x,w) > 0 and the proof of the second statement of Lemma
follows.

The key step how to solve the perpetual American put option problem (4.5)–
(4.6) consists in introduction of the following variable:

W (x) =
r

S
(V (S)− S∂SV (S)) where S = ex. (4.25)

Lemma 4.3.2. [18, Lemma 2] Let x0 ∈ R be given. The function V (S) is a
solution to equation (4.5) for S > % = ex0 satisfying the boundary condition:

V (S)− S∂SV (S) = E, at S = %,

if and only if the transformed function W (x) is a solution to the initial value
problem for the ODE:

∂xW (x) = −W (x)− rβ(x,W (x)), x > x0, (4.26)

W (x0) = rEe−x0 .

Proof. As ∂x = S∂S we obtain

∂xW (x) = rS∂S(S−1V (S)− ∂SV (S))

= rSS−1∂SV (S)− rS−1V (S)− rS∂2
SV (S)

= −W (x)− rS∂2
SV (S) = −W (x)− rβ(x,W (x)),

because β(x,W (x)) = H ≡ S∂2
SV (S) if and only if 1

2σ(S,H)2H = W (x)
and V solves (4.5), i.e.

1

2
σ(S,H)2H +

r

S
(S∂SV (S)− V (S)) = 0.

Finally, W (x0) = r
S (V (S)− S∂SV (S)) = rEe−x0 where S = % = ex0 , as

claimed.
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Notice the equivalence of conditions:

V (S)− S∂SV (S) = E and V (S) = E − S ⇐⇒ ∂SV (S) = −1 (4.27)

and V(S)=E-S.

Concerning the solution W of the ODE (4.26) we have the following auxiliary
result:

Lemma 4.3.3. [18, Lemma 3] Assume x0 ∈ R. Let W = Wx0(x) be the
unique solution to the ODE (4.26) for x ∈ R satisfying the boundary condi-
tion W (x0) = rEe−x0 at the initial point x0. Then

1. Wx0(x) > 0 for any x ∈ R,

2. the function x0 7→ Wx0(x) is increasing in the x0 variable for any
x ∈ R,

3. if the volatility function depends on H = S∂2
SV only, i.e. σ = σ(H),

then

Wx0(x) = F−1(x0 − x) where F (W ) =

∫ W

W0

1

w + rβ(w)
dw and

W0 = W (x0) = rEe−x0 .

Proof. According to Lemma 4.3.1 we have β(x,w)/w ≤ 2/σ2
0 for any x ∈ R

and w 6= 0. Hence

∂x| ln(W (x)| = −
(

1 + r
β(x,W (x))

W (x)

)
≥ −(1 + γ)

where γ = 2r/σ2
0. Therefore

|W (x)| ≥ |W (x0)|e−(1+γ)(x−x0) > 0,

and this is why the function W (x) does not change the sign. As W (x0) =
rEe−x0 > 0 we have Wx0(x) > 0 as well.

The solution Wx0(x) to the ODE (4.26) can be expressed in the form

Wx0(x) = Wx0(x0)−
∫ x

x0

(Wx0(ξ) + rβ(ξ,Wx0(ξ)))dξ

= rEe−x0 −
∫ x

x0

(Wx0(ξ) + rβ(ξ,Wx0(ξ))) dξ.

Let us introduce the auxiliary function

y(x) = ∂x0Wx0(x).
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Then

y(x) = −rEe−x0 +Wx0(x0) + rβ(x0,Wx0(x0))

−
∫ x

x0

(
1 + rβ′w(ξ,Wx0(ξ))

)
y(ξ)dξ

= rβ(x0,Wx0(x0))−
∫ x

x0

(
1 + rβ′w(ξ,Wx0(ξ))

)
y(ξ)dξ.

Hence y is a solution to the ODE:

∂xy(x) = −
(
1 + rβ′w(x,Wx0(x))

)
y(x), x ∈ R, (4.28)

y(x0) = rβ(x0, rEe
−x0) > 0.

With regard to Lemma 4.3.1 we have β′w(x,Wx0(x)) ≤ 2/σ2
0. Therefore the

function y is a solution to the differential inequality:

∂xy(x) ≥ −(1 + γ)y(x), x ∈ R,

where γ = 2r/σ2
0. As a consequence we obtain

|y(x)| ≥ |y(x0)|e−(1+γ)(x−x0) > 0 (4.29)

and this is why the function y(x) does not change the sign. Therefore
∂x0Wx0(x) = y(x) > 0 and the proof of the statement 2) follows.
Finally, if σ = σ(H) we have β = β(w) and so

∂xF (W (x)) =
1

W (x) + rβ(W (x))
∂xW (x) = −1.

Hence F (W (x)) = F (W (x0)) − (x − x0) = x0 − x and the statement 3)
follows.

Lemma 4.3.4. [18, Lemma 4] Under Assumption 1, there exists the unique
root x0 ∈ R of the implicit equation∫ ∞

x0

β(x,Wx0(x))dx = 1. (4.30)

Proof. Denote φ(x0) =
∫∞
x0
β(x,Wx0(x))dx. Then φ(∞) = 0 and

φ′(x0) = −β(x0,Wx0(x0)) +

∫ ∞
x0

β′w(x,Wx0(x))y(x)dx

where y(x) = ∂x0Wx0(x) is the solution to (4.28).
That is

∂xy(x) = −
(
1 + rβ′w(x,Wx0(x))

)
y(x)
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and

y(x0) = rβ(x0,Wx0(x0)) = rβ(x0, rEe
−x0)

Therefore

φ′(x0) = −β(x0,Wx0(x0))− 1

r

∫ ∞
x0

∂xy(x) + y(x)dx

= −1

r
y(∞)− 1

r

∫ ∞
x0

y(x)dx ≤ −1

r

∫ ∞
x0

y(x)dx.

As y(x) = ∂x0Wx0(x) ≥ y(x0)e−(1+γ)(x−x0) we have

φ′(x0) ≤ −1

r

y(x0)

1 + γ
= −β(x0,Wx0(x0))

1 + γ
.

It means that the function φ is strictly decreasing. Since

1

2
σ(ex0 , β(x0,Wx0(x0)))2β(x0,Wx0(x0)) = Wx0(x0) = rEe−x0 → +∞

as x0 → −∞. We have limx0→−∞ β(x0,Wx0(x0)) = ∞ and therefore
limx0→−∞ φ

′(x0) = −∞. Therefore φ(−∞) = ∞. In summary, there ex-
ists the unique root x0 of the equation φ(x0) = 1, as claimed.

Now we are in a position to state our main result on unique solvability of
the perpetual American put option problem (4.5)–(4.6).

Theorem 4.3.1. [18, Theorem 1] Assume the volatility function σ satisfies
Assumption 1. Then there exists the unique solution (V (.), %) to the perpet-
ual American put option problem (4.5)–(4.6). The function V (S) is given
by

V (S) =
S

r

∫ ∞
lnS

Wx0(x)dx, for S ≥ % = ex0 ,

where Wx0(x) is the solution to the ODE (4.26) and x0 is the unique root
of the implicit equation (4.30).

Proof. Differentiating the above expression for V (S) we obtain

∂SV (S) =
1

r

∫ ∞
lnS

Wx0(x)dx− 1

r
Wx0(lnS)

S∂2
SV (S) = −1

r
(Wx0(x) + ∂xWx0(x)) = β(x,Wx0(x)),

where x = lnS. Hence, assume that

A =
1

2
σ(S, S∂2

SV )2S2∂2
SV + rS∂SV − rV,
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then one can write

A = S

(
1

2
σ(ex, β(x,Wx0(x)))2β(x,Wx0(x))−Wx0(x)

)
= 0,

i.e. V (S) is the solution to (4.5) for S > % = ex0 . Furthermore,

[V (S)− S∂SV (S)]S=% = V (%)− %

r

∫ ∞
ln %

Wx0(x)dx+
%

r
Wx0(ln %)

= E%e− ln %

= E,

and,

V (%) =
%

r

∫ ∞
ln %

Wx0(x)dx =
%

r

∫ ∞
ln %
−∂xWx0(x)− rβ(x,Wx0(x))dx

=
%

r
Wx0(ln %)− %

∫ ∞
ln %

β(x,Wx0(x))dx = E − %

because x0 is the unique solution to (4.30). With regard to the equivalence
(4.27) we have ∂SV (S) = −1 at S = %. In summary, (V (.), %) is the unique
solution to the perpetual American put option problem (4.5)–(4.6).

Remark 9. In the case the volatility function depends on H = S∂2
SV only,

i.e. σ = σ(H), then equation (4.30) can be simplified by introducing the
change of variables w = Wx0(x). Indeed, β = β(w) and dw = ∂xWx0(x)dx =
−(Wx0(x) + rβ(Wx0(x)))dx. Therefore∫ ∞

x0

β(Wx0(x))dx = −
∫ 0

Wx0 (x0)

β(w)

w + rβ(w)
dw =

∫ rE
%

0

β(w)

w + rβ(w)
dw.

Equation (4.30) can be rewritten in the following form∫ rE
%

0

β(w)

w + rβ(w)
dw = 1. (4.31)

This is the condition for the free boundary position % recently derived by the
authors in [18].

4.3.1 Comparison principle and Merton’s solutions

In this part our aim is to derive sub– and super–solutions to the perpetual
American put option pricing problem.
Let γ > 0 be positive constant. By Vγ we will denote the explicit Merton
solution, i.e.
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Vγ(S) =

{
E

1+γ

(
S
%γ

)−γ
, S > %γ ,

E − S, 0 < S ≤ %γ ,
(4.32)

where
%γ = E

γ

1 + γ
. (4.33)

It means that the pair (Vγ(·), %γ) is the explicit Merton solution correspond-
ing to the constant volatility σ2

0 = 2r/γ (see [39]). Then, for the transformed
function Uγ(x) we have

Uγ(x) = −rS∂S
(
Vγ(S)

S

)
= rE%γγe

−(1+γ)x, for x = lnS > x0γ = ln %γ .

Clearly,
∂xUγ + Uγ + rβ(Uγ) = rβ(Uγ)− γUγ . (4.34)

Next we will construct a super–solution to the solution U of the equation
∂xUγ = −Uγ − rβ(Uγ) by means of the Merton solution Uγ where γ = γ+ is
the unique root of the equation

γ+σ(1 + γ+)2 = 2r. (4.35)

Since

Uγ+(x) ≤ Uγ+(x0γ) =
rE

γ+
= r

1 + γ+

γ+

we obtain

1

2
σ((γ+/r)Uγ+(x))2γ

+

r
Uγ+(x) ≤ 1

2
σ(1 + γ+)2γ

+

r
Uγ+(x).

By taking the inverse function β we finally obtain

γ+

r
Uγ+(x) ≤ β(Uγ+(x)).

With regard to (4.34) we conclude that

∂xUγ+(x) ≥ −Uγ+(x)− rβ(Uγ+(x)) for x > x0γ+ = ln %γ+ (4.36)

Similarly, we will construct the Merton sub–solution Uγ− satisfying the op-
posite differential inequality. Let γ− be given by

γ−σ(0)2 = 2r, (4.37)

i.e. γ− = 2r/σ(0)2. Then

Uγ− =
1

2
σ(0)2γ

−

r
Uγ− ≤

1

2
σ((γ−/r)Uγ−)2γ

−

r
Uγ−
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Figure 4.2: A plot of Merton solutions V +, V −, and the pay-off diagram
max(E − S, 0) corresponding to constant volatilities σ+ = 0.6 and σ− = 0.3
for model parameters: E = 100, r = 0.1.

and so, by taking the inverse function β we obtain β(Uγ−) ≤ γ−

r Uγ− . Then,
from (4.34) we conclude that

∂xUγ−(x) ≤ −Uγ−(x)− rβ(Uγ−(x)) for x > x0γ− = ln %γ− . (4.38)

In Fig. 4.2 we plot Merton’s solutions V ±(·) corresponding to γ+ = 0.555
(σ+ .

= 0.6) and γ− = 2.222 (σ−
.
= 0.3) where (σ±)2 = 2r/γ±.

In what follows, we will prove the inequalities

%γ+ ≤ % ≤ %γ− , (4.39)

where % is the free boundary position for the nonlinear perpetual American
put option pricing problem (4.5)–(4.6).
Denote

β−(u) =
γ−

r
u

the inverse function to the functionH 7→ 1
2σ(0)2H. As 1

2σ(0)2H ≤ 1
2σ(H)2H

we have β(u) ≤ β−(u) for any u ≥ 0. Since∫ rE
%

0

β(u)

u+ rβ(u)
du = 1 =

∫ rE
%
γ−

0

β−(u)

u+ rβ−(u)
du ≥

∫ rE
%
γ−

0

β(u)

u+ rβ(u)
du

we conclude the inequality % ≤ %γ− . On the other hand, let

β+(u) =
γ+

r
u

be the inverse function to the function H 7→ 1
2σ(1 + γ+)2H. Then, for

u ≤ rE/%γ+ we have

H = β(u) ≤ β(rE/%γ+) = β(
1

2
σ(1 + γ+)2(1 + γ+)) = 1 + γ+.
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Therefore, for u ≤ rE/%γ+ we have β(u) ≥ β+(u) and arguing similarly as
before we obtain the estimate %γ+ ≤ % and so the inequalities (4.39) follows.

For initial conditions we have Uγ±(x0γ±) = rE
%γ±

, U(x0) = rE
% and so

Uγ−(x0γ−) ≤ U(x0) ≤ Uγ+(x0γ+).

Using the comparison principle for solutions of ordinary differential inequal-
ities we have Uγ−(x) ≤ U(x) ≤ Uγ+(x). Taking into account the explicit
form of the function V (S) from Theorem 4.2.1 (see (4.20)) we conclude the
following result:

Theorem 4.3.2. [17, Theorem 3] Let (V (·), %) be the solution to the per-
petual American pricing problem (4.5)–(4.6). Then

Vγ−(S) ≤ V (S) ≤ Vγ+(S) for any S ≥ 0,

and,

%γ+ ≤ % ≤ %γ−

where Vγ± , %γ± are explicit Merton’s solutions where γ± are given by (4.35)
and (4.37).

A graphical illustration of the comparison principle is shown in Fig. 4.6.

4.4 Numerical results

In this section we propose a simple and efficient numerical scheme for con-
structing a solution to the perpetual put option problem (4.5)–(4.6). Using
transformation H = β(u), i.e. u = 1

2σ(H)2H and du = 1
2∂H(σ(H)2H)dH

we can rewrite the equation for the free boundary position (see (4.19)) as
follows: ∫ β(rE/%)

0

H 1
2∂H(σ(H)2H)

1
2σ(H)2H + rH

dH = 1. (4.40)

Similarly, the option price (4.19) can be rewritten in terms of the H variable
as follows:

V (S) =
S

r

∫ β(G−1(− ln(S/%)))

0

1
2σ(H)2H 1

2∂H(σ(H)2H)
1
2σ(H)2H + rH

dH. (4.41)

With this transformation we can reduce computational complexity in the
case when the inverse function β is not given by a closed form formula.
We present the results of numerical calculation based on the two different
nonlinear models, given
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• Frey model (see [14, 15, 16]) which is a nonlinear Black–Scholes model.
In this model the asset dynamics takes into account the presence of
feedback effects due to a large trader choosing his/her stock-trading
strategy (see also [37]). The diffusion coefficient σ is non-constant:

σ2(S∂2
SV ) = σ2

0

(
1− µS∂2

SV
)−2

, (4.42)

where σ2
0 and µ are given positive constants.

β(H) =
1

2
σ2

0

(
1− µS∂2

SV
)−2

H

The range of the parameter µ is therefore limited to satisfy the strict
inequality 1− µH = 1− µS∂2

SV (S) > 0. However, using the identity

1

1− µH
= 1 +

∞∑
n=1

µnHn.

we can approximate the Frey volatility function as follows:

σ(H)2 = σ2
0

(
1 +

N∑
n=1

µnHn

)2

, (4.43)

where N is sufficiently large. Interestingly, a similar power series ex-
pansion of σ(H)2 can be found in the generalized Black–Scholes model
proposed by Cetin, Jarrow and Protter [9].

• Risk Adjusted Pricing Methodology model (RAPM) proposed by Kratka
[29] and revisited by Jandačka and Ševčovič [23]. In this model, the
volatility is non-constant:

σ(S∂2
S)2 = σ2

0

(
1 + µ(S∂2

SV )
1
3

)
. (4.44)

By σ0 > 0 we denoted the constant historical volatility of the asset
price returns and µ = 3(C2R/2π)

1
3 , where C,R ≥ 0 are nonnega-

tive constants representing the transaction cost measure and the risk
premium measure, respectively. (see [23] for more details).

Results of numerical calculation for the Frey model (4.42) and the RAPM
model (4.44) are summarized in Tables 4.1 and 4.3. We show the position
of the free boundary % and the perpetual option value V evaluated at the
exercise price S = E. The results are computed for various values of the pa-
rameter µ for the Frey model and the RAPM model. Other model parameter
were chosen as: E = 100, r = 0.1 and σ0 = 0.3.
In computations shown in Fig. 4.4 and Tab. 4.2 we present results of the
free boundary position and the perpetual American put option price V (E)
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Figure 4.3: [17, Fig 3] A plot of dependence of the free boundary position
% a) and the perpetual American put option price V (E) b) on the model
parameter µ for the Frey model (4.42).
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Figure 4.4: [17, Fig 4] A plot of dependence of the free boundary position
% a) and the perpetual American put option price V (E) b) on the model
parameter µ for the modified Frey model (4.43).

Table 4.1: [17, Tab 1] The free boundary position % = %(µ) and the option price
V (S) evaluated at S = E for various values of the model parameter µ ≥ 0 for the
Frey model (4.42).

µ 0.00 0.01 0.05 0.10 0.15 0.20 0.22

% 68.9655 68.2852 65.7246 62.8036 60.1175 57.6177 56.6627
V (E) 13.5909 13.8005 14.6167 15.5961 16.5389 17.4510 17.8083
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Table 4.2: [17, Tab 2] The free boundary position % and the option price
V (S) evaluated at S = E for various values of the model parameter µ ≥ 0
for the modified Frey model.

µ 0.00 0.10 0.50 1.00 2.00 4.00 8.00

% 68.9655 62.8037 45.3007 31.0862 16.3126 8.3818 5.4556
V (E) 13.5909 15.5961 22.4529 29.5719 41.0654 56.1777 70.2259

Table 4.3: [17, Tab 3] The free boundary position % and the option price
V (S) evaluated at S = E for various values of the model parameter µ ≥ 0
for the RAPM model.

µ 0.00 0.10 0.50 1.00 2.00 4.00 8.00

% 68.9655 66.7331 59.6973 53.3234 44.5408 34.0899 23.6125
V (E) 13.5909 14.5761 17.9398 21.3434 26.6857 34.3393 44.1774

for N = 10 and larger interval of parameter values µ ∈ [0, 8]. Note that the
results for small values µ ≤ 0.1 computed from the original Frey volatility
(4.42) and (4.43) are very close to each other.

In our next computational example we consider the Risk adjusted pricing
methodology model (RAPM). In computations shown in Fig. 4.5, a) and
Tab. 4.3 we present results of the free boundary position and the perpetual
American put option price V (E) for the RAPM model (see Fig. 4.5, b)). We
also show comparison of the free boundary position % = %(µ) and its linear
approximation derived in Theorem 4.2.2 (see Fig. 4.5, c)).

In the last examples shown in Fig. 4.6 we present comparison of the option
price V (S) and the free boundary position % for the Frey model (left) and the
Risk adjusted pricing methodology model (right) with closed form explicit
Merton’s solutions corresponding to the constant volatility.

4.5 Chapter conclusions

This chapter involves the main theoretical results of the thesis i.e. the
existence and uniqueness of a solution to the price of American perpetual
put option under nonlinear volatility function. Where the volatility function
depends on H = S∂2

SV only, as the equation (4.20) in section 4.2.3. The
first order expansion of the free boundary position with respect to the model
parameter is also derived in equation (4.19). In section 4.3, we also extend
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Figure 4.5: [17, Fig 5] A plot of dependence of the free boundary position %
a) and the perpetual American put option price V (E) b) on the model pa-
rameter µ for the RAPM model (4.44). The comparison of the free boundary
position and its linear approximation c).
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Figure 4.6: [17, Fig 6] The solid curve represents a graph of a perpetual
American put option S 7→ V (S) for the Frey model a) with µ = 0.1 and
the RAPM model b) with µ = 1. Sub- and super- solutions V − = Vγ− and
V + = Vγ+ are depicted by dashed curves, V + < V −. The model parameters:
E = 100, r = 0.1 and σ0 = 0.3.
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our results in section 4.2.3 to other models like the well-known Barles and
Soner [4] model where the volatility function depends on H = S∂2

SV as
well as S. Then, we construct suitable sub– and supper–solutions based on
Merton’s explicit solutions with constant volatility in section 4.3.1. Finally,
we present a numerical approximation scheme and computational results of
the free boundary position, option price and their dependence on the model
parameter.
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The nonlinearity of the original Black–Scholes model can also arise from the
feedback and illiquid market effects due to large traders choosing given stock-
trading strategies (Schönbucher and Wilmott [38], Frey and Patie [15], Frey
and Stremme [16]), imperfect replication and investor preferences (Barles
and Soner [4]), risk from unprotected portfolio (Kratka [29], Jandačka and
Ševčovič [23]). In this chapter we consider a new nonlinear model recently
derived by Ševčovič and Žitňanská [44] for pricing call or put options in
the presence of variable transaction costs. The model generalizes the well-
known Leland model with constant transaction costs (c.f. [21, 35]) and
Amster model [1] with linearly decreasing transaction costs. It leads to the
generalized Black–Scholes equation with the nonlinear volatility function σ̂
which depends on the product H = S∂2

SV of the underlying asset price S
and the second derivative (Gamma) of the option price V :

∂tV +
1

2
σ̂(S∂2

SV )2S2∂2
SV + (r − q)S∂SV − rV = 0, V (T, S) = (S − E)+,

(5.1)

59
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where r, q ≥ 0 are the interest rate and the dividend yield, respectively. The
price V (t, S) of a call option is given by a solution to the nonlinear parabolic
equation (5.1) depending on the underlying stock price S > 0 at the time
t ∈ [0, T ], where T > 0 is the time of maturity and E > 0 is the exercise
price.
Our goal is to study American style call option which, as known, leads to a
free boundary problem. Their prices can be computed by means of the gen-
eralized Black-Scholes equation with the nonlinear volatility function (5.1).
If the volatility function is constant then it is well known that American op-
tions can be priced by means of a solution to a linear complementarity prob-
lem (cf. Kwok [31]). Similarly, for the nonlinear volatility model, one can
construct a nonlinear complementarity problem involving the variational in-
equality for the left-hand side of (5.1) and the inequality V (t, S) ≥ (S−E)+.
However, due to the fully nonlinear nature of the differential operator in
(5.1), the direct computation of the nonlinear complementarity problem be-
comes harder and unstable. Therefore, we propose an alternative approach
and reformulate the nonlinear complementarity problem in terms of the new
transformed variable H for which the differential operator has the form of
a quasilinear parabolic operator appearing in the left-hand side of (5.3). In
order to apply the Gamma transformation for American style options we
derive the nonlinear complementarity problem for the transformed variable
H and we solve the variational problem by means of the modified projected
successive over relaxation method (cf. Kwok [31]). Using this method we
compute American style call option prices for the Black–Scholes nonlinear
model for pricing call options in the presence of variable transaction costs.

We mention that most of the used results in this chapter can be found
in the joint work of Grossinho, Faghan and Ševčovič [19].

5.1 Nonlinear complementarity problem (NLCP)

We recall the discussion in chapter 2 where C : R+
0 → R is a measurable

and bounded transaction costs function then the price of the option based
on the variable transaction costs is given by the solution of the nonlinear
Black–Scholes PDE (5.1) (for more details we refer to the work of Ševčovič
and Žitňanská [44]). Where the nonlinear diffusion coefficient σ̂2(H) is

σ̂2(τ, S,H) = σ2

(
1−

√
2

π
C̃(σS |H|

√
∆t)

(H)

σ
√

∆t

)
. (5.2)

For European style call options various numerical methods for solving the
fully nonlinear parabolic equation (5.1) were proposed and analyzed by
Ďurǐs, Tan and Ševčovič in [41]. Also, Ševčovič and Jandačka [42] and
Žitňanská [44] investigated a new transformation technique (referred to as
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the Gamma transformation). They showed that the fully nonlinear parabolic
equation (5.1) can be transformed to a quasilinear parabolic equation

∂τH − ∂2
uβ(H)− ∂uβ(H)− (r − q)∂uH + qH = 0, (5.3)

where β(H) =
1

2
σ̂(H)2H,

of a porous-media type for the transformed quantity H(τ, u) = S∂2
SV (t, S)

where τ = T − t, u = ln(S/E). The advantage of solving the quasilinear
parabolic equation in the divergent form (5.3) compared to the fully nonlin-
ear equation (5.1) is twofold. Firstly, from the analytical point of view, the
theory of existence, uniqueness of solutions to quasilinear parabolic equa-
tion of the form (5.1) is well developed and understood. Using the general
theory of quasilinear parabolic equations due to the work in Ladyženskaya,
Solonnikov and Uralaceva [32], the existence of Hölder smooth solutions to
(5.3) has been shown in the work of Ševčovič and Žitňanská [44]. Secondly,
the quasilinear parabolic equations in the divergent form can be numeri-
cally approximated by means of the finite volume method (cf. LeVeque
[35]). Furthermore, we propose the semi-implicit approximation scheme fits
into a class of methods which have been shown to be of the second order
of convergence (see e.g. Kilianová and Ševčovič [24]). In a series of papers
[25, 26, 27, 28] Koleva and Vulkov investigated the transformed Gamma
equation (5.3) for pricing European style of call and put options. They also
derived the second order positivity preserving numerical scheme for solving
(5.1) and (5.3). In the context of European style options the transformation
method to the Gamma equation was proposed and analyzed by Jandačka
and Ševčovič [23]. If we consider the generalized nonlinear Black-Scholes
equation (5.3) for the European style of an option, then making the change
of variables u = ln(S) and τ = T − t and computing the second derivative of
equation (5.1) with respect to u, we derive the so-called Gamma equation
(5.3).

Lemma 5.1.1. Let us consider the call option with the pay-off diagram
V (T, S) = (S − E)+. Then the function H(τ, u) = S∂2

SV (t, S) where u =
ln( SE ) and τ = T−t is a solution to (5.3) subject to the Dirac initial condition
H(0, x) = δ(x) if and only if

V (t, S) =

∫ +∞

−∞
(S − Eeu)+H(τ, u)du

is a solution to (5.1).

More details of derivation of the Gamma equation, existence and uniqueness
of classical Hölder smooth solutions can be found in[44].
In this section we investigate the transformation method of a free boundary
problem arising in pricing American style of options by means of a solution
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to the so-called Gamma variational inequality. It is well-known that pricing
an American call option on an underlying stock paying continuous dividend
yield q > 0 leads to a free boundary problem. In addition to a function
V (t, S), we need to find the early exercise boundary function Sf (t) with
respect to time t ∈ [0, T ]. Furthermore, we note that the function Sf (t) has
the following properties:

• If Sf (t) > S for t ∈ [0, T ] then V (t, S) > (S − E)+.

• If Sf (t) ≤ S for t ∈ [0, T ] then V (t, S) = (S − E)+.

In the last decades many authors analyzed the free boundary position func-
tion Sf . Stamicar, Ševčovič and Chadam [40] derived accurate approxima-
tion to the early exercise position for times t close to expiry T for the Black–
Scholes model with constant volatility (see also [12, 34, 46]). The method
has been generalized for the nonlinear Black-Scholes model by Ševčovič [42].
Following Kwok [31] (see also [43]) the free boundary problem for pric-
ing the American call option consists in finding a function V (t, S) and
the early exercise boundary function Sf such that V solves the Black–
Scholes PDE (1) on a time depending domain: {(t, S) : 0 < S < Sf (t)} and
V (t, Sf (t)) = Sf (t)− E, and ∂SV (t, Sf (t)) = 1. Alternatively, a C1 smooth
function V is a solution to the free boundary problem for (5.1) if and only
if it is a solution to the nonlinear variational inequality

∂tV + (r − q)S∂SV + Sβ(S∂2
SV )− rV ≤ 0, V (t, S) ≥ g(S),(

∂tV + (r − q)S∂SV + Sβ(S∂2
SV )− rV

)
× (V − g) = 0, (5.4)

for any S > 0 and t ∈ [0, T ] where g(S) ≡ (S − E)+.

5.1.1 Gamma transformation of the variational inequality

In this section we present a transformation technique how to transform the
nonlinear complementarity problem (5.4) for the function V (t, S) into the
so-called Gamma variational inequality involving the transformed function
H(τ, x). We need two auxiliary lemmas.

Lemma 5.1.2. [19, Lemma 3.2] Let V (t, S) be a given function. Let u =
ln( SE ), τ = T − t and define the function Y (τ, u)

Y (τ, u) = ∂tV + (r − q)S∂SV + Sβ(S∂2
SV )− rV.

Then

−∂τH + ∂uβ(H) + ∂2
uβ(H) + (r − q)∂uH − qH =

1

E
e−u[∂2

uY − ∂uY ],

where H(τ, u) = S∂2
SV (t, S).
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Proof. By differentiating the function Y with respect to the variable u and
using the fact ∂u = S∂S , we obtain

∂uY = ∂t(S∂SV ) + S(β + ∂uβ) + (r − q)SH − qS∂SV where S = Eeu.

Furthermore, since

∂2
uY = ∂t(S∂SV + S2∂2

SV )

+(r − q)S(H + ∂uH) + S(β + ∂uβ) + S(∂2
xβ + ∂uβ)

−qS∂SV − qH,

then
∂2
uY − ∂uY = EeuΨ[H], (5.5)

where Ψ[H] := −∂τH + ∂uβ(H) + ∂2
uβ(H) + (r − q)∂uH − qH.

Remark 10. For the particular case Y = 0, we conclude that the function
V (t, S) is a solution to the European style call option satisfying the nonlinear
Black-Scholes equation (5.1) if and only if the function H(τ, u) is a solution
to the so-called Gamma equation

−∂τH + ∂uβ(H) + ∂2
uβ(H) + (r − q)∂uH − qH = 0,

subject to the initial condition H(x, 0) = δ(x), where δ is the Dirac function
(cf. [42, 44]).

Lemma 5.1.3. [19, Lemma 3.3] If we assume the asymptotic behavior

lim
u→−∞

Y (τ, u) = 0 and lim
u→−∞

e−u∂uY (τ, u) = 0,

then we have∫ +∞

−∞
(S − Eeu)+Ψ[H](τ, u)du = Y (τ, u)|u=ln(S/E)

≡ ∂tV + (r − q)S∂SV + Sβ(S∂2
SV )− rV.

Proof. Using Lemma 2 and equation (5.5) we can express the term
∫ +∞
−∞ (S−

Eeu)+Ψ[H](τ, u)du as follows:∫ +∞

−∞
(S − Eeu)+ 1

E
e−u[∂2

uY − ∂uY ]du =

1

E

∫ ln(S/E)

−∞
(Se−u − E)[∂2

uY − ∂uY ]du =

1

E

∫ ln(S/E)

−∞

[
Se−u∂uY − (Se−u − E)∂uY du

]
+ [(Se−u − E)∂uY ]

ln(S/E)
−∞︸ ︷︷ ︸

0

=

1

E

∫ +∞

−∞
E∂uY du = Y (τ, u)|u=ln(S/E) =

∂tV + (r − q)S∂SV + Sβ(S∂2
SV )− rV.
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Theorem 5.1.1. [19, Theorem 3.4] The function V (t, S) is a solution to
the nonlinear complementarity problem (NLCP):

V (t, S) ≥ g(S) and ∂tV + (r − q)S∂SV + Sβ(S∂2
SV )− rV ≤ 0(

∂tV + (r − q)S∂SV + Sβ(S∂2
SV )− rV

)
× (V − g) = 0

for any S > 0 and t ∈ [0, T ] where g(S) ≡ (S − E)+ if and only if the
following Gamma variational inequality and complementarity constraint:∫ +∞

−∞
(S − Eeu)+[−Ψ[H](τ, u)]du ≥ 0, (5.6)∫ +∞

−∞
(S − Eeu)+H(τ, u)du ≥ g(S), (5.7)∫ +∞

−∞
(S − Eeu)+Ψ[H](τ, u))du× f(S,H) = 0. (5.8)

where f(S,H) =
∫ +∞
−∞ (S − Eeu)+H(τ, u)du − g(S). It hold for any S ≥ 0

and τ ∈ [0, T ].

Proof. It directly follows by applying Lemma 5.1.2 and Lemma 5.1.3.

Remark 11. [19, Remark 3.5] For calculating V (T, S) in Theorem 5.1.1
we use the fact that H(0, u) = H̄(u), u ∈ R, where H̄(u) := δ(u) is the Dirac
delta function such that∫ +∞

−∞
δ(u)du = 1,

∫ +∞

−∞
δ(u− u0)φ(u)du = φ(u0),

for any continuous function φ.
In what follows, we will approximate the initial Dirac δ-function can be
approximated as follows:

H(x, 0) ≈ f(d)/(σ̂
√
τ∗),

where 0 < τ∗ � 1 is a sufficiently small parameter, f(d) is the PDF
function of the normal distribution, that is: f(d) = e−d

2/2/
√

2π and d =(
x+ (r − q − σ2/2)τ∗

)
/σ
√
τ∗. Note that this approximation follows from

observation that for a solution of the linear Black–Scholes equation with a
constant volatility σ > 0 at the time T − τ∗ close to expiry T the value
H lin(x, τ∗) = S∂2

SV
lin(S, T − τ∗) is given by H lin(x, τ∗) = f(d)/(σ̂

√
τ∗).

Moreover, H lin(., τ∗)→ δ(.) as τ∗ → 0 in the sense of distributions.
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5.2 Solving the Gamma variational inequality

According to Theorem 5.1.1, the American call option problem can be
rewritten in terms of the function H(τ, u) in the form of the Gamma varia-
tional inequality (5.6)–(5.7) with the complementarity constraint (5.8).
In order to apply the Projected Successive Over Relaxation method (PSOR)
(c.f. Kwok [31]) to the variational inequalities (5.6)–(5.7), we need first to
discretize the nonlinear operator Ψ:

−Ψ[H] ≡ ∂τH − (r − q)∂uH − ∂uβ(H)− ∂2
uβ(H) + qH. (5.9)

In the next, we follow the paper by Ševčovič and Žitňanská [44] in order
to derive an efficient numerical scheme for solving the Gamma variational
inequality for a general form of the function β(H) including the special case
of the variable transaction costs model.

5.2.1 Numerical scheme

The proposed numerical discretization is based on the finite volume method.
Assume that the spatial interval belongs to u ∈ (−L,L) for sufficiently large
L > 0 where the time interval [0, T ] is uniformly divided with a time step
k = T

m into discrete points τj = jk for j = 1, 2, · · · ,m. Furthermore, we
divide the spatial interval [−L,L] into a uniform mesh of discrete points
ui = ih where i = −n, · · · , n with a spatial step h = L

n .
The discretization of the operator Ψ[H] leads to a tridiagonal matrix multi-
plied by the vector Hj = (Hj

−n+1, · · · , H
j
n−1) ∈ R2n−1. More precisely, the

vector Ψ[H]j at the time level τj is given by Ψ[H]j = −(AjHj − dj) where
the (2n− 1)× (2n− 1) matrix Aj has the form

Aj =


bj−n+1 cj−n+1 0 · · · 0

aj−n+2 bj−n+2 cj−n+2

...
0 . . . 0
... · · · ajn−2 bjn−2 cjn−2

0 · · · 0 ajn−1 bjn−1

 (5.10)

with coefficients of the form:

aji = − k

h2
β′(Hj−1

i−1 ) +
k

2h
(r − q),

cji = − k

h2
β′(Hj−1

i )− k

2h
(r − q),

bji = (1 + kq)− (aji + cji ),

and

dji = Hj−1
i +

k

h

(
β(Hj−1

i )− β(Hj−1
i−1 )

)
.
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Finally, using numerical integration the variational inequality (5.6)–(5.7)
can be discretized as follows:

V (S, T − τj) = h

n∑
i=−n

(S − Eeui)+Hj
i , j = 1, 2, · · · ,m. (5.11)

Then, the full space-time discretized version of the problem (5.6)–(5.7) is
given by

h
n∑

i=−n
(S − Eeui)+

[
(AjHj)i − dji

]
≥ 0, (5.12)

h
n∑

i=−n
(S − Eeui)+Hj

i ≥ g(S) ≡ (S − E)+. (5.13)

Let us assume that

Pli = h[max(Sl − Eeui , 0)] = h[max(Eevl − Eeui , 0)] (5.14)

where

vl =
ul+1 + ul−1

2
, for l = −n, · · · , n.

Remark 12. The matrix P = (Pli) is invertible.

5.2.2 Applying the PSOR method

In this section, our aim is to solve the problem (5.12)–(5.13) by means of
the PSOR method. Then, according to (5.14), we can rewrite (5.12)–(5.13)
for the American call option in this form

PAH ≥ Pd

PH ≥ g

(PAH − Pd)i(PH − g)i = 0, for all i,

where A = Aj , gi = (Si − E)+ and H = Hj .
This nonlinear complementarity problem can be solved by the PSOR algo-
rithm, given by the following iterative scheme:

1. for k = 0 set vj,k = vj−1,

2. until k ≤ kmax repeat:

tj,k+1
i =

1

Ãii

(
−
∑
l<i

Ãilv
j,k+1
l −

∑
l>i

Ãilv
j,k
l + d̃ji

)
,

vj,k+1
i = max

{
vj,ki + ω(tj,k+1

i − vj,ki ), gi

}
,
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Figure 5.1: [19, Fig 2] A graph of the function β(H) related to the piecewise
linear decreasing transaction costs function (see [23]).

3. set vj = vj,k+1,

for i = −n, · · · , n and j = 1, 2, · · · ,m, where vj = PHj , d̃j = Pdj and
Ã = PAjP−1. Here ω ∈ [1, 2] is a relaxation parameter which can be tuned
in order to speed up convergence process.
Finally, using the value Hj = P−1vj and equation (5.11), we can evaluate
the option price.
The full description of new PSOR method for calculating American call
option can be seen in algorithm 1.

5.2.3 Numerical results

In this section, we focus our attention on numerical experiments for comput-
ing American style call option prices based on the nonlinear Black–Scholes
equation that includes a piecewise linear decreasing transaction costs func-
tion. In Fig. 5.1, we show the corresponding function β(H) given by

β(H) =
σ2

2

(
1−

√
2

π
C̃(σ|H|

√
∆t)

sgn(H)

σ
√

∆t

)
H,

where C̃ is the mean value modification of the transaction costs function.
The parameters C0, κ, ξ±,∆t characterizing the nonlinear piecewise linear
variable transaction cost function and other model parameters are given in
Table 5.1. Here ∆t is the time interval between two consecutive portfolio re-
arrangements, the maturity time T , the historical volatility σ, the dividend
yield q, the strike price E and r is the risk free interest rate. The small pa-
rameter 0 < τ∗ � 1 represents the smoothing parameter for approximation
of the Dirac δ function.
For the given numerical parameters in Table 5.1, we computed option values
Vvtc for several underlying asset prices S. The prices were calculated by
numerical solutions for both Bid and Ask option prices in Table 5.2. The
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Table 5.1: [19, Tab 1] Model and numerical parameter values for calculation
of numerical experiments.

Model parameters Numerical parameters
C0 = 0.02 m=200, 800
κ = 0.3, ξ− = 0.05ξ+ = 0.1 n=250, 500
∆t = 1/261 h=0.01
σ = 0.3 τ∗ = 0.005
r = 0.011, q = 0.008 k = T/m
T = 1, E = 50 L = 2.5

Bid price VBidvtc is compared to the price VBinMin computed by means
of the binomial tree method (cf. [31]) with the lower volatility σ̂2

min =

σ2(1−C0

√
2
π

1
σ
√

∆t
), whereas the upper bound price VBinMax corresponds to

the solution with the higher constant volatility σ̂2
max = σ2(1−C0

√
2
π

1
σ
√

∆t
).

Similarly, as well as for the Ask price VAskvtc the lower bound VBinMin

corresponds to the solution of the binomial tree method with the lower

volatility σ̂2
min = σ2(1 + C0

√
2
π

1
σ
√

∆t
), whereas the upper bound VBinMax

corresponds to the solution with the higher constant volatility σ̂2
max = σ2(1+

C0

√
2
π

1
σ
√

∆t
).

Remark 13. In the case of a European style option, it can be shown ana-
lytically by using the parabolic comparison principle that

Vσmin(S, t) ≤ Vvtc(t, S) ≤ Vσmax(t, S), S > 0, t ∈ [0, T ].

For more details we refer to the work in [44]. For the case of American style
options, these inequalities can be observed in Table 5.2.

In Table 5.3, we present a comparison of results obtained by our method
based on the Gamma equation in which we considered constant volatilities
σmin and σmax and those obtained by the well-known method based on
binomial trees for American style call options (cf. [31]). The difference in
the prices is in the order of the mesh size h = L/n.

In Fig. 5.2 we present the free boundary function Sf (t) obtained by our
method with variable transaction costs function for bid option value com-
pared to the binomial trees with σmin, σmax in which parameter values are
given by E = 50, σ = 0.3, r = 0.011, q = 0.008, T = 1. In Fig. 5.3 we plot the
graphs of the solutions Vvtc(t, S) at t = 0 for both bid and ask prices. We
also plot the prices obtained by the binomial tree method with the constant
lower volatility σmin and the higher volatility σmax, respectively.
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Table 5.2: [19, Tab 2] Bid (top table) and Ask (bottom table) American
call option prices VBidvtc and VAskvtc obtained from the numerical solution
of the nonlinear model with variable transaction costs for different meshes.
Comparison to the option prices VBinMin and VBinMax computed by means
of binomial trees for constant volatilities σmin and σmax.

n = 250,m = 200 n = 500,m = 800
S VBinMin VBidvtc VBinMax S VBinMin VBidvtc VBinMax

40 0.0320 0.0513 1.3405 40 1.4511 1.6594 2.8670
42 0.1075 0.3252 1.8846 42 2.0137 2.3869 3.6039
44 0.2901 0.8232 2.5527 44 2.6979 3.2309 4.4371
46 0.6535 1.5097 3.3483 46 3.5064 4.1868 5.3645
48 1.2675 2.3859 4.2711 48 4.4382 5.2488 6.3833
50 2.1740 3.4244 5.3175 50 5.4897 6.4133 7.4889
52 3.3738 4.6126 6.4817 52 6.6553 7.6764 8.6772
54 4.8304 5.9521 7.7555 54 7.9270 9.0342 9.9423
56 6.4862 7.4377 9.1295 56 9.2959 10.4824 11.2798
58 8.2809 9.0643 10.5943 58 10.7532 12.0179 12.6832
60 10.1635 10.8273 12.1397 60 12.2892 13.6385 14.1481

n = 250,m = 200 n = 500,m = 800
S VBinMin VAskvtc

VBinMax S VBinMin VAskvtc
VBinMax

40 1.4511 1.6594 2.8670 40 1.4420 1.6692 2.8519
42 2.0137 2.3869 3.6039 42 2.0027 2.3945 3.5870
44 2.6979 3.2309 4.4371 44 2.6851 3.2412 4.4187
46 3.5064 4.1868 5.3645 46 3.4922 4.2134 5.3450
48 4.4382 5.2488 6.3833 48 4.4231 5.2601 6.3627
50 5.4897 6.4133 7.4889 50 5.4742 6.4300 7.4678
52 6.6553 7.6764 8.6772 52 6.6395 7.6922 8.6557
54 7.9270 9.0342 9.9423 54 7.9115 9.2167 9.9211
56 9.2959 10.4824 11.2798 56 9.2812 11.0264 11.2586
58 10.7532 12.0179 12.6832 58 10.7393 12.2017 12.6628
60 12.2892 13.6385 14.1481 60 12.2763 13.6505 14.1283
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Figure 5.2: [19, Fig 3] An early exercise boundary function Sf (t), t ∈
[0, T ], computed for the model with variable transaction costs (dashed line
Gamma) and comparison with early exercise boundary computed by means
of binomial trees with constant volatilities σmin (bottom curve) and σmax
(top curve).
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Figure 5.3: [19, Fig 4] The American Bid (top) and Ask (bottom) call option
price V (t, S) at t = 0 computed by means of the nonlinear Black-Scholes
model with variable transaction costs with the mesh size n = 500,m = 800
in comparison to solutions Vσmin , Vσmax calculated by the binomial trees with
constant volatilities σmin and σmax.
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Algorithm 1 New PSOR algorithm to compute American call option

0: Initialization:
σ, r, q, τ∗, T, X, ω, γ, h;
C0, κ, ξ−, ξ+, N, Miter;

α = r−q
σ2 − 1

2 , β = r+q
2 + σ2

8 + (r−q)2
2σ2 , k = T

2N−1 ;

H(x) = e−((x+(r−q−σ2/2)τ∗)/(σ
√
τ∗)2/2

(σ
√
τ∗
√

2π)
.

Computing beta function:
Define C̃(ξ)← Modified variable transaction costs function

β(H) = σ2

2

(
1 +

C̃(σ|H|
√

∆t)
σ
√

∆t

)
H.

βH(H)←Derivative of β with respect to H
βx(H)←Derivative of β with respect to x
g(x, τ) = eαx+βτ max(ex − 1, 0)←Payoff function
u(0) = (g(x0, 0), g(x1, 0), ..., g(x2N−1, 0));
P = hmax[X(eτj − exi), 0];
MAIN LOOP

0: for j=1,...,2N-1 do
Ā=Tridiag(a,b,c) where:
aji = − k

h2
βH(Hj−1

i−1 , xi−1, τj−1) + k
2hr;

cji = − k
h2
βH(Hj−1

i , xi, τj−1)− k
2hr;

bji = 1− (aji + bji ).

dji = Hj−1
i + k

h(β(Hj−1
i , xi, τj−1)− β(Hj−1

i−1 , xi−1, τj−1))

+βx(Hj−1
i , xi, τj−1)− βx(Hj−1

i−1 , xi−1, τj−1))).
gvec = P−1 ∗ g(x, τj).

0: for p=1,...,Miter do
0: for s=1,...,2N − 1 do
unewjs = (1− ω)uj−1

s + (ω/Ā(s,s))(d
j
i + uj−1

s − Ās,s−1u
j−1
s−1 − Ās,s+1u

j−1
s+1);

uj = max(unewj , gvec(s)).
0: end for
0: end for
Hsol = uj .

0: end for
final result:
V (S) = h

∑2N−1
j=1 max(S −Xexj , 0)Hsol(j) =0
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Table 5.3: [19, Tab 3] Ask call option values VAskvtc of the numerical solution
of the model under constant volatilities σ = σmin (left) and σ = σmax (right)
and comparison to the prices computed by the Binomial tree method (with
n = 100 and n = 200 nodes, respectively.

σ = σmin σ = σmax

n = 250,m = 200 n = 500,m = 800 n = 250,m = 200 n = 500,m = 800
S VAskvtc

VBinMin VAskvtc
VBinMin S VAskvtc

VBinMax VAskvtc
VBinMax

40 1.4737 1.4511 1.4634 1.4420 40 2.8827 2.8670 2.8663 2.8519
42 2.2417 2.0137 2.110 2.002 42 3.6273 3.6039 3.5923 3.5870
44 2.7156 2.6979 2.7025 2.6851 44 4.4618 4.4371 4.4067 4.4187
46 3.5287 3.5064 3.5193 3.4922 46 5.3945 5.3645 5.3561 5.3450
48 4.4572 4.4382 4.4498 4.4231 48 6.4095 6.3833 6.3515 6.3627
50 5.5019 5.4897 5.4996 5.4742 50 7.5002 7.4889 7.4710 7.4678
52 6.6993 6.6553 6.6684 6.6395 52 8.7049 8.6772 8.6682 8.6557
54 7.9537 7.9270 7.9350 7.9115 54 9.9765 9.9423 9.9326 9.9211
56 9.3367 9.2959 9.3145 9.2812 56 11.3071 11.2798 11.2742 11.2586
58 10.8015 10.7532 10.7683 10.7393 58 12.7103 12.6832 12.6790 12.6628
60 12.3369 12.2892 12.3189 12.2763 60 14.1640 14.1481 14.1374 14.1283

5.3 Chapter conclusions

This chapter brings the main contribution in the form of a solution to the
problem of pricing American call options dealing with nonlinear Black–
Scholes equation with variable transaction costs function for the trading
underlying assets. The mathematical model is constructed by the fully
nonlinear parabolic equation when the nonlinear diffusion coefficient may
depends on the second derivative of theoption price. Furthermore, section
5.1 devoted to transform the nonlinear complementarity problem into the
so called Gamma equation based on PSOR approach [19]. Finally, section
5.2 is fully described a finite volume discretization of the complementarity
problem and its solution obtained by means of the projected super over re-
laxation (PSOR) approach following the work in [44] and then expressed
results of various numerical experiments for pricing American style of call
options, the early exercise boundary position and comparison with models
with constant volatility terms.
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Conclusions

In this dissertation we analysed recent topics on pricing American style
options and established qualitative and quantitative results in presence of
transaction costs. We considered a nonlinear generalization of the classical
Black–Scholes model in which the diffusion coefficient is no longer constant
but it depends on the product of the underlying asset price and the sec-
ond derivative of the option price. Mathematically, we had to investigate a
free boundary problem for a fully nonlinear parabolic equation. After hav-
ing reviewed, in the chapters 2 and 3, some basic concepts and results of
stochastic processes and of the theory of models with variable transaction
costs (see [45]), we adressed the study of American-style options in presence
of variable transactions costs, considering put and call types. In Chapter
4, we investigated the qualitative and quantitative behaviour of a solution
to the problem of pricing American style perpetual put options which was
based on the study of a stationary generalized Black–Scholes equation with
a nonlinear volatility function. We proved existence and uniqueness of a
solution to the associated free boundary problem. More precisely, we de-
rived a single implicit integral equation for the free boundary position and
a closed form formula for the option price, which is a generalization of the
well-known explicit closed form solution derived by Merton [39] for the case
of constant volatility. We also presented results of numerical computations
for the free boundary position and option price, including their dependence
on model parameters (as can be seen in Grossinho, Faghan and Sevcovic
[17, 18]). In Chapter 5, we were concerned with pricing American-style call
options, with nonlinear volatility, which generalizes the well-known Leland
model with constant transaction costs (c.f. [21, 35]) and the Amster model

73
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[1] with linearly decreasing transaction costs.. We analysed a correspond-
ing nonlinear generalization of the Black–Scholes equation. Since the di-
rect computation of the nonlinear complementarity problem became harder
and unstable due to the fully nonlinear nature of the differential operator
that appears in the model, we proposed a new approach to reformulate the
nonlinear complementarity problem in terms of the new transformed vari-
able. With that, the differential operator acquired the form of a quasilinear
parabolic operator. We derived the nonlinear complementarity problem for
the transformed variable in order to apply the Gamma transformation for
American style options. We then solve the variational problem by means of
the modified projected successive over relaxation (PSOR) (cf. Kwok [31]),
the main numerical approach used in this thesis, for constructing an effec-
tive numerical scheme for discretization of the Gamma variational inequality.
We illustrated our study by presenting several computational examples of
the nonlinear Black–Scholes equation for pricing American-style call options
in the presence of variable transaction costs (as can be seen in Grossinho,
Faghan and Sevcovic [19]). As we saw, studying american options in pres-
ence of transaction costs led to nonlinear models of the Black–Scholes type,
for which is in general difficult to find an explicit solution. However, in
Chapter 4 we derived a single implicit integral equation for the free bound-
ary position and a closed form formula for the option price of an American
perpetual put option. As an extension of this result, we can consider using
the method of lines to study the general problem, once we have already
important information for the stationary problem. Both analytical and nu-
merical results are worth being investigated. Generically, for problems of
the types considered in this dissertation, other numerical schemes could be
considered. The work of Casabán, Jódar and Pintos [8], Cheng-hu and Zhou
[10], and Kútik and Mikula [30], for other schemes, as well as from Bordag
and Frey [7], for some some explicit solutions for special type of nonlinear
models, can be good references to support the extension of the results of this
dissertation. Considering other types of financial derivatives, as for exam-
ple exotic options, can also be a future fruitful line of research. We believe
that the original results we present in this dissertation not only contribute
positively to the recent investigation that aims to overcame the drawbacks
that appear when modelling financial markets by the classical Black–Scholes
model but also are worth being considered for future investigation.
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[30] P. Kútik and K. Mikula. Finite volume schemes for solving nonlinear
partial differential equations in financial mathematics. In Proceedings
of the Sixth International Conference on Finite Volumes in Complex
Applications, Prague, 4(9):643–561, 2011.

[31] Y. Kwok. Mathematical models of financial derivatives. Springer-
Verlag, 1998.

[32] O. Ladyženskaya, V. Solonnikov, and N. Uralaceva. Linear and quasi-
linear equations of parabolic type. American Mathematical Society,
Providence, 23, 1968.

[33] D. Lamberton and B. Lapeyre. Introduction to stochastic calculus ap-
plied to finance. Chapman and Hall, UK, 1996.
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[43] D. Ševčovič, B. Stehĺıková, and K. Mikula. Analytical and numerical
methods for pricing financial derivatives. Nova Science Publishers, Inc.,
Hauppauge, 2011.
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