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A B S T R A C T

The olive tree (Olea europaea L.) is among the oldest and most widespread crops in the Mediterranean basin.
Portugal is the third olive producer in the European Union, and Trás-os-Montes region, located in northeastern
Portugal, is the second Portuguese producing olive region.

The olive moth, Prays oleae (Bernard) (Lepidoptera: Praydidae) is a key olive pest in Trás-os-Montes. This
pest is a natural host/prey of several organisms which include larvae of generalist and specialist parasitoids
as well as generalist predators and entomopathogens. Its most abundant parasitoid is the specialist Ageniaspis
fuscicollis (Dalman) (Hymenoptera: Encyrtidae) and this, in Trás-os-Montes region, is commonly followed by
the facultative hyperparasitoid Elasmus flabellatus (Fonscolombe) (Hymenoptera: Eulophidae). Spiders represent
a relevant group of generalist predators in olive agroecosystems and encompass an important predatory action
in agroecosystems as well as an ability to reduce the populations of various insect pests. In this context, a
mathematical model, considering the population of the olive moth, the two parasitoids populations and the
spider population as the variables in our system, was constructed. The ecosystem steady states for feasibility
and stability were assessed. The possible pesticide effects, that represent essentially extra mortality rates for
each one of the insect populations, and potential abundance variations on their populations under a climate
change scenario were included. Results indicate that the most important natural control agent is A. fuscicollis
but in certain conditions E. flabellatus or spiders may be relevant contributors for the pest reduction. This
approach may provide a useful tool to assist the field researchers on this pest system and its management.
1. Introduction

The olive tree (Olea europaea L.), one of the oldest and most
widespread crops, has characterized economically, socially and cul-
turally the populations of the Mediterranean basin. Nowadays, it is
cultivated in all regions with climatic conditions that allow its establish-
ment (Bartolini and Petruccelli, 2002). Portugal is one important olive
producer country and Trás-os-Montes region, located in northeastern
Portugal, in 2019 was responsible for the production of 914 504 tons
of olives in 359 949 ha of groves (INE, 2021).

However, the olive tree is attacked by several pests that result
in severe economical losses. The olive moth, Prays oleae (Bernard)
(Lepidoptera: Praydidae) is the most damaging pest in Trás-os-Montes.
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The insect has three generations a year and their larval stages attack
different organs of the olive tree. Eggs of the anthophagous generation
are laid on flower buds and, after hatching, larvae feed on flowers.
Its adult flight period occurs at the end of the spring, laying the eggs
of the carpophagous generation on the olive calyx. The carpophagous
generation larvae bore into the olive stone and feed on the seed. At
the end of the summer and beginning of the autumn, adults emerge
and lay the phyllophagous generation eggs on the olive leaves. The
phyllophagous larvae feed on the leaves and dig tunnels into them,
where they overwinter until the following spring (Arambourg and
Pralavorio, 1986).
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P. oleae is naturally controlled by several organisms which in-
clude several generalist and specialist parasitoids as well as generalist
predators. The most abundant is the parasitoid Ageniaspis fuscicollis
(Dalman) (Hymenoptera: Encyrtidae) (Bento et al., 1998; Herz et al.,
2005; Villa et al., 2016a). This specialist parasitoid of the olive moth
is well synchronized phenologically with the pest (Campos and Ramos,
1982). In Trás-os-Montes region, in some years the second most abun-
dant parasitoid was Elasmus flabellatus (Fonscolombe) (Hymenoptera:
Eulophidae) (Villa et al., 2016a). It behaves as a facultative hyper-
parasitoid, parasitizing some larvae of hymenopteran and larvae and
pupae of lepidopteran species (Yefremova and Strakhova, 2010) and
references therein. Adult parasitoids need energy for maintenance,
locomotion and reproduction that is provided by non-host foods such
as flowers and insect honeydews (Jervis et al., 2008, 1993). In Trás-
os-Montes olive groves, honeydews produced by some secondary pests,
such as the black scale, Saissetia oleae (Olivier) (Hemiptera: Coccidae)
and the olive psyllid Euphyllura olivina (Costa) (Hemiptera: Psyllidae)
nd flowers from many plant species within and around the olive groves
robably nourish the olive moth parasitoids.

The olive moth is also attacked by generalist predators. Spiders are
eneralist predators with important predatory action in agroecosystems
nd ability to reduce the populations of various insect pests (Marc et al.,
999; Nyffeler and Sunderland, 2003; Riechert and Lockley, 1984). In
his context, some spiders exhibit a high degree of superfluous killing
individuals attack more prey that they actually consume) at high levels
f prey density (Riechert and Maupin, 1997). Spiders constitute one of
he most abundant group of predators in the olive agroecosystem and
ave ubiquitous feeding habits (Pascual et al., 2010; Benhadi-Marín
t al., 2016). During the spring and coinciding with the adult flight
f the anthophagous generation, several abundant spiders in the olive
anopy potentially prey on the olive moth (Pascual et al., 2010). In
ddition, it is of paramount importance to understand the behavior
f this type of tritrophic relations under a climate change context
ecause shifts in plant and insect phenologies, distribution or voltinism
ight result in modification of the trophic interactions timing and
istribution (Castex et al., 2018). Our goal is to develop a mathematical
odel to generate population behavioral predictions under different

bundance scenarios, resulting from the potential effects of climate
hange, for the various agents involved in the trophic system under
onsideration (the pest-P. oleae, its main parasitoids, – A. fuscicollis and
. flabellatus, and spiders – as model for an abundant generalist predator
n the olive tree canopy).

. Materials and methods

We consider the olive moth 𝑀 population, the E. flabellatus popula-
ion 𝐸, the A. fuscicollis population 𝐴 and the spiders population 𝑆 as
he variables in our system.

The spiders feed on the adult populations of the two parasitoids
nd on the olive moth. Their hunting rate on 𝐸 is 𝑢, the one on 𝐴 is
and the one on 𝑀 is 𝑤, with respective conversion coefficients 𝑞𝑖,
∈ {𝐸,𝐴,𝑀}. But since they are generalist predators, they have also
ther resources modeled in a logistic fashion with carrying capacity

(i.e. the theoretical amount of individuals of the population that
he environmental conditions can sustain) and net reproduction rate

(i.e. the difference between reproduction rate and mortality rate),
escribed by the last term. Their dynamics is expressed in the first
quation of the system.

The second equation describes the development of the parasitoid
. flabellatus, 𝐸. They feed by parasitizing either the other parasitoid
, at rate 𝑎, with conversion coefficient 𝑒,or 𝑀 , the moth, at rate 𝑏
ith conversion coefficient ℎ. Consequently they have the resources to

eproduce. The first two terms in the second equation describe jointly
he parasitizing and reproduction processes, exerted on both prey. In
ddition they thrive also by feeding on sugary liquids (nectar or hon-
ydews) or parasitizing other insects, that are not explicitly modeled.
2

his gives the additional third logistic term with net reproduction
ate 𝑟 and intraspecific competition rate 𝑟𝐾−1, where 𝐾 represents the
arrying capacity of these extra resources. The last two terms represent
ortalities induced by spiders hunting or use of pesticides.

The third equation contains the dynamics of the adult individuals of
he parasitoid A. fuscicollis, 𝐴. They reproduce at rate 𝑐 by feeding on
he moth 𝑀 , with conversion coefficient 𝑔 and they feed also on sugary
iquids in the environment (honeydews or nectar) that, as we said
efore, we do not include in the model. Sugary liquids would improve
he reproduction but A. fuscicollis can survive without them while they
annot survive without the moth. This is because reproduction depends
trongly on the moth (being specialist parasitoids, they do not parasitize
ther insects). Thus, if the moths vanish, even if there are sugary liquids
n the environment, A. fuscicollis cannot reproduce, but if the sugary
iquids are absent, the moths can still reproduce. This is modeled by the
arameter 𝑔, which can be thought to be split among a baseline value 𝑔0

and a boost term 𝑔1 provided by the possible presence of sugary liquids.
Thus: 𝑔 = 𝑔0 + 𝑔1. In addition, we introduce 𝑓 , the rate of intraspecific
competition of 𝐴, the natural mortality 𝑚𝐴 and hunting by both 𝐸 and
𝑆 at respective rates 𝑎 and 𝑣 (as seen above).

The olive moth 𝑀 , last equation, is attacked by both parasitoids
arvae 𝐸 and 𝐴, as well as 𝑆, at respective rates 𝑏, 𝑐 and 𝑤. The moth

logistic exploitation of the resources is modeled by the fourth term,
where 𝑈 denotes the carrying capacity represented by the olive crop
and 𝑠 is net reproduction rate.

In all equations, we include also the possible pesticide effects,
that represent extra mortality rates for each populations, 𝑘𝑖, 𝑖 ∈
{𝑆,𝐸,𝐴,𝑀}. They appear in the system as the last terms of each
equation.

The resulting system, where all the parameters are nonnegative and
whose interpretation is given in Table Table 1, reads:
𝑑𝑆
𝑑𝑡

=
(

𝑢𝑞𝐸𝐸 + 𝑣𝑞𝐴𝐴 +𝑤𝑞𝑀𝑀
)

𝑆 (2.1)

+ 𝑧𝑆
(

1 − 𝑆
𝐿

)

− 𝑘𝑆𝑆,

𝑑𝐸
𝑑𝑡

= 𝑒𝑎𝐸𝐴 + ℎ𝑏𝐸𝑀

+ 𝑟𝐸
(

1 − 𝐸
𝐾

)

− 𝑢𝐸𝑆 − 𝑘𝐸𝐸,

𝑑𝐴
𝑑𝑡

= 𝑔𝑐𝐴𝑀 − 𝑚𝐴𝐴 − 𝑓𝐴2

− 𝑎𝐸𝐴 − 𝑣𝐴𝑆 − 𝑘𝐴𝐴,
𝑑𝑀
𝑑𝑡

= −𝑏𝐸𝑀 − 𝑐𝐴𝑀 −𝑤𝑀𝑆

+ 𝑠𝑀(1 − 𝑀
𝑈

) − 𝑘𝑀𝑀.

3. Results

3.1. Analysis of the equilibrium points

In this section we analyze all the possible equilibrium points of the
system (2.1), for both feasibility and stability, deferring to Appendix A
the more complicated mathematical details.

3.1.1. Feasibility
At first, the origin 𝑃0 is a feasible equilibrium. Then there are the

points with just one nonvanishing population, 𝑃1 = (𝑆1, 0, 0, 0), 𝑃2 =
(0, 𝐸2, 0, 0) and 𝑃8 = (0, 0, 0,𝑀8), with population values and feasibility
ondition respectively given by

𝑆1 =
𝐿(𝑧 − 𝑘𝑆 )

𝑧
, 𝑧 > 𝑘𝑆 , (3.1)

𝐸2 =
𝐾(𝑟 − 𝑘𝐸 )

𝑟
, 𝑟 > 𝑘𝐸 , (3.2)

=
𝑈 (𝑠 − 𝑘𝑀 )

, 𝑠 > 𝑘 . (3.3)
8 𝑠 𝑀
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Table 1
The parameters and their interpretation.

Parameter Biological interpretation

𝑢 Spiders hunting rate on E. flabellatus
𝑣 Spiders hunting rate on A. fuscicollis
𝑤 Spiders hunting rate on P. oleae
𝐿 Spiders carrying capacity
𝑧 Spiders net reproduction rate
𝑞𝑖 Spiders conversion by 𝑖th prey capture, 𝑖 ∈ {𝐸,𝐴,𝑀}
𝑎 E. flabellatus parasitism rate on A. fuscicollis
𝑏 E. flabellatus parasitism rate on P. oleae
𝑐 A. fuscicollis parasitism rate on P. oleae
𝑒 E. flabellatus conversion by A. fuscicollis parasitization
ℎ E. flabellatus conversion by P. oleae parasitization
𝑟 E. flabellatus net reproduction rate
𝐾 E. flabellatus carrying capacity
𝑔 A. fuscicollis conversion by P. oleae parasitization
𝑓 A. fuscicollis intraspecific competition rate
𝑠 P. oleae net reproduction rate
𝑚𝐴 A. fuscicollis natural mortality rate
𝑘𝑖 Extra mortality rates due to pesticide effects, 𝑖 ∈ {𝑆,𝐸,𝐴,𝑀}
𝑈 P. oleae carrying capacity

Thus, in the absence of spraying, i.e. 𝑘𝑆 = 𝑘𝐸 = 𝑘𝐴 = 𝑘𝑀 = 0, this
equilibrium is always feasible.

Then 𝑃3 = (𝑆3, 𝐸3, 0, 0), where

𝑆3 =
𝐿
(

𝐾𝑞𝐸𝑟𝑢 −𝐾𝑘𝐸𝑞𝐸𝑢 − 𝑘𝑆𝑟 + 𝑟𝑧
)

𝐾𝐿𝑞𝐸𝑢2 + 𝑟𝑧
,

𝐸3 =
𝐾

(

𝐿𝑘𝑆𝑢 − 𝐿𝑢𝑧 − 𝑘𝐸𝑧 + 𝑟𝑧
)

𝐾𝐿𝑞𝐸𝑢2 + 𝑟𝑧
.

his equilibrium is feasible if and only if the following conditions hold

𝑧
𝐿𝑢

(𝑘𝐸 − 𝑟) < 𝑘𝑆 − 𝑧 < −
𝑢𝑞𝐸𝐾

𝑟
(𝑘𝐸 − 𝑟). (3.4)

Thus for 𝑘𝐸 > 𝑟 the point is unfeasible, while in the absence of spraying,
the feasibility condition reduces to

𝐿𝑢 < 𝑟. (3.5)

Next we find 𝑃9 = (𝑆9, 0, 0,𝑀9), with

𝑆9 =
𝐿
(

𝑈𝑞𝑀𝑠𝑤 − 𝑈𝑘𝑀𝑞𝑀𝑤 − 𝑘𝑆𝑠 + 𝑠𝑧
)

𝐿𝑈𝑞𝑀𝑤2 + 𝑠𝑧
,

9 =
𝑈
(

𝐿𝑘𝑆𝑤 − 𝐿𝑤𝑧 − 𝑘𝑀𝑧 + 𝑠𝑧
)

𝐿𝑈𝑞𝑀𝑤2 + 𝑠𝑧

which is feasible for
𝑧
𝐿𝑤

(𝑘𝑀 − 𝑠) < 𝑘𝑆 − 𝑧 < −
𝑈𝑤𝑞𝑀

𝑠
(𝑘𝑀 − 𝑠) (3.6)

and again for 𝑘𝑀 > 𝑠 the equilibrium 𝑃9 is unfeasible. When no
insecticide is used, feasibility simplifies as follows

𝐿𝑤 < 𝑠. (3.7)

For 𝑃10 = (0, 𝐸10, 0,𝑀10) we have

𝐸10 =
𝐾

(

𝑈𝑏ℎ𝑠 − 𝑈𝑏ℎ𝑘𝑀 − 𝑘𝐸𝑠 + 𝑟𝑠
)

𝐾𝑈𝑏2ℎ + 𝑟𝑠
,

𝑀10 =
𝑈
(

𝐾𝑏𝑘𝐸 −𝐾𝑏𝑟 − 𝑘𝑀 𝑟 + 𝑟𝑠
)

𝐾𝑈𝑏2ℎ + 𝑟𝑠
admissible if and only if the following conditions are met
𝑟
𝑏𝐾

(𝑘𝑀 − 𝑠) < 𝑘𝐸 − 𝑟 < −ℎ𝑏𝑈
𝑠

(𝑘𝑀 − 𝑠) (3.8)

and once more for 𝑘𝑀 > 𝑠 this point is unfeasible. For 𝑘+𝑀 = 𝑘𝐸 = 0,
the feasibility condition becomes

𝑏𝐾 < 𝑠. (3.9)
3

Similar considerations hold for 𝑃12 = (0, 0, 𝐴12,𝑀12), for which we find

𝐴12 =
𝑈𝑐𝑔𝑠 − 𝑈𝑐𝑔𝑘𝑀 − 𝑘𝐴𝑠 − 𝑚𝐴𝑠

𝑈𝑐2𝑔 + 𝑓𝑠
,

𝑀12 =
𝑈
(

𝑐𝑘𝐴 + 𝑐𝑚𝐴 − 𝑓𝑘𝑀 + 𝑓𝑠
)

𝑈𝑐2𝑔 + 𝑓𝑠
.

he equilibrium point is feasible if and only if the following conditions
re met
𝑠
𝑐
(𝑘𝑀 − 𝑠) < 𝑘𝐴 + 𝑚𝐴 < −

𝑔𝑐𝑈
𝑠

(𝑘𝑀 − 𝑠) (3.10)

rom which infeasibility follows for 𝑘𝑀 > 𝑠. If the insecticide is not
used, feasibility is attained for

𝑚𝐴 < 𝑔𝑐𝑈. (3.11)

or the points at which just one population vanishes, analytic expres-
ions for the population values can be obtained, and are contained
n Appendix A. These equilibria are 𝑃11 = (𝑆11, 𝐸11, 0,𝑀11), 𝑃13 =
(𝑆13, 0, 𝐴13,𝑀13) and 𝑃14 = (0, 𝐸14, 𝐴14,𝑀14). The coexistence equilib-
rium instead cannot be assessed and its analysis is obtained through
numerical simulations. As seen, not all the possible combinations be-
tween the presence and the absence of a population arise. Ecologically,
this can be explained by the fact that A. fuscicollis, being a specialist
predator, cannot thrive in the absence of its prey P. oleae.

3.1.2. Stability
The Jacobian of (2.1) is

𝐽 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐽1,1 𝑢𝑞𝐸𝑆 𝑣𝑞𝐴𝑆 𝑤𝑞𝑀𝑆
−𝑢𝐸 𝐽2,2 𝑒𝑎𝐸 ℎ𝑏𝐸
−𝑣𝐴 −𝑎𝐴 𝐽3,3 𝑔𝑐𝐴
−𝑤𝑀 −𝑏𝑀 −𝑐𝑀 𝐽4,4

⎤

⎥

⎥

⎥

⎥

⎦

(3.12)

where:

𝐽1,1 = 𝑢𝑞𝐸𝐸 + 𝑣𝑞𝐴𝐴 +𝑤𝑞𝑀𝑀

+ 𝑧 − 2 𝑧
𝐿
𝑆 − 𝑘𝑆 ,

𝐽2,2 = 𝑒𝑎𝐴 + ℎ𝑏𝑀 + 𝑟

−2 𝑟
𝐾
𝐸 − 𝑢𝑆 − 𝑘𝐸 ,

3,3 = 𝑔𝑐𝑀 − 𝑚𝐴 − 2𝑓𝐴

− 𝑎𝐸 − 𝑣𝑆 − 𝑘𝐴,

4,4 = −𝑏𝐸 − 𝑐𝐴 + 𝑠

−2 𝑠
𝑈
𝑀 −𝑤𝑆 − 𝑘𝑀 .

Let us also introduce the following notation. The square matrix 𝐽[𝑖𝑘;𝑗𝑘]
of order 𝓁 is obtained by retaining the 𝑖𝑘-th and 𝑖𝑘-th rows and columns,
𝑘 = 1,… ,𝓁.

Here we report the results for the easier equilibria, where the
stability conditions are obtained explicitly and postpone to Appendix A
the analysis of the most complicated ones. In any case, all possible
equilibria are found to be conditionally stable. Note that the particular
case of no insecticide spraying affects somewhat the stability. However,
with the exception of the cases that are explicitly mentioned below, the
modifications in the conditions is trivial, amounting to setting the extra
killing rate to zero, but does not provide particular additional insights
in them. Thus, these cases are not explicitly listed. Table 2 summarizes
the equilibria behaviors.

Equilibrium 𝑃0
The eigenvalues of the Jacobian at 𝑃0 are 𝑧−𝑘𝑆 , 𝑟−𝑘𝐸 , −(𝑚𝐴+𝑘𝐴),

𝑠 − 𝑘𝑀 giving the stability conditions:

𝑧 < 𝑘𝑆 , 𝑟 < 𝑘𝐸 , 𝑠 < 𝑘𝑀 (3.13)

Evidently, in the absence of spraying this equilibrium is unconditionally
unstable.

Equilibrium 𝑃
1
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At 𝑃1 the eigenvalues of the Jacobian are −𝑧 + 𝑘𝑆 , −𝑢𝑆1 + 𝑟 − 𝑘𝐸 ,
−𝑣𝑆1−(𝑚𝐴+𝑘𝐴), −𝑤𝑆1+𝑠−𝑘𝑀 . Using the feasibility conditions, stability
is ensured by

𝑟 < 𝑢𝑆1 + 𝑘𝐸 , 𝑠 < 𝑤𝑆1 + 𝑘𝑀 . (3.14)

Equilibrium 𝑃2
At 𝑃2 the Jacobian’s eigenvalues are 𝑢𝑞𝐸𝐸2 + 𝑧 − 𝑘𝑆 , −𝑟 + 𝑘𝐸 ,

−𝑎𝐸2−(𝑚𝐴+𝑘𝐴), −𝑏𝐸2+𝑠−𝑘𝑀 . The stability conditions using feasibility
reduce to

𝑢𝑞𝐸𝐸2 + 𝑧 < 𝑘𝑆 , 𝑠 < 𝑏𝐸2 + 𝑘𝑀 . (3.15)

Equilibrium 𝑃3
The Jacobian’s explicit eigenvalues for 𝑃3 are −𝑎𝐸3 −𝑚𝐴 − 𝑘𝐴 − 𝑣𝑆3

and −𝑏𝐸3+𝑠−𝑤𝑆3−𝑘𝑀 . From the latter the submatrix 𝐽[1,2;1,2] of order
two is left for which we find that both Routh–Hurwitz conditions hold:

tr(𝐽[1,2;1,2]) = − 𝑧
𝐿
𝑆3 −

𝑟
𝐾
𝐸3 < 0,

det(𝐽[1,2;1,2]) = 𝑧
𝐿

𝑟
𝐾
𝑆3𝐸3 + 𝑢2𝑞𝐸𝑆3𝐸3 > 0.

The stability conditions are therefore 𝑚𝐴 + 𝑎𝐸3 + 𝑘𝐴 + 𝑣𝑆3 > 0 which is
trivially satisfied and

𝑠 < 𝑏𝐸3 +𝑤𝑆3 + 𝑘𝑀 (3.16)

Equilibrium 𝑃8
For 𝑃8 the eigenvalues of the Jacobian are 𝑤𝑞𝑀𝑀8+𝑧−𝑘𝑆 , ℎ𝑏𝑀8+

𝑟 − 𝑘𝐸 , 𝑔𝑐𝑀8 − (𝑚𝐴 + 𝑘𝐴), 𝑘𝑀 − 𝑠 < 0, the latter inequality stemming
rom the feasibility condition (3.3). The stability conditions are thus

𝑞𝑀𝑀8 + 𝑧 < 𝑘𝑆 , ℎ𝑏𝑀8 + 𝑟 < 𝑘𝐸 , (3.17)
𝑔𝑐𝑀8 < 𝑚𝐴 + 𝑘𝐴.

gain, here we discover that no spraying entails the instability of this
quilibrium. The same result is achieved if spiders are not affected by
he insecticide.
Equilibrium 𝑃9
For 𝑃9 the explicit eigenvalues are: ℎ𝑏𝑀9 + 𝑟−𝑘𝐸 − 𝑢𝑆9 and 𝑔𝑐𝑀9 −

𝐴 − 𝑘𝐴 − 𝑣𝑆9. By deleting the second and third rows and columns of
he Jacobian the Routh–Hurwitz conditions applied to 𝐽[1,4;1,4] are both
atisfied, reducing indeed to

tr(𝐽[1,4;1,4]) = − 𝑧
𝐿
𝑆9 −

𝑠
𝑈
𝑀9 < 0,

et(𝐽[1,4;1,4]) =
[ 𝑧
𝐿

𝑠
𝑈

+𝑤2𝑞𝑀
]

𝑀9𝑆9 > 0.

The stability conditions reduce then just to

𝑏𝑀9 + 𝑟 < 𝑘𝐸 + 𝑢𝑆9, (3.18)
𝑔𝑐𝑀9 < 𝑚𝐴 + 𝑘𝐴 + 𝑣𝑆9.

Equilibrium 𝑃10
For 𝑃10 we find the explicit eigenvalues 𝑤𝑞𝑀𝑀10 + 𝑢𝑞𝐸𝐸10 + 𝑧 − 𝑘𝑆

nd 𝑔𝑐𝑀10 −𝑚𝐴 −𝑘𝐴 − 𝑎𝐸10, while for the remaining minor 𝐽[2,4;2,4] the
outh–Hurwitz conditions once again hold unconditionally,

tr(𝐽[2,4;2,4]) = − 𝑟
𝐾
𝐸10 −

𝑠
𝑈
𝑀10 < 0,

et(𝐽[2,4;2,4]) =
[ 𝑟
𝐾

𝑠
𝑈

+ 𝑏2ℎ
]

𝐸10𝑀10 > 0.

he stability conditions are therefore:

𝑞𝑀𝑀10 + 𝑢𝑞𝐸𝐸10 + 𝑧 < 𝑘𝑆 , (3.19)
𝑔𝑐𝑀10 < 𝑚𝐴 + 𝑘𝐴 + 𝑎𝐸10.

This point too, in view of the first condition (3.19), becomes unstable
when insecticide is not used or even if the spraying does not harm the
4

spiders.
Table 2
Summary of feasibility and stability conditions of the equilibrium points of the model

Equilibrium Feasibility Stability

𝑃0 = (0, 0, 0, 0) – 𝑧 < 𝑘𝑆 , 𝑟 < 𝑘𝐸 , 𝑠 < 𝑘𝑀
𝑃1 = (𝑆1 , 0, 0, 0) 𝑧 > 𝑘𝑆 (3.14)

𝑃2 = (0, 𝐸2 , 0, 0) 𝑟 > 𝑘𝐸 (3.15)

𝑃3 = (𝑆3 , 𝐸3 , 0, 0) (3.4) (3.16)

𝑃8 = (0, 0, 0,𝑀8) 𝑠 > 𝑘𝑀 (3.17)

𝑃9 = (𝑆9 , 0, 0,𝑀9) (3.6) (3.18)

𝑃10 = (0, 𝐸10 , 0,𝑀10) (3.8) (3.19)

𝑃11 = (𝑆11 , 𝐸11 , 0,𝑀11) (A.1) (A.6), (A.8), (A.9)

𝑃12 = (0, 0, 𝐴12 ,𝑀12) (3.10) (A.10)

𝑃13 = (𝑆13 , 0, 𝐴13 ,𝑀13) (A.2), (A.3) (A.11), (A.13), (A.14)

𝑃14 = (0, 𝐸14 , 𝐴14 ,𝑀14) (A.4), (A.5) (A.15), (A.17)

𝑃15 = (𝑆15 , 𝐸15 , 𝐴15 ,𝑀15) not analyzed (A.20), (A.22), (A.23)

Table 3
Available data on the other insects. The first and second row data are from Villa et al.
(2016b). Rows three to six: P. oleae data are from Villa et al. (2016a). Rows 5 and 6
data for E. flabellatus are from Villa et al. (2017a). Row 5 and 6 data for A. fuscicollis
are from Villa et al. (2017b).

P. oleae E. flabellatus A. fuscicollis

Probability of an insect PM = 0.205 PE = 0.152 PA = 0.194
emerging from a pupa

Insects emerging 1 2.31 11.83
from a pupa

Eggs laid 195.79
(optimal diet)

Eggs laid 56.89
(underfed diet)

Longevity 25.16 ≈ 25 49.61 ≈ 50 6.15 ≈ 6

Mortality 0.04 0.02 𝑚𝐴 = 0.166666666

3.1.3. Verification and model behavior
We address here the issue about the factual existence of the equilib-

ria. As some of the stability conditions are quite involved, and in some
cases the feasibility conditions too, it is legitimate to ask the question
whether these conditions are indeed verified and do not define the
empty set. Now, the equilibria with just one population are all easily
attainable as both feasibility and stability conditions simultaneously
hold for suitable parameter choices, that are not here reported. Those
with two nonvanishing populations are also attained. We report for
each one of them a parameter set that satisfies them. Note that for
the parameters that can be assessed, we use the values that can be
obtained from field data, reported below in Table 3, namely (3.28),
(3.29), (3.30), (3.31), and always the following hypothetical initial
conditions:

𝑆0 = 58.500, 𝐸0 = 90.09695, (3.20)

0 = 80.57839, 𝑀0 = 40.09695.

For 𝑃9, we have the set

𝐸 = 0.0073, 𝑞𝐴 = 0.34, 𝑞𝑀 = 4.5,

𝑢 = 0.1, 𝑣 = 0.2, 𝑤 = 0.0003,

ℎ = 0.03, 𝑘𝑆 = 0.000023, 𝑎 = 1.002, (3.21)
𝑏 = 0.0085, 𝑐 = 0.000234,

𝑟 = 10−4, 𝑘𝐸 = 0.01, 𝑓 = 1.00133,

𝐾 = 10, 𝑘𝐴 = 10−6, 𝑘𝑀 = 10−7.

𝑃10 is obtained by the choice

𝑞 = 0.0073, 𝑞 = 0.34, 𝑞 = 1.5,
𝐸 𝐴 𝑀
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Fig. 1. We use (3.20), (3.28), (3.29), (3.30) and (3.31). Top to bottom the populations
𝑆, 𝐸, 𝐴, 𝑀 as function of time (measured in days). Upper frame: simulation for 𝑃11,
ttained for the parameter values (3.25); Lower frame: simulation for 𝑃13, attained for
he parameter values (3.26).

𝑢 = 0.01, 𝑣 = 0.2, 𝑤 = 0.0003,

ℎ = 0.03, 𝑘𝑆 = 40, 𝑎 = 1.05672,

𝑏 = 0.0085, 𝑐 = 0.00234, 𝑟 = 5.5,

𝐸 = 0.1, 𝑓 = 2.00133, (3.22)
𝐾 = 100, 𝑘𝐴 = 𝑘𝑀 = 10.

For 𝑃12 the needed parameter values are

𝑞𝐸 = 0.0073, 𝑞𝐴 = 8, 𝑞𝑀 = 4.5,

𝑢 = 0.1, 𝑣 = 0.2, 𝑤 = 0.0003,

ℎ = 0.03, 𝑘𝑆 = 40, 𝑎 = 5.05672,

𝑏 = 5.0085, 𝑐 = 2, 𝑟 = 4,

𝐸 = 40, 𝑓 = 2.00133, (3.23)
𝐾 = 100, 𝑘𝐴 = 0.01, 𝑘𝑀 = 0.001.

𝑃3 is obtained via the choice

𝑞𝐸 = 0.0073, 𝑞𝐴 = 0.34, 𝑞𝑀 = 0.004,

𝑢 = 0.1, 𝑣 = 0.2, 𝑤 = 0.3,

ℎ = 0.03, 𝑘 = 0.01, 𝑎 = 0.05672,
5

𝑆

Fig. 2. We use (3.20), (3.28), (3.29), (3.30) and (3.31). Top to bottom the populations
𝑆, 𝐸, 𝐴, 𝑀 as function of time (measured in days). Upper frame: equilibrium 𝑃14 is
found for the set of parameters (3.26): note that the values of the populations at
time 𝑡 = 20 are 𝑆 = 0, 𝐸 = 113.4684, 𝐴 = 8.7195, 𝑀 = 5.0359 and the last two
keep away from zero also at later times. Indeed at time 𝑡 = 200, for instance, we find
𝐴 = 8.6539, 𝑀 = 4.9770. Lower frame: the coexistence equilibrium 𝑃15 is stably obtained
by choosing the parameters (3.27).

𝑏 = 2.0085, 𝑐 = 1.00234,

𝑟 = 108, 𝑘𝐸 = 10, 𝑓 = 1.00133, (3.24)
𝐾 = 50, 𝑘𝐴 = 𝑘𝑀 = 40.

The remaining equilibria are seen to arise for suitable hypothetical
parameter choices, and the results are reported in Figs. 1–2.

Parameter values for 𝑃11:

𝑞𝐸 = 0.0073, 𝑞𝐴 = 0.34, 𝑞𝑀 = 0.004,

𝑢 = 0.01, 𝑣 = 0.2, 𝑤 = 0.3,

ℎ = 0.08, 𝑘𝑆 = 0.1, 𝑎 = 0.1756,

𝑏 = 0.17565, 𝑐 = 0.1756, 𝑟 = 4.5.

𝑘𝐸 = 0, 𝑓 = 0.0001, (3.25)
𝐾 = 100, 𝑘𝐴 = 0.2, 𝑘𝑀 = 0.5

Parameter values for 𝑃13:

𝑞𝐸 = 0.00000073, 𝑞𝐴 = 0.00073,

𝑀 = 0.0000073, 𝑢 = 0.0073,

𝑣 = 0.01, 𝑤 = 0.0073, ℎ = 0.03,
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Fig. 3. Upper frame: the diagram shows two transcritical bifurcations in sequence as the parameter 𝑧 varies: at first 𝑃10 − 𝑃11 for 𝑧 ≈ 34.6, then 𝑃11 − 𝑃9 for 𝑧 ≈ 35. Lower frame:
ranscritical bifurcation 𝑃11 − 𝑃9 as a function of 𝑢.
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𝑎 = 0.25, 𝑏 = 0.0022, 𝑐 = 0.452,

𝑟 = 0.8, 𝑘𝐸 = 1, 𝑓 = 0.0001,

𝐾 = 100, 𝑘𝑆 = 𝑘𝐴 = 𝑘𝑀 = 0

Parameter values for 𝑃14:

𝑞𝐸 = 0.0073, 𝑞𝐴 = 0.34, 𝑞𝑀 = 0.004,

𝑢 = 0.01, 𝑣 = 0.2, 𝑤 = 0.3,

ℎ = 0.08, 𝑘𝑆 = 1.5, 𝑎 = 0.1756,

𝑏 = 0.17565, 𝑐 = 2.1756, 𝑟 = 4.5,

𝐸 = 0, 𝑓 = 0.1, (3.26)
𝐾 = 100, 𝑘𝐴 = 4, 𝑘𝑀 = 0.5.

Parameter values for 𝑃15:

𝑞𝐸 = 𝑞𝐴 = 𝑞𝑀 = 0.0000073, 𝑢 = 0.0068,

𝑣 = 0.00068, 𝑤 = 0.0068, 𝐾 = 100,

ℎ = 0.35112, 𝑘𝑆 = 0, 𝑎 = 1.01,

𝑏 = 0.0022, 𝑐 = 2.452, 𝑟 = 5.012,

= 𝑘 = 𝑘 = 0, 𝑓 = 0.001. (3.27)
6

𝐸 𝐴 𝑀 F
.1.4. Bifurcations
The model allows transitions from an equilibrium to another one,

hen suitable changes in the parameters occur. For instance, from
able 2, it is immediately seen that 𝑃0 is incompatible with each one of
he points 𝑃1, 𝑃2 and 𝑃8, because its stability conditions are the opposite
nes of the feasibility conditions for the latter set of points. This is an
ndication that transcritical bifurcations indeed occur. In this section
e summarize the findings on this issue.

In fact, note that the model (2.1) shows several other transcritical
ifurcations. They have been fully analyzed by means of Sotomayor’s
heorem (Perko, 2011), and the details are deferred to Appendix B. In
ddition a few of them have been found by numerical simulations, and
re reported in Figs. 3–5. It is interesting to note that from 𝑃10, the
lasmus-moth equilibrium, the spiders can invade if their reproduction
ate grows past the value 34.6, but if it grows further past 35, Elasmus
s wiped out and only spiders and moth persist, Fig. 3 bottom.

In addition to transcritical bifurcations, also persistent oscillations
an be determined, originated by suitable Hopf bifurcations. In particu-
ar, analytical conditions for the existence of such bifurcations are given
n Appendix B, for the equilibria 𝑃13 and 𝑃14. For coexistence instead,
he oscillatory behavior of the model has been discovered numerically.
ndeed, the occurrence of a Hopf bifurcation at coexistence is shown in

ig. 5 right.
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Fig. 4. Upper frame: transcritical bifurcation 𝑃13 − 𝑃9 as a function of 𝑣 Lower frame:
transcritical bifurcation 𝑃14 − 𝑃10 as a function of 𝑎.

Finally, in Fig. 6 we provide a full picture illustrating the general
elationships among the equilibria through transcritical bifurcations.

.2. Simulation of realistic scenarios

We now turn to investigate the possible behavior of the system for
he ecological application. The first step is the assessment of the model
arameters from the available field data.

.2.1. Parameters assessment
For the spider population, only their density at the beginning and

t the end of the spring is known, respectively 58.500 and 476.500
ndividuals per hectare (Benhadi-Marín et al., 2020). By fitting on these
ata the simple logistic equation
𝑑𝑆
𝑑𝑡

= 𝑧𝑆
(

1 − 𝑆
𝐿

)

we obtain the estimates for their reproduction rate and carrying capac-
ity, that give 𝑆(92) = 476.4991, which is acceptable. We thus take the
values

𝑧 = 0.029368, 𝐿 = 980. (3.28)

For the other insects, the available field data are reported in Table 3.
hese parameters include the probability that each insect species has
7

f emerging from a pupa, the mean number of emerged insects from
Fig. 5. Upper frame: Transcritical bifurcation 𝑃14 − 𝑃12 as a function of 𝑘𝐸 Lower
frame: Persistent oscillations around the coexistence equilibrium. It is obtained for the
parameter values 𝑞𝐸 = 0.0073, 𝑞𝐴 = 0.34, 𝑞𝑀 = 0.004, 𝑢 = 0.01, 𝑣 = 0.2, 𝑤 = 0.3, ℎ = 0.08,
𝑆 = 0.1, 𝑎 = 0.1756, 𝑏 = 0.17565, 𝑐 = 5.5, 𝑟 = 4.5, 𝑘𝐸 = 0, 𝑓 = 0.0001, 𝐾 = 100, 𝑘𝐴 = 0.2,
𝑀 = 0.5 that almost entirely differ from those of (3.27).

pupa, the number of eggs laid under an optimal and underfed diet,
nd the longevity and mortality rates. The probability with which each
nsect species emerges from a pupa and the number of insects emerging
rom a pupa were retrieved from previous experimental research con-
ucted by Villa et al. (2016b) that collected pupae of P. oleae in olive
rchards and kept them in controlled conditions until emergence. The
robability of one of the species emerging from a pupa was estimated
onsidering the emerged organism (i.e. P. oleae or the parasitoids, E.
labellatus or A. fuscicollis), the total number of pupae, and the non-
merging pupae. The number of insects emerging from a pupa was
etrieved from the same work. In the case of P. oleae, one individual
merges from each pupa. In the case of the parasitoids, up to 2.31
nd 11.83 individuals of E. flabellatus and A. fuscicollis can emerge
n average, respectively. Longevity and mortality data were retrieved
rom Villa et al. (2016a) in the case of P. oleae, from Villa et al. (2017a)
n the case of E. flabellatus, and from Villa et al. (2017b) in the case of A.
uscicollis. In these studies, several biological parameters were derived
nder laboratory conditions. In the case of P. oleae, the number of laid
ggs was also recorded. Unfortunately, this parameter is not available
or the parasitoids. Now, this information is used to obtain values for
ome other parameters as follows.
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𝑠

Fig. 6. The graph of the transcritical bifurcations structure: in red the ones found numerically. The nodes represent the various system equilibria, while the arcs denote the existing
transcritical bifurcations linking pairs of equilibria, obtained either analytically or numerically. In general it is possible to move from one equilibrium, with some nonvanishing
populations, to an ‘‘adjacent’’ one, where one of the system populations present in the old equilibrium either vanishes or an altogether new one appears from a former zero value.
For the olive moth, we only consider the case of an optimal diet.
The net birth rate 𝑠 is the difference between the birth rate and the
mortality rate. The birth rate �̂� is the product of the number of eggs
laid by a moth in its lifetime with the probability that the emerging
larvae become indeed adults, namely

̂ = 195.79 × 0.205 = 40.13695, (3.29)
𝑠 = 40.13695 − 0.04 = 40.09695.

Elasmus reproduces by parasitizing 𝐴 and 𝑀 but the number of eggs
laid is unknown, thus an estimate of the net reproduction rate 𝑟 is not
possible. Also for Ageniaspis the number of eggs laid is not available. In
a similar way we treat the corresponding coefficient 𝑔 for Ageniaspis, so
that we have

𝑒 = 2.31 × 0.152 = 0.35112, (3.30)
𝑔 = 11.83 × 0.194 = 2.29502.

Based on Bento (1999), we finally take the following value for the
moths carrying capacity:

𝑈 = 277, (3.31)

and on previous records of olive moth eggs in the region.

3.2.2. Possible climatic changes
We discuss now how the ecosystem could be affected by possible

climatic changes.
8

Table 4
Percentage of P. oleae egg mortality under various temperature and relative humidity
conditions.
Source: Data taken from Bueno (1981).

Temperature Relative humidity

50 60 70 80 90

20 100 21.5 9.8 12 1.1
25 100 64.3 7.3 – 1.2
30 100 100 83.9 49.3 13.4
35 100 100 100 94.9 93.1
40 100 100 100 100 100

To this end, we assume that the system parameters will change
if the temperature raises. Specifically, for P. oleae we assume that
the reproduction rate becomes lower with increasing humidity while
instead it increases with raising temperature, at any given degree of
humidity. This is based on the data reported in Table 4 (Bueno, 1981).

It is difficult to specifically quantify this information within the
model, because the same change in reproduction could arise under dif-
ferent combinations of humidity and temperature. We therefore assume
various degrees of P. oleae reproduction rate reduction, namely starting
from 𝑠, we consider in sequence 𝑠∕2, 𝑠∕4, 𝑠∕6, 𝑠∕8 and 𝑠∕10. At the
same time we assume that climatic-induced changes may not or may
occur in the parameters of the other species. The results for the various
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Fig. 7. Effects of climatic changes for the Ageniaspis-Prays-only equilibrium, 𝑃12. Top 𝐴,
bottom 𝑀 . The red trajectories represent the current system behavior, with parameters
given by (3.23), (3.20), (3.28), (3.29), (3.30), (3.31). The other colors indicated in the
legend represent the system trajectories under climate changes that supposedly induce
a reduction in one or all insects growth rates, as specified below. Upper frame: only
the moth growth rate 𝑠 is affected; Lower frame: the growth rates of all species are
affected in the same way as for moths.

equilibria are reported in Figs. 7–12, where on the top we always report
the changes only for the moth. On the bottom instead all populations
growth rates are assumed to change as the moths do. Namely, we
change, in the same way as 𝑠 does, the reproduction parameters and
the ones related to hunting/parasitizing as well, because reproduction
is strictly related to the ability of prey/host capturing or parasitizing.
Specifically, they are 𝑢, 𝑣, 𝑤, 𝑧 for 𝑆, 𝑎, 𝑏, 𝑟 for 𝐸, 𝑐 for 𝐴. With
the exception of these parameters that case by case change, all these
figures are obtained with the parameter values given in (3.21), (3.22),
(3.23), (3.25), (3.26), (3.26), (3.27), and of course those that never
vary, (3.20), (3.28), (3.29), (3.30), (3.31).

For the Ageniaspis-Prays-only equilibrium, 𝑃12, in Fig. 7 we observe
that the levels of both species steadily drop with diminishing moth
reproduction rates. The moth population in this situation gets reduced
tenfold in the worst situation while Ageniaspis are essentially eradi-
cated, in case only the moth growth rate is affected. When instead all
insects suffer the climatic changes, Ageniaspis behaves in the same way,
but its reduction is only a third of the standard value, while the moth
drops up to being almost eradicated. However, it is interesting to note
9

Fig. 8. Effects of climatic changes for the spider-free equilibrium 𝑃14. Top 𝐸, center 𝐴,
bottom 𝑀 . Note that in this column the vertical scale for Elasmus starts from 90 and
not from 0, The red trajectories represent the current system behavior, with parameters
given by (3.26), (3.20), (3.28), (3.29), (3.30), (3.31). The other colors indicated in the
legend represent the system trajectories under climate changes that supposedly induce
a reduction in one or all insects growth rates, as specified below. Upper frame: only
the moth growth rate 𝑠 is affected; Lower frame: the growth rates of all species are
affected in the same way as for moths. Note that in this column the vertical scale for
Elasmus starts from 90 and not from 0, to better show the differences in the graphs.

that the behavior is more complex, because for a half of the standard
parameter values, Ageniaspis is slightly reduced, while the Prays popu-
lation raises of about 50%. For a fifth of the standard parameter values,
both populations essentially disappear. Finally when the parameters
attain a tenth of their standard reference value, Ageniaspis rebounds to
a third of the starting value, as said above, while Prays attains values
slightly different from zero.

For the spider-free equilibrium 𝑃14, Fig. 8 top, Elasmus drops steadily
up to about 13% of the standard reference value, with decreasing moth
reproduction rates, as does the moth itself, finally attaining vanishing
values. For the Ageniaspis instead at first we observe a decrease, but
then there is a rather large rebound for 𝑠∕8, raising the population
about 5 times from the standard reference level and then another drop
for 𝑠∕10 to almost vanishing values. When all insects growth rates are
affected by climatic changes, Fig. 8 bottom, Elasmus is scantly affected,
Ageniaspis shows a similar behavior that it has when only 𝑠 changes, but
the rebound for 𝑠∕8 attains only the population level corresponding to
the original value of 𝑠. For Prays instead a steady increase is observed
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Fig. 9. Effects of climatic changes for the Elasmus-Prays-only equilibrium 𝑃10. Top 𝐸, bottom 𝑀 . The red trajectories represent the current system behavior, with parameters given
by (3.22), (3.20), (3.28), (3.29), (3.30), (3.31). The other colors indicated in the legend represent the system trajectories under climate changes that supposedly induce a reduction
in one or all insects growth rates, as specified below. Upper frame: only the moth growth rate 𝑠 is affected. Note that in this column the vertical scale for Elasmus starts from 90
and not from 0. Lower frame: the growth rates of all species are affected in the same way as for moths. In this column the vertical scale for Elasmus starts instead from 80, to
better show the differences in the graphs.
with a decrease in the parameters, leading to a final value that doubles
the standard reference level.

For the Elasmus-Prays-only equilibrium 𝑃10, Fig. 9, when only the
moth growth rate is affected, Elasmus drops about 3% while Prays
instead initially drops about a fourth of the standard reference for
𝑠∕2, and then for further reductions of this parameter, it is essentially
eradicated. A similar behavior is observed also in case when all insects
suffer climatic influence, but Elasmus drops instead about 17%.

In case of the Elasmus-free point 𝑃13, Fig. 10, spiders are not affected
by the moth growth rate changes, Ageniaspis and moths, after a steady
decrease, are essentially eradicated when the maximum reduction in
the parameter 𝑠 occurs. When all insects growth rates are affected by
temperature and humidity changes, with the reduction of the repro-
duction parameters, the spiders population seems to rise slower, at
least initially, Ageniaspis are scantly affected, the moth population at
equilibrium instead experiences a steady increase.

For the Ageniaspis-free point 𝑃11, Fig. 11, by substantial changes only
in the moth growth rate, spiders and moths are essentially wiped out,
while Elasmus gets reduced about 10%. When all insects feel the effect
of climatic variability, spiders again after a steady decrease disappear,
Elasmus instead increases steadily about 25%, and also Prays rebound
gradually to double their equilibrium values,
10
The spider-moth-only point shows a steady decrease of both popu-
lations with decreasing 𝑠, the former by about 50% the latter by 44%,
Fig. 12. If all insects are subject to climate influence, both populations
equilibrium values do not change, only the speed at which these values
are attained do appear to be affected, being slowed down by the lower
parameter values.

For coexistence, by changes only in the moth growth rate, spiders
are not affected, Elasmus, Ageniaspis and moths are reduced and finally
essentially wiped out. When all insects feel the effect of climatic vari-
ability, spiders are significantly reduced, although an increasing trend
is observed in the figure, perhaps meaning that only the speed at which
equilibrium is reached is slowed down. The remaining populations
again show a decreasing trend that pushes them to very low values,
Fig. 13.

4. Discussion

The olive tree damage caused by the olive moth is associated with
the feeding behavior of its different generations. The anthophagous
generation destroys a variable amount of flowers during the olive
tree blooming, reducing the amount of set fruits. The carpophagous
generation is responsible for the fruit drop in two periods, the first
after the fruit setting in June/July and the second one starting at the
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Fig. 10. Effects of climatic changes for the Elasmus-free equilibrium 𝑃13. Top 𝑆,
center 𝐴, bottom 𝑀 . The red trajectories represent the current system behavior, with
parameters given by (3.26), (3.20), (3.28), (3.29), (3.30), (3.31). The other colors
indicated in the legend represent the system trajectories under climate changes that
supposedly induce a reduction in one or all insects growth rates, as specified below.
Upper frame: only the moth growth rate 𝑠 is affected; Lower frame: the growth rates
of all species are affected in the same way as for moths.

beginning of September. The phylophagous generation usually does not
originate important fruit losses, although severe attacks may negatively
affect the tree development (Bento, 1999).

In view of these remarks, we now investigate the system equilibria
to draw inferences on how to fight this olive pest.

The system can attain any one of the 12 equilibria listed in Table 2.
But in what follows we should remember that the points 𝑃0, 𝑃8, 𝑃12
and 𝑃14 are achievable only with a substantial use of insecticides. We
discuss at first the ones where the olive moth disappears.

4.1. The pest-free cases

At 𝑃0 = (0, 0, 0, 0) we observe the extinction of the four insect
species, including P. oleae. Thus, the olive grove is free from the pest.
This equilibrium is always admissible and turns out to be stable if and
only if each extra mortality rate 𝑘𝑖 with 𝑖 = 𝑆,𝐸,𝐴,𝑀 , caused by the
pesticides, is larger than the net reproduction rate of the corresponding
population.

From the biological point of view, this equilibrium is achieved if the
olive groves are subjected to curative treatments based on insecticides.
11
Fig. 11. Effects of climatic changes for the Ageniaspis-free equilibrium 𝑃11. Top 𝑆,
center 𝐸, bottom 𝑀 . The red trajectories represent the current system behavior, with
parameters given by (3.25), (3.20), (3.28), (3.29), (3.30), (3.31). The other colors
indicated in the legend represent the system trajectories under climate changes that
supposedly induce a reduction in one or all insects growth rates, as specified below.
Upper frame: only the moth growth rate 𝑠 is affected; Lower frame: the growth rates
of all species are affected in the same way as for moths.

The authorized pesticides in Portugal for the olive moth control are
based on the neonicotinoid acetamiprid; the pyrethroids cypermethrin,
deltamethrin and lambda-cyhalothrin; the organophosphate phosmet;
and spinetoram, a multi-component tetracyclic macrolide in the class
of spinosyn insecticides (DGAV, 2021). However, pesticides may be
responsible for serious toxic effects on human health and the envi-
ronment. They remain in the ecosystem and hamper the sensitive
environmental equilibrium through bio-accumulation, reaching non-
target organisms such as humans and pests’ natural enemies (Sharma
et al., 2020). For example, Pitzer et al. (2021) describes acute and
chronic effect of deltamethrin on human brain and behavior. Alterna-
tively, the use of sexual pheromones were investigated but the results
indicate that they would be useful and effective only with low popula-
tions levels. On the contrary, Bacillus thuringiensis can be used under
organic production systems against the anthophagous generation. It
was indeed found to reduce the pest up to 80 to 90%,

Equilibrium 𝑃1 = (𝑆1, 0, 0, 0) is better than the former, because
the spiders survive. Spiders are generalist predators that feed mainly
on insects. They are important natural enemies of relevant pests in
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Fig. 12. Effects of climatic changes for the Elasmus-Ageniaspis-free equilibrium. Top 𝑆,
bottom 𝑀 . The red trajectories represent the current system behavior, with parameters
given by (3.21), (3.20), (3.28), (3.29), (3.30), (3.31). The other colors indicated in the
legend represent the system trajectories under climate changes that supposedly induce
a reduction in one or all insects growth rates, as specified below. Upper frame: only
the moth growth rate 𝑠 is affected; Lower frame: the growth rates of all species are
affected in the same way as for moths.

agroecosystems because of their ubiquity and abundance (Benhadi-
Marín et al., 2016). Usual agricultural management often relies on
the use of pesticides, tillage, fertilization or landscape simplification.
However, these practices may alter the diversity of spiders and their
effectiveness as pest control agents (Benhadi-Marín et al., 2016). At
first, for the equilibrium 𝑃1 to be feasible, the average reproduction rate
must exceed the extra mortality rate due to pesticides 𝑧 > 𝑘𝑆 . Stability
of 𝑃1 is achieved by satisfying the conditions (3.14), which explicitly
can be rewritten as 0 < 𝑧(𝑘𝐸 + 𝑢𝐿− 𝑟) < 𝑢𝐿𝑘𝑆 and 0 < 𝑧(𝑘𝑀 +𝑤𝐿− 𝑠) <
𝑤𝐿𝑘𝑆 . Thus, the reproduction rates of the populations 𝐸 and 𝑀 must
respectively be lower than the extra corresponding mortality rate due to
the pesticide plus a certain positive amount that depends on the spider
hunting rate, 𝑟 < 𝑘𝐸+𝑢𝐿, 𝑠 < 𝑘𝑀 +𝑤𝐿. Further, the mortalities in these
right hand sides must be bounded above by the same net reproduction
augmented by an extra factor, namely 𝑘𝐸+𝑢𝐿 < 𝑢𝐿𝑘𝑆𝑧−1+𝑟, 𝑘𝑀+𝑤𝐿 <
𝑤𝐿𝑘𝑆𝑧−1 + 𝑠.

At 𝑃2 = (0, 𝐸2, 0, 0) only the E. flabellatus thrives thanks to the
alternative nutritional resources in the environment. As for 𝑃1, here
the equilibrium is feasible if the net reproduction rate is larger than
12
Fig. 13. Effects of climatic changes for the coexistence equilibrium. The red trajectories
represent the current system behavior, with parameters given by (3.27), (3.20), (3.28),
(3.29), (3.30), (3.31). The other colors indicated in the legend represent the system
trajectories under climate changes that supposedly induce a reduction in one or all
insects growth rates, as specified below. Upper frame: only the moth growth rate 𝑠 is
affected; Lower frame: the growth rates of all species are affected in the same way as
for moths.

the extra pesticide-induced mortality rate 𝑟 > 𝑘𝐸 . The increase in
the number of E. flabellatus leads to an increased parasitism of the
olive moth larvae. This entails a further decrease of the moth’s adult
population, leading to a reduction in fruit damage. Equilibrium 𝑃2
is stable if and only if 0 < 𝑟(𝑧 + 𝑢𝑞𝐸𝐾 − 𝑘𝑆 ) < 𝑢𝑞𝐸𝐾𝑘𝐸 and 0 <
𝑟(𝑘𝑀 + 𝑏𝐾 − 𝑠) < 𝑏𝐾𝑘𝐸 . The second stability condition requires in
particular that the moths net reproduction rate must be lower than
the combined mortality rates due to pesticide use and E. flabellatus
parasitism, the latter indicating the importance for moth eradication
of this parasitoid. Generally, the effect of E. flabellatus on the olive
moth has been understood as unwanted because the highest parasitism
rates were found in the phyllophagous generation (attacking 10 to 11%
of the olive moth) and because its hyperparasitic behavior which may
reduce also the populations of A. fuscicollis. Villa et al. (2016a), found
that in olive orchards with herbicide application where the emergence
of A. fuscicollis was significantly lower than in olive orchards with
spontaneous vegetation, E. flabellatus was responsible for almost half
of the parasitism. This supports our results and highlights the non-
negligible effect of non-specific natural control agents (which can rely
on other resources for survival), which have a higher impact on the
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particular situation of unfavorable conditions for the specific ones (such
as low number of the pest or low food resources for adults).

At 𝑃3 = (𝑆3, 𝐸3, 0, 0) the spiders and E. flabellatus populations coexist
nd biologically the situation for the olive trees is excellent with a
opulation of parasitoids and predators persisting ready to fight pos-
ible pest infiltration. This equilibrium point undergoes a transcritical
ifurcation with 𝑃1, 𝑃2 and 𝑃11 when respectively the parameters 𝑟, 𝑠

and 𝑧 vary as reported in Fig. 6. This equilibrium is unfeasible again
if the pesticide extra mortality rate is larger than the E. flabellatus
net reproduction rate. The free-pest scenarios highlights the ecological
importance of generalist natural control agents such as the spiders or E.
flabellatus. They may prove to be effective in the case of pest invasions
of free-pest territories such as the Americas or Australia (CABI, 2021),
where the olive growing is in expansion, or in the hypothetical case
that the pest would become extinct in a territory where it is already
present. However, in regions where the olive moth is well established
the free-pest scenarios would be very unlikely. Therefore the scenarios
described in the next subsection would apply.

4.2. The moth persistence scenarios

We now turn to the situations in which the olive pest is endemic.
We try to discuss the conditions for which these equilibria would not
be attainable, but one should keep in mind that if such an equilibrium
becomes unfeasible or unstable, in general it is not possible to establish
a priori where the system would settle moving away from it; thus it is
very well possible that if one such pest-affected point is prevented to
arise, the system would stabilize at another point where the pest is still
present, so that eradication is not attained. The bifurcation diagram of
Fig. 6 however could constitute a useful guide to the applied ecologist
in the choice of the policy to be undertaken case by case.

4.2.1. 𝑃8 = (0, 0, 0,𝑀8)
At the equilibrium 𝑃8 only the population of the P. oleae thrives.

This is possible because it has essentially unlimited food resources
within the olive agroecosytem. For its feasibility the insect net repro-
duction rate must exceed the extra mortality rate due to the pesticide,
i.e. 𝑠 > 𝑘𝑀 . This is trivially satisfied in the absence of insecticide
spraying. It is well known that in the absence of natural control agents,
the size of the pest population grows rapidly starting in the spring until
at the end of the season it reaches a value higher than 300 in real
scenarios (Villa et al., 2021). For this equilibrium to be unachievable,
we need to ensure that the feasibility or the stability conditions (3.17)
must not hold. The former is implied by a spraying rate larger than the
moth reproduction rate. Instead, instability is ensured by either one of
the conditions 𝑧 + 𝑤𝑞𝑀𝑀8 ≥ 𝑘𝑆 , 𝑟 + ℎ𝑏𝑀8 ≥ 𝑘𝐸 or 𝑔𝑐𝑀8 ≥ 𝑚𝐴 + 𝑘𝐴.
Thus 𝑃8 cannot be attained if, in the third case, the A. fuscicollis feeding
rate on moth is larger than its combined natural and pesticide-induced
mortalities. The first case amounts to state that the combined spiders’
growth rate due to their alternative resources and predation on the
moth exceeds their death rate due to insecticides; the second possibility
is the corresponding situation for E. flabellatus. Note that in the absence
f spraying, both these conditions are satisfied. This result is somewhat
ounterintuitive, implying that the moth-only point is not naturally
chievable. Thus the pest must certainly coexist with one of its natural
nemies.

Note that from this point the only moth-free equilibrium achievable
s the origin, by suitably acting on the moth reproduction rate 𝑠,

compare Fig. 6. Modifications of either 𝑧, 𝑟 or 𝑐, i.e. the reproduction
rates of spiders, A. fuscicollis and its parasitizing rate would move the
ystem from 𝑃 to other equilibria where however the moth still thrives.
13

8 e
4.2.2. 𝑃9 = (𝑆9, 0, 0,𝑀9)
Coexistence of spiders and P. oleae populations occurs at 𝑃9. A

ufficient condition for it to be unfeasible is given by a pesticide-
nduced extra moth mortality rate larger than its net reproduction rate.
n the opposite case, for 𝑠− 𝑘𝑀 being positive, the inequalities in (3.6)
ould still be violated, by using the corresponding difference for the
piders. The occurrence of equilibrium 𝑃9 can be prevented also by
estabilizing it, violating the inequalities in (3.18). Thus the total E.
labellatus reproduction rate due to moth parasitism and alternative
esources must exceed their total mortality due to spiders predation
nd pesticide action. Alternatively, a corresponding situation for A.
uscicollis should be ensured, so that its reproduction rate exceeds the
atural as well as the combined mortality rates due to pesticides and
piders hunting. It is interesting to note that these conditions involve
oth species that do not appear in the equilibrium. Although somewhat
ounterintuitive, they can be explained by the fact that either one of
hese two species must invade this point, and this can occur only if the
odel parameters allow their thriving.

Direct moth eradication from this point can only be obtained by
ction on the parameter 𝑠, its reproduction rate, to attain 𝑃1, the spider-
nly equilibrium, see Fig. 6. Changes in 𝑐, 𝑟, 𝑢 and 𝑣 would all keep
he moth in the ecosystem, although other populations would appear;
hanging 𝑧 has the same effect, but with the removal of spiders. Fig. 3
op, shows the bifurcation between 𝑃11 and 𝑃9 as 𝑧 increases, while in
he bottom frame the same transition occurs in terms of 𝑢. Fig. 4 in the
op frame depicts instead the transcritical bifurcation between 𝑃9 and
13 when the parameter 𝑣 changes.

.2.3. 𝑃10 = (0, 𝐸10, 0,𝑀10)
Violating the feasibility conditions for 𝑃10, the point where E. flabel-

atus and moth thrive, can be obtained exactly as in the corresponding
iscussion for equilibrium 𝑃9, by substituting the difference between
he E. flabellatus reproduction rate and the spraying-induced mortality
n place of the spiders’ one. More easily, also the equilibrium is unfea-
ible again if the pesticide extra mortality rate is larger than the moth
et reproduction rate. Also the discussion for instability parallels the
ne of the previous equilibrium. The spiders combined reproduction
ates based on feeding on moth and E. flabellatus as well as alternative
esources must exceed their spraying-induced mortality, or else the A.
uscicollis natural mortality and the ones due to insecticide action and
. flabellatus predation must be lower than their hunting rate on moths.

Moth eradication can be ensured only by reducing its reproduction
ate 𝑠, and the system would move to the point 𝑃2, where only E.
labellatus thrives, see Fig. 6. Acting on 𝑎, 𝑧 and 𝑐 would maintain
he moth presence, together with some other species. A reduction of
would lead to the extinction of E. flabellatus, but the moths would

till persist. In Fig. 3 the bifurcations involving 𝑃10 have already been
escribed above when considering 𝑃9. In addition, the bottom frame of
ig. 4 contains the transition from this point to 𝑃14 when 𝑎 decreases.

.2.4. 𝑃11 = (𝑆11, 𝐸11, 0,𝑀11)
For the A. fuscicollis-free point 𝑃11 the interpretation of both feasi-

ility and stability conditions is rather hard. However, the equilibrium
s certainly unstable if condition (A.9) is violated. This can be achieved
y requiring that the A. fuscicollis growth rate by moth feeding exceeds
ts combined natural plus spray-induced plus spiders’ and E. flabellatus
redation related mortalities. In such situation, however, it is likely
hat A. fuscicollis invades the system and thus coexistence is attained.
herefore pest eradication would not be achieved. Hence, despite the
resence of two natural control agents, the pest thrives, this being prob-
bly due to the fact that the two natural control agents have alternative
utrients on which they can feed. From Fig. 6 it is seen that three
ore transcritical bifurcations may occur at this point, on of which in
articular leads to the moth-free point 𝑃3. Therefore, destabilizing 𝑃11
y violating one of the remaining stability conditions (A.6) or (A.8) will

ventually lead to the pest eradication. In view of their rather involved
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nature, however, it is hard to assess which condition to use, and also
on which parameters to act to modify it.

From this point the moth can be eradicated by acting on 𝑧 or 𝑠,
educing the moth birth rate or increasing the spiders’ one, thereby
ringing the system to equilibrium 𝑃3. Note that a large reduction of 𝑧
nstead induces the disappearance of the spiders; the system would then
ttain 𝑃10. Modifying instead 𝑢 and 𝑟 has the effect of removing one of
he useful moth natural enemies, keeping the pest in the system. Acting
n 𝑐 would still keep the moth alive, but depending on the change,
ither spiders disappear, at 𝑃10 or A. fuscicollis invades the system and
oexistence 𝑃15 is attained, Fig. 6.

From Fig. 6 it is evident that no change in any parameter would lead
o direct moth eradication. Fig. 3 shows the two bifurcations involving
11, taking the system to 𝑃10 as 𝑎 decreases, and to 𝑃9 when 𝑢 increases.
lready discussed been described above when considering 𝑃9.

.2.5. 𝑃12 = (0, 0, 𝐴12,𝑀12)
To guarantee unfeasibility of the spiders and E. flabellatus-free point

12, if insecticide is used, the moth spraying-induced mortality be-
ng larger than their reproduction rate is sufficient. Further, suitable
ultiples of the difference between the moth reproduction rate and

he corresponding insecticide killing rate establish a range, outside of
hich the sum of the natural and insecticide-caused mortalities of A.
uscicollis should lie in order to ensure unfeasibility. To violate stability
f this equilibrium, the insecticide killing action should be smaller than
he combined insects reproduction rates, coming by hunting their prey
arasitizing their hosts or feeding on alternative resources, the insects
eing either spiders or E. flabellatus. In the absence of spraying, this
quilibrium is unconditionally unstable, and therefore not achievable.
t is likely that acting on 𝑧 the spiders birth rate due to other resources
ntroduces in the system natural control agent populations, the spiders
hemselves or E. flabellatus, without however eradicating the pest. From
ig. 6 it is evident that no change in any parameter would lead to direct
oth eradication.

.2.6. 𝑃13 = (𝑆13, 0, 𝐴13,𝑀13)
Feasibility of 𝑃13 cannot be easily interpreted in ecological terms.

n this case, to have instability, the spiders’ conversion rate on moths
hould exceed the product of their conversion rate on A. fuscicollis and
onversion rate of the latter on moths, but this is not sufficient. A sure
ay of unsettling this equilibrium is by ensuring that the total E. flabel-
atus growth rate by using alternative resources as well as by feeding
n moths and A. fuscicollis is larger than their combined mortality due
o spiders predation and insecticide action. In this second situation the
ikely outcome of increasing 𝑟 is the coexistence equilibrium, with the
onsequent non resolution of the pest problem, Fig. 6. In this case too,
oth eradication cannot be obtained without first moving toward other

‘neighboring’’ equilibria, see Figs. 5 and 6.

.2.7. 𝑃14 = (0, 𝐸14, 𝐴14,𝑀14)
The feasibility of 𝑃14 is again hard to interpret. Instability can be

nsured by a low enough spider’s killing rate due to the use of insecti-
ides, which should be overcome by their combined reproduction rates
n all their available resources, whether explicitly modeled or being
lternative food supplies. In addition, one could exploit the situation
n which the E. flabellatus conversion rate by feeding on moths could
e larger than the product of their conversion rate on A. fuscicollis and
onversion rate of the latter on moths, although by itself this condition
oes not guarantee instability.

From Fig. 6 it is not possible to directly remove the pest. Reducing
as stated above has the effect of removing the E. flabellatus, thereby

ttaining the point 𝑃12, while increasing it brings the system to coexis-
ence. Further transitions appear in Figs. 4 and 5, respectively with 𝑃10
nd 𝑃 .
14

12
.3. Final remarks

The olive moth is subjected to the attack by several natural control
gents in the olive agroecosystem. In the model presented here three
f the most important organisms naturally feeding on the olive moth
re represented. This model intends to elucidate how the abundance
f P. oleae would change depending on corresponding variations in the
opulation sizes of its natural enemies present in the ecosystem and
ccounted for in the equations. In the model a specific parasitoid, a
eneralist parasitoid and a generalist predator are included with the
im of gaining information about their effectivity for reducing the pest
umbers. Their populations behaviors under different climate change
cenarios are also considered. Thus, we compared the population levels
ttained in the various system equilibria. Starting from the coexistence,
hen one of the top two generalist natural enemies is removed and A.
uscicollis thrives, we observe that the pest population slightly changes

(equilibria 𝑃13 and 𝑃14), although these results are highly affected by
the effects of climate change. If instead A. fuscicollis is removed (equi-
librium 𝑃11, Fig. 11) the pest population suddenly explodes, reaching
alues about ten times higher than those attained at coexistence. The
ame phenomenon is observed when only two populations thrive, one
f them being the olive moth. If the pest coexists with just A. fuscicollis

(𝑃12, Fig. 7), their equilibrium level is scantly affected. However, if they
thrive either only with spiders or only with E. flabellatus (respectively
𝑃9, Fig. 12; 𝑃10, Fig. 9), they are heavily affected and their number is
highly increased.

In all cases the action of the climate change can be observed. Thus,
at 𝑃12, (the moth and A. fuscicollis both thriving) (Fig. 7) and 𝑃14 (the
spider-free point) (Fig. 8) the moths maintain always low levels. At 𝑃10
(the E. flabellatus-moth equilibrium) (Fig. 9) a reduction of the moth to
almost vanishing values is observed when the moth reproduction rate
reduces between four- and tenfolds. These results indicate the contri-
bution to the pest reduction of both parasitoids under a climate change
scenario. Accordingly, at the E. flabellatus-free equilibrium 𝑃13 (Fig. 10),
the moths increase from almost extremely low values near 0 (with
the normal moth reproduction rate) to 100 (with a tenfold reduction
of its reproduction rate) and at the A. fuscicollis-free equilibrium 𝑃11
(Fig. 11) the moths increase from 50 (with a normal moth reproduction
rate) to 100 (after a 10 fold reduction of the moth reproduction rate),
suggesting the relevance of the combined action of both parasitoids in
the regulation process of the pest in the climate change context.

From these findings, it is apparent that the role of a specialist
parasitoid in keeping the pest numbers in check is more important than
the one of generalist predators, even if they act jointly in combination
in a non-climate change scenario, but both seem to be important
when the action of the climate change takes place. Additionally, the
𝑃2 equilibrium indicates that under of unfavorable conditions for A.
fuscicollis, such as very low number of the pest — which in certain
years with unusual climatic conditions occurs, or low food resources
for adults originated for example after the herbicide application (Villa
et al., 2016b), or even invasions of P. oleae to free-pest territories
(and therefore A. fuscicollis-free), the role of E. flabellatus (or other
facultative parasitoids) could encompass a higher importance. This is
in the line of Dainese et al. (2017) results, who found complementary
effects among different guilds of natural enemies and an improvement
of the biological control efficacy when increasing the non-crop areas
(which may involve extra resources not explicitly considered in our
model).

The equilibria 𝑃0 - where all arthropods are absent, 𝑃8 - where only
he moth is present, 𝑃12 - where A. fuscicollis and the moth are present,

and 𝑃14 - where E. flabellatus, A. fuscicollis and the moth are present, are
not achievable without spraying. Additionally, in general the equilibria
are not feasible if the pesticide extra mortality rate is larger than the net
reproduction rate for all or some of the organisms involved. However,
the available information about how pesticides affect to the mortality

rates of the studied organisms is very limited or absent, pointing at
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the urgency of evaluating the effect of pesticides in natural control
agents. The same occurs in the case of the effects of climate change.
Here, we assumed the natural enemies would show a similar behavior
to the olive moth, or that they would not be affected by climate change.
However, a most probable real scenario would attain different results.
For example, Villa et al. (2017a) indicate that A. fuscicollis hazard
mortality rate highly increase with small variations of temperature.
Therefore, both pesticides and climate change effects on the olive moth
trophic web should be urgently investigated.

5. Model limitations

We present now a brief discussion of the possible criticism the
proposed model could be subject to.

First of all, in the modeling process, using Occam’s razor, we
attempted to obtain a balance between the actual situation and a math-
ematically feasible compromise. Indeed, we completely disregarded
the fact that insects undergo several development stages. Namely, we
ignored the larval and pupa stages and we focused just on the adult
individuals. This entails also that possible delays due for instance to
hatching of eggs have been disregarded. Also, when developing dynam-
ical models, we opted for having coefficients, i.e. model parameters,
that are independent of time, i.e. in particular independent of the
season. Using constant values for these coefficients means essentially
that we focus just one season with suitable thriving conditions. This
makes the system autonomous and renders the analysis possible. In
other situations time-dependent parameters can be considered, see
e.g. Rossini et al. (2021).

Furthermore, from the mathematical viewpoint, (2.1) suffers from
the fact that the mutual pairwise interactions of the species are modeled
as bilinear terms. This entails that there is no upper limit in how much
a predator can eat of a captured prey. In reality, feeding is subject to a
satiation phenomenon, for which, even in the presence of an unlimited
amount of food, the actual intake rate drops and the amount eaten
attains an upper value. This behavior is captured by a concave response
function, called Holling type II (HTII), represented by a hyperbola
which raises up from the origin to approach a horizontal asymptote. To
introduce such expressions into (2.1) would make the model closer to
reality, at the expense of complicating very much the mathematics, so
that most likely the analysis would be altogether impossible, and only
simulations would provide some information. Moreover, in the HTII
formulation, the speed at which the plateau is approached depends on
the attack rate. Indeed note that for the hyperbola 𝑤(𝑢) = 𝑐𝑢(1 + 𝑢)−1

the derivative is 𝑤′(𝑢) = 𝑐(1 + 𝑢)−2 and its evaluation at the origin
𝑢 = 0 gives 𝑤′(0) = 𝑐. Thus 𝑐 here represents the attack rate, and
the higher it is, the higher the slope and the faster the asymptote is
approached. Moreover, the attack rate in turn largely relies on the
encounter rate. The encounter rate in the field may not be large enough
to imply a fast approaching of the asymptote. The hyperbola and its
linear approximation in this case are therefore about the same. For
these reasons, we opted for the current less complicated formulation
(2.1).

The simulation of these models requires a deep knowledge about
the behavior of the involved organisms in the field. In particular, the
specific values of at least some of the parameters appearing in the
model would be required. As it is apparent from Section 3.2, there is
still an important gap in the information available so far. More dramatic
is the lack of knowledge regarding the behavior of these organisms
under a range of climate variables values changes, see Section 3.2.2.
Additionally, not only the organisms itself, but also their different
life cycle stages or different generations along the year may respond
differently to changes in climate variables, similarly to the suggested
by Pollard et al. (2020) for Phratora vulgatissima L. Therefore, increas-
ing the laboratory and field research on this pest and its associated
trophic web becomes an urgent matter. Furthermore, this model did
not consider the effect that sex ratios may have on the organism
15
populations, see e.g. Rossini et al. (2021). Finally, in field conditions
the system is certainly much more complex. Here, we consider two im-
portant parasitoids and spiders as generalist predators. But it is known
that other parasitoids or predators [e.g., the Chrysopideae Chrysoperla
carnea (Stephens) or the Anthocoridae Anthocoris nemoralis (Fabricius)]
may or do have important roles in the trophic web of the olive moth
(Bento et al., 2007; Paredes et al., 2014).

6. Conclusion

The goal of this work is mainly to study the interaction between the
natural enemies in the biological control of pest-infested olive trees,
assessing the ecosystem steady states for feasibility and stability of a
tritrophic system composed by the olive tree (the crop), the olive moth
(the pest), A. fuscicollis (the specialist parasitoid), E. flabellatus (the
facultative parasitoid) and spiders (generalist predators).

Thus we tried to analyze in detail, from a mathematical point of
view, the possibilities to eradicate the pest to avoid possible damage to
the olive tree crop.

Our results indicate that in normal circumstances the natural enemy
which will perform the highest pressure over the olive moth is the
specific parasitoid A. fuscicollis, and under particular conditions, E.
flabellatus or spiders might have significant roles in controlling the pest.

In sum, our results indicate the high importance of specific par-
asitoids. The role of hyperparasitoids or generalist predators under
particular circumstances must not be overlooked or disregarded. Ad-
ditionally, we pointed out the huge gap of biological knowledge that
still exists on the trophic web of the olive moth.
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Appendix A. Equilibria assessment

A.1. Feasibility

For 𝑃11 = (𝑆11, 𝐸11, 0,𝑀11) the population values can still be explic-
itly assessed. Letting

𝛥11 = 𝐾𝐿𝑈𝑏ℎ𝑞𝐸𝑢𝑤 −𝐾𝐿𝑈𝑏𝑞𝑀𝑢𝑤

+𝐾𝐿𝑞𝐸𝑠𝑢
2 +𝐾𝑈𝑏2ℎ𝑧 + 𝐿𝑈𝑞𝑀 𝑟𝑤2 + 𝑟𝑠𝑧

where 𝛥11 is the denominator of 𝐸, 𝑀 and 𝑆 and we put it 𝛥11 > 0,
with 𝑞𝐸 > 𝑞𝑀 .

𝐸11 =
𝑁𝐸11

𝛥11
, 𝑀11 =

𝑁𝑀11

𝛥11
, 𝑆11 =

𝑁𝑆11

𝛥11
,

𝑁𝐸11
= [𝐿𝑈 (𝑏ℎ𝑘𝑆𝑤 − 𝑏ℎ𝑤𝑧

+ 𝑘 𝑞 𝑢𝑤 − 𝑘 𝑞 𝑤2 + 𝑞 𝑟𝑤2

𝑀 𝑀 𝐸 𝑀 𝑀
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− 𝑞𝑀𝑠𝑢𝑤) − 𝑈𝑏ℎ𝑘𝑀𝑧 + 𝑈𝑏ℎ𝑠𝑧

+𝐿𝑘𝑆𝑠𝑢 − 𝐿𝑠𝑢𝑧 − 𝑘𝐸𝑠𝑧 + 𝑟𝑠𝑧]𝐾,

𝑁𝑀11
= 𝑈 (𝐾𝐿𝑘𝐸𝑞𝐸𝑢𝑤 −𝐾𝐿𝑘𝑀𝑞𝐸𝑢

2

−𝐾𝐿𝑞𝐸𝑟𝑢𝑤 +𝐾𝐿𝑞𝐸𝑠𝑢
2 −𝐾𝐿𝑏𝑘𝑆𝑢

+𝐾𝐿𝑏𝑢𝑧 +𝐾𝑏𝑘𝐸𝑧 −𝐾𝑏𝑟𝑧

+𝐿𝑘𝑆𝑟𝑤 − 𝐿𝑟𝑤𝑧 − 𝑘𝑀 𝑟𝑧 + 𝑟𝑠𝑧),

𝑁𝑆11
= 𝐿[𝐾𝑈 (𝑏ℎ𝑞𝐸𝑠𝑢 − 𝑏ℎ𝑘𝑀𝑞𝐸𝑢

− 𝑏2ℎ𝑘𝑆 + 𝑏2ℎ𝑧 + 𝑏𝑘𝐸𝑞𝑀𝑤 − 𝑏𝑞𝑀 𝑟𝑤)

−𝐾𝑘𝐸𝑞𝐸𝑠𝑢 +𝐾𝑞𝐸𝑟𝑠𝑢 − 𝑈𝑘𝑀𝑞𝑀 𝑟𝑤

+𝑈𝑞𝑀 𝑟𝑠𝑤 − 𝑘𝑆𝑟𝑠 + 𝑟𝑠𝑧].

The equilibrium point is 𝑃11 is feasible if and only if

𝑁𝑆11
𝛥11 > 0, 𝑁𝐸11

𝛥11 > 0, (A.1)
𝑁𝑀11

𝛥11 > 0.

For 𝑃13 = (𝑆13, 0, 𝐴13,𝑀13) we find, defining

𝛥13 = 𝐿𝑈𝑐𝑔𝑞𝐴𝑣𝑤 − 𝐿𝑈𝑐𝑞𝑀𝑣𝑤

+𝐿𝑈𝑓𝑞𝑀𝑤2 + 𝐿𝑞𝐴𝑠𝑣
2 + 𝑈𝑐2𝑔𝑧 + 𝑓𝑠𝑧,

Note that if 𝑔𝑞𝐴 > 𝑞𝑀 , 𝛥13 > 0.

𝑆13 =
𝑁𝑆13

𝛥13
, 𝐴13 =

𝑁𝐴13

𝛥13
, 𝑀13 =

𝑁𝑀13

𝛥13
,

𝑁𝑆13
= (𝑐𝑔𝑞𝐴𝑠𝑣 − 𝑐𝑔𝑘𝑀𝑞𝐴𝑣 − 𝑐2𝑔𝑘𝑆

+ 𝑐2𝑔𝑧 + 𝑐𝑘𝐴𝑞𝑀𝑤 + 𝑐𝑚𝐴𝑞𝑀𝑤

− 𝑓𝑘𝑀𝑞𝑀𝑤 + 𝑓𝑞𝑀𝑠𝑤)𝐿𝑈2

+ (𝑓𝑠𝑧 − 𝑘𝐴𝑞𝐴𝑠𝑣 − 𝑚𝐴𝑞𝐴𝑠𝑣 − 𝑓𝑘𝑆𝑠)𝐿,

𝑁𝐴13
= 𝐿[𝑈 (𝑐𝑔𝑘𝑆𝑤 − 𝑐𝑔𝑤𝑧

− 𝑘𝐴𝑞𝑀𝑤2 + 𝑘𝑀𝑞𝑀𝑣𝑤 − 𝑚𝐴𝑞𝑀𝑤2

− 𝑞𝑀𝑠𝑣𝑤) + 𝑘𝑆𝑠𝑣 − 𝑠𝑣𝑧]

+𝑈𝑐𝑔(𝑠𝑧 − 𝑘𝑀𝑧) − 𝑘𝐴𝑠𝑧 − 𝑚𝐴𝑠𝑧,

𝑁𝑀13
= (𝑘𝐴𝑞𝐴𝑣𝑤 − 𝑘𝑀𝑞𝐴𝑣

2

+𝑚𝐴𝑞𝐴𝑣𝑤 + 𝑞𝐴𝑠𝑣
2 − 𝑐𝑘𝑆𝑣 + 𝑐𝑣𝑧

+ 𝑓𝑘𝑆𝑤 − 𝑓𝑤𝑧)𝐿𝑈

+ (𝑐𝑘𝐴𝑧 + 𝑐𝑚𝐴𝑧 − 𝑓𝑘𝑀𝑧 + 𝑓𝑠𝑧)𝑈.

The equilibrium 𝑃13 is feasible if and only if the populations are non-
negative, i.e. either one of the following sets of alternative inequalities
hold:

𝑁𝑆13
≥ 0, 𝑁𝐴13

≥ 0, (A.2)
𝑁𝑀13

≥ 0, 𝛥13 > 0;

𝑁𝑆13
≤ 0, 𝑁𝐴13

≤ 0, (A.3)
𝑁𝑀13

≤ 0, 𝛥13 < 0.

Finally, we find 𝑃14 = (0, 𝐸14, 𝐴14,𝑀14). Letting

𝛥14 = 𝐾𝑈𝑎𝑏𝑐𝑒𝑔 −𝐾𝑈𝑎𝑏𝑐ℎ

+𝐾𝑈𝑏2𝑓ℎ +𝐾𝑎2𝑒𝑠 + 𝑈𝑐2𝑔𝑟 + 𝑓𝑟𝑠,

we have

𝐸14 =
𝑁𝐸14

𝛥14
, 𝐴14 =

𝑁𝐴14

𝛥14
, 𝑀14 =

𝑁𝑀14

𝛥14
,

𝑁𝐸14
= 𝐾[𝑈 (𝑎𝑐𝑒𝑔𝑠 − 𝑎𝑐𝑒𝑔𝑘𝑀

+ 𝑏𝑐ℎ𝑘𝐴 + 𝑏𝑐ℎ𝑚𝐴 − 𝑏𝑓ℎ𝑘𝑀
+ 𝑏𝑓ℎ𝑠 − 𝑐2𝑔𝑘𝐸 + 𝑐2𝑔𝑟) − 𝑎𝑒𝑘𝐴𝑠

− 𝑎𝑒𝑚𝐴 𝑠 − 𝑓𝑘𝐸 𝑠 + 𝑓𝑟𝑠],

𝑁𝐴14
= 𝐾𝑈 (𝑎𝑏ℎ𝑘𝑀 − 𝑎𝑏ℎ𝑠

− 𝑏2ℎ𝑘 − 𝑏2ℎ𝑚 − 𝑏𝑐𝑔𝑟
16

𝐴 𝐴
+ 𝑏𝑐𝑔𝑘𝐸 ) − 𝑈𝑐𝑔𝑘𝑀 𝑟 + 𝑈𝑐𝑔𝑟𝑠

+𝐾𝑎𝑠(𝑘𝐸 − 𝑟) − 𝑘𝐴 𝑟𝑠 − 𝑚𝐴 𝑟𝑠,

𝑁𝑀14
= 𝑈 (𝐾𝑎2𝑒𝑘𝑀 −𝐾𝑎2𝑒𝑠

−𝐾𝑎𝑏𝑒𝑘𝐴 −𝐾𝑎𝑏𝑒𝑚𝐴 +𝐾𝑎𝑐𝑘𝐸
−𝐾𝑎𝑐𝑟 −𝐾𝑏𝑓𝑘𝐸 +𝐾𝑏𝑓𝑟

− 𝑐𝑘𝐴 𝑟 − 𝑐𝑚𝐴 𝑟 + 𝑓𝑘𝑀 𝑟 − 𝑓𝑟𝑠).

Feasibility is ensured by either one of the following sets of alternative
inequalities hold:

𝑁𝑆14
≥ 0, 𝑁𝐴14

≥ 0, (A.4)
𝑁𝑀14

≥ 0, 𝛥14 > 0;

𝑁𝑆14
≤ 0, 𝑁𝐴14

≤ 0, (A.5)
𝑁𝑀14

≤ 0, 𝛥14 < 0.

A.2. Stability

A.2.1. Equilibrium 𝑃11
At 𝑃11 one eigenvalue factorizes, 𝐽3,3(𝑃11) = 𝑔𝑐𝑀11 − 𝑎𝐸11 − 𝑣𝑆11 −

(𝑚𝐴 + 𝑘𝐴). We need to apply the Routh–Hurwitz conditions to the
remaining minor 𝐽[1,2,4;1,2,4], namely

⎡

⎢

⎢

⎢

⎣

− 𝑧
𝐿𝑆11 𝑢𝑞𝐸𝑆11 𝑤𝑞𝑀𝑆11

−𝑢𝐸11 − 𝑟
𝐾𝐸11 ℎ𝑏𝐸11

−𝑤𝑀11 −𝑏𝑀11 − 𝑠
𝑈 𝑀11

⎤

⎥

⎥

⎥

⎦

Clearly, the trace is negative. The remaining conditions entail the use
of the sum 𝑀 (11)

2 of the principal minors of order two,

𝑀 (11)
2 = [ 𝑟

𝐾
𝑠
𝑈
𝐸11𝑀11 + ℎ𝑏2𝐸11𝑀11]

+ [ 𝑧
𝐿

𝑠
𝑈
𝑆11𝑀11 +𝑤2𝑞𝑀𝑆11𝑀11]

+ [ 𝑧
𝐿

𝑟
𝐾
𝑆11𝐸11 + 𝑢2𝑞𝐸𝑆11𝐸11]

For the determinant, we find

det(𝐽[1,2,4;1,2,4]) (A.6)

= −
𝑀11 𝐸11 𝑆11

𝐿𝐾𝑈
[

𝑟
(

𝐿𝑈𝑞𝑀 𝑤2 + 𝑠𝑧
)

+
(

𝑢𝐿
(

𝑏𝑤
(

ℎ𝑞𝐸 − 𝑞𝑀
)

𝑈 + 𝑞𝐸 𝑠𝑢
)

+ 𝑧𝑈𝑏2ℎ
)

𝐾
]

< 0

which is implied by

ℎ >
𝑞𝑀
𝑞𝐸

. (A.7)

he last condition is

r(𝐽[1,2,4;1,2,4])𝑀
(11)
2 < det(𝐽[1,2,4;1,2,4]).

Extensively, it can be written as

𝑆11𝐸11𝑀11
[((

𝑏𝑤
(

ℎ𝑞𝐸 − 𝑞𝑀
)

𝑈 + 𝑞𝐸 𝑠𝑢
)

𝑢𝐿

+ 𝑧𝑈𝑏2ℎ
)

𝐾 + 𝑟
(

𝐿𝑈𝑞𝑀 𝑤2 + 𝑠𝑧
)]

(A.8)

< 1
𝐿𝐾𝑈

{[

𝐿𝑈
((

𝑀11𝑏
2ℎ + 𝑆11𝑞𝐸𝑢

2)𝐸11

+𝑤2𝑞𝑀𝑆11𝑀11
)

+𝑀11𝑆11𝑠𝑧
]

𝐾

+𝐸11 𝑟
(

𝐿𝑀11𝑠 + 𝑆11𝑈𝑧
) [(

𝐿𝑀11𝑠

+𝑆11 𝑈𝑧
)

𝐾 + 𝑟𝐸11 𝐿𝑈
]}

The stability conditions are (A.6), (A.8), which is implied by (A.7) and

𝑔𝑐𝑀11 < 𝑎𝐸11 + 𝑣𝑆11 + 𝑚𝐴 + 𝑘𝐴, (A.9)
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A.2.2. Equilibrium 𝑃12
At 𝑃12 the explicit eigenvalues are 𝑣𝑞𝐴𝐴12 + 𝑤𝑞𝑀𝑀12 + 𝑧 − 𝑘𝑆 and

𝑎𝐴12+ℎ𝑏𝑀12+𝑟−𝑘𝐸 . The Routh–Hurwitz conditions on the remaining
inor, 𝐽[3,4;3,4] are unconditionally satisfied,

tr(𝐽[3,4;3,4]) = −𝑓𝐴12 −
𝑠
𝑈
𝑀12 < 0,

et(𝐽[3,4;3,4]) = 𝑓 𝑠
𝑈
𝐴12𝑀12

+ 𝑐2𝑔𝐴12𝑀12 > 0

o that the stability conditions are:

𝑞𝐴𝐴12 +𝑤𝑞𝑀𝑀12 + 𝑧 < 𝑘𝑆 , (A.10)
𝑒𝑎𝐴12 + ℎ𝑏𝑀12 + 𝑟 < 𝑘𝐸 .

In the particular case of no insecticide use, these conditions cannot be
satisfied, and this point becomes unconditionally unstable.

A.2.3. Equilibrium 𝑃13
The only eigenvalue explicitly known at 𝑃13 is 𝐽2,2(𝑃13) = 𝑒𝑎𝐴13 +

ℎ𝑏𝑀13 − 𝑢𝑆13 + 𝑟 − 𝑘𝐸 . We then need to apply the Routh–Hurwitz
onditions to the remaining minor 𝐽[1,3,4;1,3,4]. The trace is negative,

tr(𝐽[1,3,4;1,3,4]) = − 𝑧
𝐿
𝑆13

− 𝑓𝐴13 −
𝑠
𝑈
𝑀13 < 0.

For the determinant we need

det(𝐽[1,3,4;1,3,4]) = −
[

𝑧
(

𝑈𝑐2𝑔 + 𝑓𝑠
)

(A.11)
+

((

𝑣
(

𝑔𝑞𝐴 − 𝑞𝑀
)

𝑐 + 𝑞𝑀 𝑓𝑤
)

𝑤𝑈

+ 𝑞𝐴 𝑠𝑣2
)

𝐿
] 𝑆13𝑀13𝐴13

𝐿𝑈
< 0

which is ensured by

𝑔 >
𝑞𝑀
𝑞𝐴

. (A.12)

Further, we find

𝑀 (13)
2 =

[

𝑓 𝑠
𝑈

+ 𝑔𝑐2
]

𝐴13𝑀13

+
[ 𝑧
𝐿

𝑠
𝑈

+𝑤2𝑞𝑀
]

𝑆13𝑀13

+
[ 𝑧
𝐿
𝑓 + 𝑣2𝑞𝐴

]

𝑆13𝐴13

he final condition to be satisfied is

r(𝐽[1,3,4;1,3,4])𝑀
(13)
2 < det(𝐽[1,3,4;1,3,4])

which explicitly become

𝑀13𝐴13𝑆13
{[(

𝑣
(

𝑔𝑞𝐴 − 𝑞𝑀
)

𝑐 + 𝑞𝑀𝑓𝑤
)

𝑤𝑈

+ 𝑞𝐴𝑠𝑣
2]𝐿 + 𝑧

(

𝑈𝑐2𝑔 + 𝑓𝑠
)}

(A.13)

+ 1
𝐿𝑈

{

(𝐴13𝑈𝑓 + 𝑠𝑀13)𝐿

+ 𝑧𝑆13𝑈 [(((𝑀13𝑐
2𝑔 + 𝑆13𝑞𝐴𝑣

2)𝐴13

+ 𝑞𝑀𝑀13𝑆13𝑤
2)𝑈 + 𝐴13𝑀13𝑓𝑠)𝐿]

+𝑆13𝑧(𝐴13𝑈𝑓 + 𝑠𝑀13)
}

> 0.

Also, negativity of the known eigenvalue must be ensured:

𝑒𝑎𝐴13 + ℎ𝑏𝑀13 + 𝑟 < 𝑢𝑆13 + 𝑘𝐸 . (A.14)

A.2.4. Equilibrium 𝑃14
Similar considerations hold for 𝑃14, where the known eigenvalue is

𝐽1,1(𝑃14) = 𝑢𝑞𝐸𝐸14 + 𝑣𝑞𝐴𝐴14 + 𝑤𝑞𝑀𝑀14 + 𝑧 − 𝑘𝑆 . The remaining minor
reads

𝐽[2,3,4;2,3,4] =
⎡

⎢

⎢

− 𝑟
𝐾𝐸14 𝑒𝑎𝐸14 ℎ𝑏𝐸14

−𝑎𝐴14 −𝑓𝐴14 𝑔𝑐𝐴14
𝑠

⎤

⎥

⎥

17

⎣−𝑏𝑀14 −𝑐𝑀14 −𝑈 𝑀14⎦
so that the trace is seen to be negative. The condition for the determi-
nant instead is

det(𝐽[2,3,4;2,3,4]) = −
[

𝑟
(

𝑈𝑐2𝑔 + 𝑓𝑠
)

(A.15)
+ (𝑏𝑈 (𝑐 (𝑒𝑔 − ℎ) 𝑎 + 𝑏𝑓ℎ)

+ 𝑠𝑎2𝑒
)

𝐾
] 𝐴14𝑀14𝐸14

𝐾𝑈
< 0

and is negative if

𝑔 > ℎ
𝑒
. (A.16)

Moreover, here

𝑀 (14)
2 =

[ 𝑠
𝑈
𝑓 + 𝑔𝑐2

]

𝐴14𝑀14

+
[ 𝑟
𝐾

𝑠
𝑈

+ ℎ𝑏2
]

𝑀14𝐸14

+
[ 𝑟
𝐾
𝑓 + 𝑒𝑎2

]

𝐸14𝐴14.

The final stability condition is then

tr(𝐽[2,3,4;2,3,4]) ⋅𝑀
(14)
2 < det(𝐽[2,3,4;2,3,4]).

xplicitly the stability conditions are
[

(𝑐 (𝑒𝑔 − ℎ) 𝑎 + 𝑏𝑓ℎ) 𝑏𝑈 + 𝑠𝑎2𝑒
]

𝐾 (A.17)
+ 𝑟

(

𝑈𝑐2𝑔 + 𝑓𝑠
)}

𝐸14𝐴14 𝑀14

< 1
𝐾𝑈

{
[

((𝐸14𝑎
2𝑒 +𝑀14𝑐

2𝑔)𝐴14

+𝐸14𝑀14𝑏
2ℎ)𝑈 + 𝑠𝐴14𝑀14𝑓

]

𝐾

+ 𝑟𝐸14(𝐴14𝑈𝑓 + 𝑠𝑀14)𝐾 + 𝑟𝐸14𝑈}.

Negativity of the known eigenvalue also entails:

𝑢𝑞𝐸𝐸14 + 𝑣𝑞𝐴𝐴14 (A.18)
+𝑤𝑞𝑀𝑀14 + 𝑧 < 𝑘𝑆 .

This point too is therefore unconditionally unstable, if spraying is not
used, or even if it is harmless to spiders.

A.2.5. Equilibrium 𝑃15
At coexistence 𝑃15 the Jacobian 𝐽 (𝑃15) can be simplified to the form

⎡

⎢

⎢

⎢

⎢

⎣

− 𝑧
𝐿𝑆15 𝑢𝑞𝐸𝑆15 𝑣𝑞𝐴𝑆15 𝑤𝑞𝑀𝑆15

−𝑢𝐸15 − 𝑟
𝐾𝐸15 𝑒𝑎𝐸15 ℎ𝑏𝐸15

−𝑣𝐴15 −𝑎𝐴15 −𝑓𝐴15 𝑔𝑐𝐴15
−𝑤𝑀15 −𝑏𝑀15 −𝑐𝑀15 − 𝑠

𝑈 𝑀15

⎤

⎥

⎥

⎥

⎥

⎦

so that the trace is negative. The remaining Routh–Hurwitz conditions
are:

det(𝐽 (𝑃15)) > 0, (A.19)
tr(𝐽 (𝑃15))𝑀

(15)
2 < 𝑀 (15)

3 ,

tr(𝐽 (𝑃15))𝑀
(15)
2 𝑀 (15)

3

> (𝐽 (𝑃15))2 ⋅ det(𝐽 (𝑃15)) + (𝑀 (15)
3 )2

where 𝑀 (15)
3 is the sum of the principal minors of order three of the

matrix 𝐽 (𝑃15). We find

det(𝐽 (𝑃15)) = 𝑆15𝐸15𝐴15𝑀15
{

𝑎𝑐𝑒𝑔𝑞𝐸𝑢𝑤

+ 𝑎2𝑒𝑞𝑀𝑤2 − 𝑎𝑏𝑒𝑞𝑀𝑣𝑤 − 𝑎𝑏ℎ𝑞𝐴𝑣𝑤

+ 𝑏2ℎ𝑞𝐴𝑣
2 − 𝑏𝑐𝑔𝑞𝐴𝑢𝑣 − 𝑏𝑐ℎ𝑞𝐸𝑢𝑣

+ 𝑏𝑓ℎ𝑞𝐸𝑢𝑤 + 𝑐2𝑔𝑞𝐸𝑢
2 + 𝑎𝑐𝑞𝑀𝑢𝑤

− 𝑏𝑓𝑞𝑀𝑢𝑤 + 1
𝐿𝐾𝑈

[𝐾𝑎2𝑒𝑠𝑧 (A.20)

+𝐾𝐿(𝑎𝑒𝑞𝐸𝑠𝑢𝑣 − 𝑎𝑞𝐴𝑠𝑢𝑣 + 𝑓𝑞𝐸𝑠𝑢
2)

+𝐾𝑈 (𝑎𝑏𝑐𝑒𝑔𝑧 − 𝑎𝑏𝑐ℎ𝑧 + 𝑏2𝑓ℎ𝑧)

+𝐿𝑈 (𝑐𝑔𝑞𝐴𝑟𝑣𝑤 − 𝑐𝑞𝑀 𝑟𝑣𝑤 + 𝑓𝑞𝑀 𝑟𝑤2)
2 2 }
+ +𝐿𝑞𝐴𝑟𝑠𝑣 + 𝑈𝑐 𝑔𝑟𝑧 + 𝑓𝑟𝑠𝑧] > 0
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a

𝑀

(
𝑧
r

as well as

𝑀2 =
𝐸15 𝑆15

(

𝐾𝐿𝑞𝐸 𝑢2 + 𝑟𝑧
)

𝐿𝐾

+
𝐴15 𝐸15

(

𝐾𝑎2𝑒 + 𝑓𝑟
)

𝐾

+
𝐴15 𝑀15

(

𝑈𝑐2𝑔 + 𝑓𝑠
)

𝑈

+
𝑀15 𝑆15

(

𝐿𝑈𝑞𝑀 𝑤2 + 𝑠𝑧
)

𝐿𝑈

+
𝐴15 𝑆15

(

𝐿𝑎𝑞𝐴 𝑣 + 𝑓𝑧
)

𝐿

+
𝐸15 𝑀15

(

𝐾𝑈𝑏2ℎ + 𝑟𝑠
)

𝐾𝑈
nd

3 = −
𝐸15𝐴15𝑀15

𝐾𝑈
{[(𝑐 (𝑒𝑔 − ℎ) 𝑎 + 𝑏𝑓ℎ) 𝑏𝑈

+ 𝑠𝑎2𝑒
]

𝐾 + 𝑟
(

𝑈𝑐2𝑔 + 𝑓𝑠
)}

−
𝐴15𝑆15𝑀15

𝐿𝑈
[

𝑧
(

𝑈𝑐2𝑔 + 𝑓𝑠
)

+
(

𝑤
(

𝑣
(

𝑔𝑞𝐴 − 𝑞𝑀
)

𝑐 + 𝑞𝑀𝑓𝑤
)

𝑈 + 𝑞𝐴𝑠𝑣
2)𝐿

)]

−
𝑆15𝐸15𝑀15

𝐿𝐾𝑈
{

𝑟
(

𝐿𝑈𝑞𝑀𝑤2 + 𝑠𝑧
)

+𝐾
[

𝑢
(

𝑏𝑤
(

ℎ𝑞𝐸 − 𝑞𝑀
)

𝑈 + 𝑞𝐸𝑠𝑢
)

𝐿

+ 𝑧𝑈𝑏2ℎ
]}

−
𝐸15𝑀15𝑆15

𝐿𝐾
{

𝑟
(

𝐿𝑞𝐴𝑣𝑤 + 𝑐𝑧
)

+
[

𝑢
(

𝑎𝑒𝑞𝐸 𝑤 − 𝑏𝑞𝐴𝑣 + 𝑐𝑞𝐸𝑢
)

𝐿 + 𝑧𝑎𝑏𝑒
]

𝐾
}

Sufficient conditions for having 𝑀3 < 0 are

𝑒𝑔 > ℎ, 𝑔𝑞𝐴 > 𝑞𝑀 , ℎ𝑞𝐸 > 𝑞𝑀 , (A.21)
𝑎𝑒𝑞𝐸 𝑤 + 𝑐𝑞𝐸 𝑢 > 𝑏𝑞𝐴 𝑣.

The second condition in (A.19) explicitly is
(

𝑧𝑆15
𝐿

+
𝑟𝐸15
𝐾

+ 𝑓𝐴15 +
𝑠𝑀15
𝑈

)[

𝐸15𝑆15
𝐿𝐾

(𝑟𝑧

+ 𝑞𝐸𝑢
2𝐾𝐿

)

+
𝐴15𝐸15

𝐾
(

𝑒𝑎2𝐾 + 𝑟𝑓
)

+
𝐴15𝑀15

𝑈
(

𝑔𝑐2𝑈 + 𝑠𝑓
)

+
𝑀15𝑆15
𝐿𝑈

(𝑠𝑧

+𝐿𝑈𝑞𝑀 𝑤2) +
𝐴15𝑆15

𝐿
(

𝑞𝐴𝑣𝑎𝐿 + 𝑧𝑓
)

+
𝐸15𝑀15
𝐾𝑈

(

ℎ𝑏2𝐾𝑈 + 𝑟𝑠
)

]

(A.22)

>
𝐸15𝑀15𝐴15

𝐾𝑈
{[𝑏 (𝑐 (𝑒𝑔 − ℎ) 𝑎 + 𝑏𝑓ℎ)𝑈

+ 𝑠𝑎2𝑒
]

𝐾 + 𝑟
(

𝑔𝑐2𝑈 + 𝑠𝑓
)}

+
𝑀15𝑆15𝐴15

𝐿𝑈
{

𝑧
(

𝑔𝑐2𝑈 + 𝑠𝑓
)

+
[(

𝑣
(

𝑔𝑞𝐴 − 𝑞𝑀
)

𝑐 + 𝑞𝑀𝑓𝑤
)

𝑤𝑈 + 𝑞𝐴𝑠𝑣
2]𝐿

}

+
𝐸15𝑀15𝑆15

𝐿𝐾𝑈
{

𝑟
(

𝐿𝑈𝑞𝑀𝑤2 + 𝑠𝑧
)

+
[(

𝑏𝑤
(

ℎ𝑞𝐸 − 𝑞𝑀
)

𝑈 + 𝑞𝐸𝑠𝑢
)

𝑢𝐿

+ 𝑧𝑈𝑏2ℎ
]

𝐾
}

+
𝐸15𝑆15𝑀15

𝐿𝐾
{

𝑟
(

𝐿𝑞𝐴𝑣𝑤 + 𝑐𝑧
)

[

𝑢
(

𝑎𝑒𝑞𝐸𝑤 − 𝑏𝑞𝐴𝑣 + 𝑐𝑞𝐸𝑢
)

𝐿 + 𝑧𝑎𝑏𝑒
]

𝐾
}

while the last one, although it could be written as well, is too involved
and it is omitted. The stability conditions are (A.20), (A.22) and

tr(𝐽 (𝑃15))𝑀2𝑀3 (A.23)
> (𝐽 (𝑃15))2 det(𝐽 (𝑃15)) +𝑀2

3

Appendix B. Bifurcations
18
Let us rewrite the model (2.1) in synthetic notation as 𝑥′(𝑡) = 𝐅(𝑥),
where 𝑥𝑇 = (𝑆,𝐸,𝐴,𝑀) and 𝐅𝑇 = (𝐹 1, 𝐹 2, 𝐹 3, 𝐹 4) denotes the right
hand side of the system. The analysis of the bifurcations is carried out
using Sotomayor’s Theorem, Perko (2011) and the notation therein,
using subscripts to denote partial derivatives. In particular we will need
the following quantities:

𝐹 1
𝑆𝑆 = −2 𝑧

𝐿
, 𝐹 1

𝑆𝐸 = 𝑢𝑞𝐸 ,

𝐹 1
𝑆𝐴 = 𝑣𝑞𝐴, 𝐹 1

𝑆𝑀 = 𝑤𝑞𝑀 ,

𝐹 2
𝑆𝐸 = −𝑢, 𝐹 2

𝐸𝐸 = −2 𝑟
𝐾
,

𝐹 2
𝐸𝐴 = 𝑒𝑎, 𝐹 2

𝐸𝑀 = ℎ𝑏,

𝐹 3
𝑆𝐴 = −𝑣, 𝐹 3

𝐸𝐴 = −𝑎,

𝐹 3
𝐴𝐴 = −2𝑓, 𝐹 3

𝐴𝑀 = 𝑔𝑐,

𝐹 4
𝑆𝑀 = −𝑤, 𝐹 4

𝐸𝑀 = −𝑏,

𝐹 4
𝐴𝑀 = −𝑐, 𝐹 4

𝑀𝑀 = −2 𝑠
𝑈

and where the second derivatives for all the remaining combinations of
the variables are zero. Also, all the third order derivatives vanish, i.e.
𝐹 𝑘
𝑋𝑌𝑊 = 0, 𝑘 = 1,… , 4 and 𝑋, 𝑌 ,𝑊 ∈ {𝑆,𝐸,𝐴,𝑀}. This last condition

implies that no pitchfork bifurcation is possible. In what follows, the
eigenvalues that are negative will not give rise to bifurcations for
feasible values of the model parameters and therefore will not be
considered.

B.1. Bifurcations at 𝑃0

For 𝑃0 = (0, 0, 0, 0) the Jacobian has four explicit eigenvalues,

𝜆1 = 𝑧 − 𝑘𝑆 , 𝜆2 = 𝑟 − 𝑘𝐸 ,

𝜆3 = −𝑘𝐴 − 𝑚𝐴, 𝜆4 = 𝑠 − 𝑘𝑀 .

B.1.1. Eigenvalue 𝜆1
Take as bifurcation parameter 𝑧 and let �̂� ∶= 𝑘𝑆 . The right 𝐯 and left

𝐰 eigenvectors of the Jacobian are 𝐯 = 𝐰 = (1, 0, 0, 0)𝑇 . Upon suitable
differentiation, in this case we find

𝐅𝐳 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑆
(

1 − 𝑆
𝐿

)

0
0
0

⎞

⎟

⎟

⎟

⎟

⎠

,

𝐷𝐅𝐳 =

⎡

⎢

⎢

⎢

⎢

⎣

1 − 2 𝑆
𝐿 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

so that 𝐅𝑧(𝑃0, �̂�) = 𝟎, for which 𝐰𝐓𝐅𝑧(𝑃0, �̂�) = 0, implying 𝐷𝐅𝑧(𝑃0, �̂�)𝐯 =
1, 0, 0, 0)𝑇 and therefore 𝐰𝐓[𝐷𝐅𝑧(𝑃0, �̂�)𝐯] = 1 ≠ 0. Further, 𝐰𝑇 [𝐷2𝐅(𝑃0,
̂)(𝐯, 𝐯)] = −2 𝑧

𝐿 ≠ 0, showing a transcritical bifurcation at the equilib-
ium point 𝑃0 for the critical parameter value 𝑧 = �̂�, between 𝑃0 and
𝑃1 for 𝑧 = �̂�.

B.1.2. Eigenvalue 𝜆2
Take as bifurcation parameter 𝑟 and let �̂� ∶= 𝑘𝐸 . The right 𝐯 and

left 𝐰 eigenvectors of the Jacobian are 𝐯 = (0, 1, 0, 0)𝑇 , 𝐰 = (0, 1, 0, 0)𝑇 .
Upon suitable differentiation, in this case we find 𝐅𝑟(𝑃0, �̂�) = 𝟎, for
which 𝐰𝐓𝐅𝑟(𝑃0, �̂�) = 0, implying 𝐷𝐅𝑟(𝑃0, �̂�)𝐯 = (0, 1, 0, 0)𝑇 and therefore
𝐰𝐓[𝐷𝐅𝑟(𝑃0, �̂�)𝐯] = 1 ≠ 0. Further, 𝐰𝑇 [𝐷2𝐅(𝑃0, �̂�)(𝐯, 𝐯)] = −2 𝑟

𝐾 ≠ 0,
showing a transcritical bifurcation at the equilibrium point 𝑃0 for the
critical parameter value 𝑟 = �̂�, between 𝑃 and 𝑃 .
0 2
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B.1.3. Eigenvalue 𝜆4
Take as bifurcation parameter 𝑠 and let �̂� ∶= 𝑘𝑀 . The right 𝐯 and

eft 𝐰 eigenvectors of the Jacobian are 𝐯 = (0, 0, 0, 1)𝑇 , 𝐰 = (0, 0, 0, 1)𝑇 .
Upon suitable differentiation, in this case we find 𝐅𝑠(𝑃0, �̂�) = 𝟎, for

hich 𝐰𝐓𝐅𝑠(𝑃0, �̂�) = 0, implying 𝐷𝐅𝑠(𝑃0, �̂�)𝐯 = (0, 0, 0, 1)𝑇 and therefore
𝐓[𝐷𝐅𝑠(𝑃0, �̂�)𝐯] = 1 ≠ 0. Further, 𝐰𝑇 [𝐷2𝐅(𝑃0, �̂�)(𝐯, 𝐯)] = −2 𝑠

𝑈 ≠ 0,
howing a transcritical bifurcation at the equilibrium point 𝑃0 for the
ritical parameter value 𝑠 = �̂�, between 𝑃0 and 𝑃8.

.2. Bifurcations at 𝑃1

For 𝑃1 = (𝑆1, 0, 0, 0) the Jacobian has four explicit eigenvalues,

1 = −𝑧 + 𝑘𝑆 , 𝜆2 = −𝑢𝑆1 + 𝑟 − 𝑘𝐸 ,

3 = −𝑣𝑆1 − 𝑘𝐴 − 𝑚𝐴, 𝜆4 = −𝑤𝑆1 + 𝑠 − 𝑘𝑀 .

.2.1. Eigenvalue 𝜆1
Take as bifurcation parameter 𝑧 and let �̂� ∶= 𝑘𝑆 . The right 𝐯 and left

eigenvectors of the Jacobian are 𝐯 = (1, 0, 0, 0)𝑇 , 𝐰 = (1, 𝑤2, 𝑤3, 𝑤4)𝑇 .
pon suitable differentiation, in this case we find 𝐅𝑧(𝑃1, �̂�) = 𝟎, for
hich 𝐰𝐓𝐅𝑧(𝑃1, �̂�) = 0, implying 𝐷𝐅𝑧(𝑃1, �̂�)𝐯 = (1, 0, 0, 0)𝑇 and therefore
𝐓[𝐷𝐅𝑧(𝑃1, �̂�)𝐯] = 1 ≠ 0. Further, 𝐰𝑇 [𝐷2𝐅(𝑃1, �̂�)(𝐯, 𝐯)] = −2 𝑧

𝐿 ≠ 0,
howing a transcritical bifurcation at the equilibrium point 𝑃1 for the
ritical parameter value 𝑧 = �̂�, between 𝑃1 and 𝑃0 as 𝑧 crosses the
ritical threshold �̂� from above.

.2.2. Eigenvalue 𝜆2
Take as bifurcation parameter 𝑟 and let �̂� ∶= 𝑢(𝑧−𝑘𝑆 )𝐿

𝑧 +𝑘𝐸 . The right
and left 𝐰 eigenvectors of the Jacobian are 𝐯 = (− 𝑢𝑞𝐸𝑆1

𝑘𝑆−𝑧
, 1, 0, 0)𝑇 , 𝐰 =

(0, 1, 0, 0)𝑇 . Upon suitable differentiation, in this case we find 𝐅𝑟(𝑃1, �̂�) =
𝟎, for which 𝐰𝐓𝐅𝑟(𝑃1, �̂�) = 0, implying 𝐷𝐅𝑟(𝑃1, �̂�)𝐯 = (0, 1, 0, 0)𝑇 and
therefore

𝐰𝐓[𝐷𝐅𝑟(𝑃1, �̂�)𝐯] = 1 ≠ 0. Further, 𝐰𝑇 [𝐷2𝐅(𝑃1, �̂�)(𝐯, 𝐯)] = −2( 𝑢
2𝑞𝐸𝑆1
𝑘𝑆−𝑧

+
𝑟
𝐾 ) ≠ 0, showing a transcritical bifurcation for which the equilibrium
oint 𝑃1 becomes 𝑃3, as the bifurcation parameter crosses the critical
alue 𝑟 = �̂� from below.

B.2.3. Eigenvalue 𝜆4
Take as bifurcation parameter 𝑠 and let �̂� ∶= 𝑘𝑀 + 𝑤𝑆1. The right

𝐯 and left 𝐰 eigenvectors of the Jacobian are 𝐯 = (𝑤𝑞𝑀𝐿
𝑧 , 0, 0, 1)𝑇 , 𝐰 =

(0, 0, 0, 1)𝑇 . Upon suitable differentiation, in this case we find 𝐅𝑠(𝑃1, �̂�) =
, for which 𝐰𝐓𝐅𝑠(𝑃1, �̂�) = 0, implying 𝐷𝐅𝑠(𝑃1, �̂�)𝐯 = (0, 0, 0, 1)𝑇 and

therefore 𝐰𝐓[𝐷𝐅𝑠(𝑃1, �̂�)𝐯] = 1 ≠ 0. Further, 𝐰𝑇 [𝐷2𝐅(𝑃1, �̂�)(𝐯, 𝐯)] =
−2( 𝑠

𝑈 + 𝑤2𝑞𝑀𝐿
𝑧 ) ≠ 0, showing a transcritical bifurcation at the equilib-

ium point 𝑃0 whenever 𝑠 increases past the critical value �̂�, between
1 and 𝑃9.

.3. Bifurcations at 𝑃2

For 𝑃2 = (0, 𝐸2, 0, 0) the Jacobian has four explicit eigenvalues,

1 = 𝑢𝑞𝐸𝐸2 + 𝑧 − 𝑘𝑆 , 𝜆2 = 𝑘𝐸 − 𝑟,

𝜆3 = −𝑎𝐸2 − 𝑘𝐴 − 𝑚𝐴, 𝜆4 = 𝑠 − 𝑏𝐸2 − 𝑘𝑀 .

B.3.1. Eigenvalue 𝜆1
Take as bifurcation parameter 𝑧 and let �̂� ∶= 𝑘𝑆 − 𝑢𝑞𝐸𝐸2, feasible

for 𝑘𝑆 > 𝑢𝑞𝐸𝐸2. The right 𝐯 and left 𝐰 eigenvectors of the Jacobian
are 𝐯 = (− 𝑟

𝑢𝐾 , 1, 0, 0)𝑇 , 𝐰 = (1, 0, 0, 0)𝑇 . Upon suitable differentiation,
n this case we find 𝐅𝑧(𝑃2, �̂�) = 𝟎, for which 𝐰𝐓𝐅𝑧(𝑃2, �̂�) = 0, implying
𝐷𝐅𝑧(𝑃2, �̂�)𝐯 = (− 𝑟

𝑢𝐾 , 0, 0, 0)𝑇 and therefore 𝐰𝐓[𝐷𝐅𝑧(𝑃2, �̂�)𝐯] = − 𝑟
𝑢𝐾 ≠ 0.

Further, 𝐰𝑇 [𝐷2𝐅(𝑃2, �̂�)(𝐯, 𝐯)] = −2( 𝑧𝐿 (
𝑟
𝑢𝐾 )2 + 𝑞𝐸

𝑟
𝐾 ) ≠ 0, showing a

transcritical bifurcation at the equilibrium point 𝑃2 with 𝑃3 as the
bifurcation parameter crosses the critical threshold 𝑧 = �̂� from below.
19
B.3.2. Eigenvalue 𝜆2
Take as bifurcation parameter 𝑟 and let �̂� ∶= 𝑘𝐸 . The right 𝐯 and left

𝐰 eigenvectors of the Jacobian are 𝐯 = (0, 1, 0, 0)𝑇 , 𝐰 = (𝑤1, 1, 𝑤3, 𝑤4)𝑇 .
Upon suitable differentiation, in this case we find 𝐅𝑟(𝑃2, �̂�) = 𝟎, for
which 𝐰𝐓𝐅𝑟(𝑃2, �̂�) = 0, implying 𝐷𝐅𝑟(𝑃2, �̂�)𝐯 = (0, 1, 0, 0)𝑇 and therefore
𝐰𝐓[𝐷𝐅𝑟(𝑃2, �̂�)𝐯] = 1 ≠ 0. Further, 𝐰𝑇 [𝐷2𝐅(𝑃2, �̂�)(𝐯, 𝐯)] = −2 𝑟

𝐾 ≠ 0,
showing a transcritical bifurcation at the equilibrium point 𝑃2 for the
critical parameter value 𝑟 = �̂�, between 𝑃2 and 𝑃0.

B.3.3. Eigenvalue 𝜆4
Take as bifurcation parameter 𝑠 and let �̂� ∶= 𝑘𝑀 + 𝑏𝐸2. The right

𝐯 and left 𝐰 eigenvectors of the Jacobian are 𝐯 = (0, 1, 0, 𝑟
ℎ𝑏𝐾 )𝑇 , 𝐰 =

(0, 0, 0, 1)𝑇 . Upon suitable differentiation, in this case we find 𝐅𝑠(𝑃2, �̂�) =
𝟎, for which 𝐰𝐓𝐅𝑠(𝑃2, �̂�) = 0, implying 𝐷𝐅𝑠(𝑃2, �̂�)𝐯 = (0, 0, 0, 𝑟

ℎ𝑏𝐾 )𝑇 and
herefore 𝐰𝐓[𝐷𝐅𝑠(𝑃2, �̂�)𝐯] = 𝑟

ℎ𝑏𝐾 ≠ 0. Further, 𝐰𝑇 [𝐷2𝐅(𝑃2, �̂�)(𝐯, 𝐯)] =

2( 𝑠
𝑈

𝑟2

ℎ2𝑏2𝐾2 + 𝑟
ℎ𝑏𝐾 ) ≠ 0, showing a transcritical bifurcation at the

equilibrium point 𝑃2 crossing from below the critical parameter value
𝑠 = �̂�, between 𝑃2 and 𝑃10.

B.4. Bifurcations at 𝑃3

For 𝑃3 = (𝑆3, 𝐸3, 0, 0) the Jacobian has two explicit eigenvalues,

𝜆1 = −𝑎𝐸3 − 𝑣𝑆3 − 𝑘𝐴 − 𝑚𝐴,

𝜆2 = −𝑏𝐸3 + 𝑠 −𝑤𝑆3 − 𝑘𝑀 .

B.4.1. Eigenvalue 𝜆2
Take as bifurcation parameter 𝑠 and let �̂� ∶= 𝑏𝐸3 + 𝑤𝑆3 + 𝑘𝑀 . The

right 𝐯 and left 𝐰 eigenvectors of the Jacobian are 𝐯 = (𝑣1, 𝑣2, 0, 1)𝑇 , 𝐰 =
(0, 0, 0, 1)𝑇 . Upon suitable differentiation, in this case we find 𝐅𝑠(𝑃3, �̂�) =
𝟎, for which 𝐰𝐓𝐅𝑠(𝑃3, �̂�) = 0, implying 𝐷𝐅𝑠(𝑃3, �̂�)𝐯 = (0, 0, 0, 1)𝑇 and
herefore 𝐰𝐓[𝐷𝐅𝑠(𝑃3, �̂�)𝐯] = 1 ≠ 0. Now if 𝐰𝑇 [𝐷2𝐅(𝑃3, �̂�)(𝐯, 𝐯)] = 2(𝑤𝑣1+
𝑣2 + 𝑠𝑈−1) ≠ 0 there is a transcritical bifurcation for the critical
arameter value 𝑠 = �̂�, between 𝑃3 and 𝑃11.

.5. Bifurcations at 𝑃8

For 𝑃8 = (0, 0, 0,𝑀8) the Jacobian has four explicit eigenvalues,

1 = 𝑤𝑞𝑀𝑀8 + 𝑧 − 𝑘𝑆 , 𝜆2 = ℎ𝑏𝑀8 + 𝑟 − 𝑘𝐸 ,

3 = 𝑔𝑐𝑀8 − 𝑚𝐴 − 𝑘𝐴, 𝜆4 = 𝑘𝑀 − 𝑠.

.5.1. Eigenvalue 𝜆1
Take as bifurcation parameter 𝑧 and let �̂� ∶= 𝑘𝑆 −𝑤𝑞𝑀𝑀8, feasible

or 𝑘𝑆 > 𝑤𝑞𝑀𝑀8. The right 𝐯 and left 𝐰 eigenvectors of the Jacobian
re 𝐯 = (1, 0, 0,−𝑤𝑈

𝑠 )𝑇 , 𝐰 = (1, 0, 0, 0)𝑇 . Upon suitable differentiation,
in this case we find 𝐅𝑧(𝑃8, �̂�) = 𝟎, for which 𝐰𝐓𝐅𝑧(𝑃8, �̂�) = 0, implying
𝐅𝑧(𝑃8, �̂�)𝐯 = (1, 0, 0, 0)𝑇 and therefore 𝐰𝐓[𝐷𝐅𝑧(𝑃8, �̂�)𝐯] = 1 ≠ 0. Fur-

her, 𝐰𝑇 [𝐷2𝐅(𝑃8, �̂�)(𝐯, 𝐯)] = −2( 𝑧𝐿 + 𝑤2 𝐿𝑈
𝑠 ) ≠ 0, showing a transcritical

ifurcation for the critical parameter value 𝑧 = �̂�, between 𝑃8 and 𝑃9.

.5.2. Eigenvalue 𝜆2
Take as bifurcation parameter 𝑟 and let �̂� ∶= 𝑘𝐸 − ℎ𝑏𝑀8, feasible

or 𝑘𝐸 > ℎ𝑏𝑀8. The right 𝐯 and left 𝐰 eigenvectors of the Jacobian
re 𝐯 = (0, 1, 0,− 𝑏𝑈

𝑠 )𝑇 , 𝐰 = (0, 1, 0, 0)𝑇 . Upon suitable differentiation,
in this case we find 𝐅𝑟(𝑃8, �̂�) = 𝟎, for which 𝐰𝐓𝐅𝑟(𝑃8, �̂�) = 0, implying
𝐷𝐅𝑟(𝑃8, �̂�)𝐯 = (0, 1, 0, 0)𝑇 and therefore 𝐰𝐓[𝐷𝐅𝑟(𝑃8, �̂�)𝐯] = 1 ≠ 0.
urther, 𝐰𝑇 [𝐷2𝐅(𝑃8, �̂�)(𝐯, 𝐯)] = −2( 𝑟

𝐾 + ℎ𝑏2𝑈
𝑠 ) ≠ 0, showing a transcritical

bifurcation at the equilibrium point 𝑃8 for the critical parameter value
𝑟 = �̂�, between 𝑃 and 𝑃 .
8 10
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B.5.3. Eigenvalue 𝜆3
Taking as bifurcation parameter 𝑚𝐴 and letting 𝑚𝐴 ∶= 𝑔𝑐𝑀8 − 𝑘𝐴

e find that this threshold is feasible for 𝑔𝑐𝑀8 > 𝑘𝐴. But the threshold
or the parameter values used, is negative, thus no feasible bifurcation
an occur in terms of 𝑚𝐴.

However, by choosing 𝑐 = 𝑐 ∶= 𝑚𝐴+𝑘𝐴
𝑔𝑀8

, the threshold value is
cceptable, namely 𝑐 = 117.8508. The right 𝐯 and left 𝐰 eigenvectors of
he Jacobian are 𝐯 = (0, 0, 1,− 𝑐𝑈

𝑠 )𝑇 , 𝐰 = (0, 0, 1, 0)𝑇 . Upon suitable dif-
ferentiation, in this case we find 𝐅𝑐 (𝑃8, 𝑐) = 𝟎, for which 𝐰𝐓𝐅𝑐 (𝑃8, 𝑐) =
0, implying 𝐷𝐅𝑐 (𝑃8, 𝑐)𝐯 = (0, 0, 𝑔 𝑈 (𝑠−𝑘𝑀 )

𝑠 ,−𝑈 (𝑠−𝑘𝑀 )
𝑠 )𝑇 and therefore

𝐰𝐓[𝐷𝐅𝑐 (𝑃8, 𝑐)𝐯] = 𝑔 𝑈 (𝑠−𝑘𝑀 )
𝑠 ≠ 0. Further, 𝐰𝑇 [𝐷2𝐅(𝑃8, 𝑐)(𝐯, 𝐯)] = −2𝑓 −

𝑔𝑐2 𝑈
𝑠 ≠ 0, showing a transcritical bifurcation for the critical parameter

alue 𝑐 = 𝑐 between 𝑃8 and 𝑃12.

.5.4. Eigenvalue 𝜆4
Take as bifurcation parameter 𝑠 and let �̂� ∶= 𝑘𝑀 . The right 𝐯 and left

eigenvectors of the Jacobian are 𝐯 = (0, 0, 0, 1)𝑇 , 𝐰 = (𝑤1, 𝑤2, 𝑤3, 1)𝑇 .
Upon suitable differentiation, in this case we find 𝐅𝑠(𝑃8, �̂�) = 𝟎, for
which 𝐰𝐓𝐅𝑠(𝑃8, �̂�) = 0, implying 𝐷𝐅𝑠(𝑃8, �̂�)𝐯 = (0, 0, 0, 1)𝑇 and therefore
𝐰𝐓[𝐷𝐅𝑠(𝑃8, �̂�)𝐯] = 1 ≠ 0. Further, 𝐰𝑇 [𝐷2𝐅(𝑃8, �̂�)(𝐯, 𝐯)] = −2 𝑠

𝑈 ≠ 0,
howing a transcritical bifurcation at the equilibrium point 𝑃0 for the
ritical parameter value 𝑠 = �̂�, between 𝑃8 and 𝑃0.

.6. Bifurcations at 𝑃9

For 𝑃9 = (𝑆9, 0, 0,𝑀9) the Jacobian has two explicit eigenvalues,

1 = ℎ𝑏𝑀9 + 𝑟 − 𝑘𝐸 − 𝑢𝑆9,

2 = 𝑔𝑐𝑀9 − 𝑚𝐴 − 𝑘𝐴 − 𝑣𝑆9.

B.6.1. Eigenvalue 𝜆1
Take as bifurcation parameter 𝑟 and let �̂� ∶= 𝑘𝐸+𝑢𝑆9−ℎ𝑏𝑀9, feasible

for 𝑘𝐸+𝑢𝑆9 > ℎ𝑏𝑀9. The right 𝐯 and left 𝐰 eigenvectors of the Jacobian
are 𝐯 = (𝑣1, 1, 0, 𝑣4)𝑇 , 𝐰 = (0, 1, 0, 0)𝑇 . Upon suitable differentiation, in
his case we find 𝐅𝑟(𝑃9, �̂�) = 𝟎, for which 𝐰𝐓𝐅𝑟(𝑃9, �̂�) = 0, implying
𝐅𝑟(𝑃9, �̂�)𝐯 = (0, 1, 0, 0)𝑇 and therefore 𝐰𝐓[𝐷𝐅𝑟(𝑃9, �̂�)𝐯] = 1 ≠ 0. Further,
𝑇 [𝐷2𝐅(𝑃9, �̂�)(𝐯, 𝐯)] = −2𝑢𝑣1 − 2𝑟𝐾−1 + 2ℎ𝑏𝑣4. Now if 𝑢𝑣1 + 𝑟𝐾−1 ≠ ℎ𝑏𝑣4
transcritical bifurcation arises for the critical parameter value 𝑟 = �̂�,

etween 𝑃9 and 𝑃11.

.6.2. Eigenvalue 𝜆2
Taking as bifurcation parameter 𝑚𝐴 and letting 𝑚𝐴 ∶= 𝑔𝑐𝑀9 −

𝑣𝑆9 − 𝑘𝐴, for the parameter values used the threshold is negative,
𝑔𝑐𝑀9 < 𝑣𝑆9 + 𝑘𝐴, thus no feasible bifurcation can occur in terms of
𝐴.

However, we can take as bifurcation parameter 𝑐, for which the
hreshold value is acceptable, namely 𝑐 = 0.4437. The right 𝐯 and left

eigenvectors of the Jacobian are 𝐯 = (𝑡1, 0, 1, 𝑡4)𝑇 , 𝐰 = (0, 0, 1, 0)𝑇 .
Upon suitable differentiation, in this case we find 𝐅𝑐 (𝑃9, 𝑐) = 𝟎, for

hich 𝐰𝐓𝐅𝑐 (𝑃9, 𝑐) = 0, implying 𝐷𝐅𝑐 (𝑃9, 𝑚𝐴)𝐯 = (0, 0, 𝑔𝑀9,−𝑀9)𝑇 and
herefore 𝐰𝐓[𝐷𝐅𝑐 (𝑃9, 𝑐)𝐯] = 𝑔𝑀9 ≠ 0. Here, 𝐰𝑇 [𝐷2𝐅(𝑃9, 𝑚𝐴)(𝐯, 𝐯)] =
2(𝑐𝑔𝑣4−𝑣𝑣1−𝑓 ), so that if (𝑐𝑔𝑣4−𝑣𝑣1−𝑓 ) ≠ 0 a transcritical bifurcation
occurs for the critical parameter value 𝑐 = 𝑐 between 𝑃9 and 𝑃13.

B.7. Bifurcations at 𝑃10

For 𝑃10 = (0, 𝐸10, 0,𝑀10) the Jacobian has two explicit eigenvalues,

𝜆1 = 𝑢𝑞𝐸𝐸10 + 𝑧 +𝑤𝑞𝑀𝑀10 − 𝑘𝑆 ,

𝜆2 = 𝑔𝑐𝑀10 − 𝑚𝐴 − 𝑘𝐴 − 𝑎𝐸10.
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B.7.1. Eigenvalue 𝜆1
Take as bifurcation parameter 𝑧 and let �̂� ∶= 𝑘𝑆−𝑢𝑞𝐸𝐸10−𝑤𝑞𝑀𝑀10,

feasible for 𝑘𝑆 > 𝑢𝑞𝐸𝐸10+𝑤𝑞𝑀𝑀10. The right 𝐯 and left 𝐰 eigenvectors
of the Jacobian are 𝐯 = (1, 𝑣2, 0, 𝑣4)𝑇 , 𝐰 = (1, 0, 0, 0)𝑇 . Upon suitable dif-
ferentiation, in this case we find 𝐅𝑧(𝑃10, �̂�) = 𝟎, for which 𝐰𝐓𝐅𝑧(𝑃10, �̂�) =
0, implying 𝐷𝐅𝑧(𝑃10, �̂�)𝐯 = (0, 1, 0, 0)𝑇 and therefore 𝐰𝐓[𝐷𝐅𝑧(𝑃10, �̂�)𝐯] =
1 ≠ 0. In this case 𝐰𝑇 [𝐷2𝐅(𝑃10, �̂�)(𝐯, 𝐯)] = −2𝑧𝐿−1 + 2𝑢𝑞𝐸𝑣2 + 2𝑤𝑞𝑀𝑣4
so that if 𝑧 ≠ 𝐿(𝑢𝑞𝐸𝑣2 +𝑤𝑞𝑀𝑣4) a transcritical bifurcation exists for the
critical parameter value 𝑧 = �̂�, for 𝑧 = �̂� between 𝑃10 and 𝑃11.

B.7.2. Eigenvalue 𝜆2
Take as bifurcation parameter 𝑚𝐴 and let 𝑚𝐴 ∶= −𝑘𝐴−𝑎𝐸10+𝑔𝑐𝑀10,

feasible for 𝑔𝑐𝑀10 > 𝑘𝐴 + 𝑎𝐸10. But this threshold is negative, for the
parameters chosen. Thus no bifurcation occurs for this choice.

However, we can take as bifurcation parameter 𝑐. The threshold
value is acceptable, namely 𝑐 = 1.4903𝑒 + 03. The right 𝐯 and left 𝐰
eigenvectors of the Jacobian are 𝐯 = (0, 𝑣2, 1, 𝑣4)𝑇 , 𝐰 = (0, 0, 1, 0)𝑇 .
Upon suitable differentiation, in this case we find 𝐅𝑐 (𝑃10, 𝑐) = 𝟎, for
which 𝐰𝐓𝐅𝑐 (𝑃10, 𝑐) = 0, implying 𝐷𝐅𝑐 (𝑃10, 𝑐)𝐯 = (0, 0, 𝑔𝑀10,−𝑀10)𝑇 and
therefore 𝐰𝐓[𝐷𝐅𝑐 (𝑃10, 𝑐)𝐯] = 𝑔𝑀10 ≠ 0. Then, 𝐰𝑇 [𝐷2𝐅(𝑃10, 𝑐)(𝐯, 𝐯)] =
2(𝑎𝑡2 − 𝑓 + 𝑔𝑐𝑡4), so that if (𝑎𝑡2 − 𝑓 + 𝑔𝑐𝑡4) ≠ 0 showing a transcritical
ifurcation for the critical parameter value 𝑐 = 𝑐 between 𝑃10 and 𝑃14.

.8. Bifurcations at 𝑃11

For 𝑃11 = (𝑆11, 𝐸11, 0,𝑀11) the Jacobian has one explicit eigenvalue,

1 = 𝑔𝑐𝑀11 − 𝑎𝐸11 − 𝑣𝑆11 − (𝑚𝐴 + 𝑘𝐴),

.8.1. Eigenvalue 𝜆1
Taking as bifurcation parameter 𝑚𝐴 and let 𝑚𝐴 ∶= 𝑔𝑐𝑀11 − 𝑎𝐸11 −

𝑆11 − 𝑘𝐴, feasible for 𝑔𝑐𝑀11 > 𝑎𝐸11 + 𝑣𝑆11 + 𝑘𝐴, it observed however
hat the threshold is once again negative and no bifurcation occurs.

Instead, use 𝑐 as bifurcation parameter, with threshold 𝑐 ∶=
𝑎𝐸11+𝑣𝑆11+𝑘𝐴

𝑔𝑀11
= 640.6672. The right 𝐯 and left 𝐰 eigenvectors of the Ja-

cobian are 𝐯 = (𝑣1, 𝑣2, 1, 𝑣4)𝑇 , 𝐰 = (0, 0, 1, 0)𝑇 . Upon suitable differentia-
tion, in this case we find 𝐅𝑐 (𝑃11, 𝑐) = 𝟎, for which 𝐰𝐓𝐅𝑐 (𝑃11, 𝑐) = 0, im-
lying 𝐷𝐅𝑐 (𝑃11, 𝑐)𝐯 = (0, 0, 𝑔𝑀11,−𝑀11)𝑇 and therefore 𝐰𝐓[𝐷𝐅𝑐 (𝑃11, 𝑐)𝐯]
𝑔𝑀11 ≠ 0. Further, 𝐰𝑇 [𝐷2𝐅(𝑃11, 𝑐)(𝐯, 𝐯)] = −2𝑣𝑣1 − 2𝑎𝑣2 − 2𝑓 + 2𝑐𝑔𝑣4.
ow if 𝑣𝑣1 + 𝑎𝑣2 + 𝑓 ≠ 𝑐𝑔𝑣4 ≠ 0 we have a transcritical bifurcation as

he parameter 𝑐 = 𝑐 with coexistence 𝑃15.
Observe further that if

r(𝐽[3;3]) ⋅𝑀2 = det(𝐽[3;3]) (B.1)

Hopf bifurcation occurs. Explicitly, it reads

𝐾𝑈𝑆11𝐸11𝑀11
{

𝑟
(

𝐿𝑈𝑞𝑀 𝑤2 + 𝑠𝑧
)

+
[(

𝑏𝑤
(

ℎ𝑞𝐸 − 𝑞𝑀
)

𝑈 + 𝑞𝐸𝑠𝑢
)

𝑢𝐿

+ 𝑧𝑈𝑏2ℎ
]

𝐾
}

+
[

𝑈
((

𝑀11 𝑏
2ℎ

+ 𝑆11𝑞𝐸𝑢
2)𝐸11

+ 𝑤2𝑞𝑀𝑆11𝑀11
)

𝐿 +𝑀11𝑆11𝑠𝑧
]

𝐾

+𝐸11𝑟
(

𝐿𝑀11𝑠 + 𝑆11𝑈𝑧
) [(

𝐿𝑀11𝑠

+ 𝑆11𝑈𝑧
)

𝐾 + 𝑟𝐸11𝐿𝑈
]

= 0.

Note that for ℎ𝑞𝑀 > 𝑞𝐸 the equality is never satisfied and no Hopf
bifurcation can occur.

B.9. Bifurcations at 𝑃12

For 𝑃12 = (0, 0, 𝐴12,𝑀12) the Jacobian has two explicit eigenvalues,

𝜆1 = 𝑣𝑞𝐴𝐴12 +𝑤𝑞𝑀𝑀12 + 𝑧 − 𝑘𝑆 ,

𝜆2 = 𝑒𝑎𝐴12 + ℎ𝑏𝑀12 + 𝑟 − 𝑘𝐸 .
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B.9.1. Eigenvalue 𝜆1
Take as bifurcation parameter 𝑧 and let �̂� ∶= −𝑣𝑞𝐴𝐴12 −𝑤𝑞𝑀𝑀12 +

𝑘𝑆 , feasible for 𝑘𝑆 > 𝑣𝑞𝐴𝐴12 + 𝑤𝑞𝑀𝑀12. The right 𝐯 and left 𝐰
eigenvectors of the Jacobian are 𝐯 = (1, 0, 𝑣3, 𝑣4)𝑇 , 𝐰 = (1, 0, 0, 0)𝑇 .
Upon suitable differentiation, in this case we find 𝐅𝑧(𝑃12, �̂�) = 𝟎,
for which 𝐰𝐓𝐅𝑧(𝑃12, �̂�) = 0, implying 𝐷𝐅𝑧(𝑃12, �̂�)𝐯 = (0, 1, 0, 0)𝑇 and
therefore 𝐰𝐓[𝐷𝐅𝑧(𝑃12, �̂�)𝐯] = 1 ≠ 0. Also, 𝐰𝑇 [𝐷2𝐅(𝑃12, �̂�)(𝐯, 𝐯)] =
−2𝑧𝐿−1+2𝑣𝑞𝐴𝑣3+2𝑤𝑞𝑀𝑣4. Now if 𝑧𝐿−1 ≠ 𝑣𝑞𝐴𝑣3+𝑤𝑞𝑀𝑣4 a transcritical
bifurcation arises for the critical parameter value 𝑧 = �̂�, between 𝑃12
and 𝑃13 for 𝑧 = �̂�.

B.9.2. Eigenvalue 𝜆2
Take as bifurcation parameter 𝑟 and let �̂� ∶= 𝑘𝐸 − 𝑒𝑎𝐴12 − ℎ𝑏𝑀12,

feasible for 𝑘𝐸 > 𝑒𝑎𝐴12 + ℎ𝑏𝑀12. The right 𝐯 and left 𝐰 eigenvectors of
the Jacobian are 𝐯 = (0, 1, 𝑣3, 𝑣4)𝑇 , 𝐰 = (0, 1, 0, 0)𝑇 . Upon suitable differ-
entiation, in this case we find 𝐅𝑟(𝑃12, �̂�) = 𝟎, for which 𝐰𝐓𝐅𝑟(𝑃12, 𝑚𝐴) =
0, implying 𝐷𝐅𝑟(𝑃12, �̂�)𝐯 = (0, 0,−1, 0)𝑇 and therefore 𝐰𝐓[𝐷𝐅𝑟(𝑃12, �̂�)𝐯] =
−1 ≠ 0. Further, 𝐰𝑇 [𝐷2𝐅(𝑃12, �̂�)(𝐯, 𝐯)] = −2𝑎𝑣2 − 2𝑓 + 2𝑔𝑐𝑣4. Now
if 𝑎𝑣2 + 𝑓 ≠ 𝑔𝑐𝑣4 a transcritical bifurcation occurs for the critical
parameter value 𝑟 = �̂�, between 𝑃12 and 𝑃14

B.10. Bifurcations at 𝑃13

For 𝑃13 = (𝑆13, 0, 𝐴13,𝑀13) the Jacobian has one explicit eigenvalue,

𝜆1 = 𝑒𝑎𝐴13 + ℎ𝑏𝑀13 − 𝑢𝑆13 + 𝑟 − 𝑘𝐸 ,

B.10.1. Eigenvalue 𝜆1
Take as bifurcation parameter 𝑟 and let �̂� ∶= −𝑒𝑎𝐴13−ℎ𝑏𝑀13+𝑢𝑆13+

𝑘𝐸 , feasible for 𝑢𝑆13 + 𝑘𝐸 > 𝑒𝑎𝐴13 + ℎ𝑏𝑀13. The right 𝐯 and left 𝐰
eigenvectors of the Jacobian are 𝐯 = (𝑣1, 1, 𝑣3, 𝑣4)𝑇 , 𝐰 = (0, 1, 0, 0)𝑇 .
Upon suitable differentiation, in this case we find 𝐅𝑟(𝑃13, �̂�) = 𝟎,
for which 𝐰𝐓𝐅𝑟(𝑃13, �̂�) = 0, implying 𝐷𝐅𝑟(𝑃13, �̂�)𝐯 = (0, 1, 0, 0)𝑇 and
therefore 𝐰𝐓[𝐷𝐅𝑟(𝑃13, �̂�)𝐯] = 1 ≠ 0. Further, 𝐰𝑇 [𝐷2𝐅(𝑃13, �̂�)(𝐯, 𝐯)] =
−2𝑣1 − 2𝑟𝐾−1 + 2𝑒𝑎𝑣3 + 2ℎ𝑏𝑣4. if 𝑣1 + 𝑟𝐾−1 ≠ 𝑒𝑎𝑣3 + ℎ𝑏𝑣4 we have
a transcritical bifurcation as the parameter 𝑟 = �̂� the coexistence
equilibrium 𝑃15.

Observe that a Hopf bifurcation arises if

tr(𝐽[2;2]) ⋅𝑀2 = det(𝐽[2;2])

which explicitly is

𝐿𝑈𝑀13𝐴13𝑆13
{

𝑧
(

𝑈𝑐2𝑔 + 𝑓𝑠
)

(B.2)

+
[(

𝑣
(

𝑔𝑞𝐴 − 𝑞𝑀
)

𝑐 + 𝑞𝑀𝑓𝑤
)

𝑤𝑈

+ 𝑞𝐴𝑠𝑣
2]𝐿

}

+
[

(𝐴13𝑈𝑓 + 𝑠𝑀13)𝐿

+ 𝑧𝑆13𝑈𝐿
[

(𝑀13𝑐
2𝑔 + 𝑆13𝑞𝐴𝑣

2)𝐴13

+ 𝑞𝑀𝑀13𝑆13𝑤
2]𝑈 + 𝐴13𝑀13𝑓𝑠

]

+𝑆13𝑧(𝐴13𝑈𝑓 + 𝑠𝑀13) = 0.

Also, if 𝑔𝑞𝑀 > 𝑞𝐴, the equality is never satisfied and no Hopf bifurcation
occurs.

B.11. Bifurcations at 𝑃14

For 𝑃14 = (0, 𝐸14, 𝐴14,𝑀14) the Jacobian has one explicit eigenvalue,

𝜆1 = 𝑢𝑞𝐸𝐸14 + 𝑣𝑞𝐴𝐴14 +𝑤𝑞𝑀𝑀14 + 𝑧 − 𝑘𝑆 ,
21
B.11.1. Eigenvalue 𝜆1
Take as bifurcation parameter 𝑧 and let �̂� ∶= 𝑘𝑆 −𝑢𝑞𝐸𝐸14−𝑣𝑞𝐴𝐴14−

𝑤𝑞𝑀𝑀14, feasible for 𝑘𝑆 > 𝑢𝑞𝐸𝐸14 + 𝑣𝑞𝐴𝐴14 + 𝑤𝑞𝑀𝑀14. The right
𝐯 and left 𝐰 eigenvectors of the Jacobian are 𝐯 = (1, 𝑣2, 𝑣3, 𝑣4)𝑇 ,
𝐰 = (1, 0, 0, 0)𝑇 . Upon suitable differentiation, in this case we find
𝐅𝑧(𝑃14, �̂�) = 𝟎, for which 𝐰𝐓𝐅𝑧(𝑃14, �̂�) = 0, implying 𝐷𝐅𝑧(𝑃14, �̂�)𝐯 =
(0, 1, 0, 0)𝑇 and therefore 𝐰𝐓[𝐷𝐅𝑧(𝑃14, �̂�)𝐯] = 1 ≠ 0. Further,
𝐰𝑇 [𝐷2𝐅(𝑃14, �̂�)(𝐯, 𝐯)] = −2𝑧𝐿−1 + 2𝑢𝑞𝐸𝑣2 + 2𝑣𝑞𝐴𝑣3 + 2𝑤𝑞𝑀𝑣4. Now if
𝑧𝐿−1 ≠ 𝑢𝑞𝐸𝑣2 + 𝑣𝑞𝐴𝑣3 +𝑤𝑞𝑀𝑣4 a transcritical bifurcation occurs as the
parameter 𝑧 = �̂� with the coexistence point 𝑃15.

If the equality tr(𝐽[1;1]) ⋅𝑀
(13)
2 = det(𝐽[1;1]) holds a Hopf bifurcation

occurs. Extensively, the condition becomes

0 = 𝐸14𝐴14𝑀14
{

𝑟
(

𝑈𝑐2𝑔 + 𝑓𝑠
)

(B.3)
+

[

(𝑐 (𝑒𝑔 − ℎ) 𝑎 + 𝑏𝑓ℎ) 𝑏𝑈 + 𝑠𝑎2𝑒
]

𝐾
}

+ 1
𝐾𝑈

{
[

((𝐸14𝑎
2𝑒 +𝑀14𝑐

2𝑔)𝐴14

+ (𝐸14𝑀14𝑏
2ℎ)𝑈 + 𝑠𝐴14𝑀14𝑓

]

𝐾

+ 𝑟𝐸14(𝐴14𝑈𝑓 + 𝑠𝑀14)𝐾 + 𝑟𝐸14𝑈}.

Note that if 𝑒𝑔 − ℎ > 0 no Hopf bifurcation occurs.

References

Arambourg, Y., Pralavorio, R., 1986. Hyponomeutidae Pray oleae. In: Arambourg, Y.
(Ed.), Traité d’entomologie oléicole. Conseil Oléicole International, Madrid, Spain,
pp. 47–91.

Bartolini, G., Petruccelli, R., 2002. Classification, Origin, Diffusion and History of the
Olive. Food and Agriculture organization of the United Nations, Rome, Italy.

Benhadi-Marín, J., Pereira, J.A., Bento, A., Sousa, J.P., Santos, S.A.P., 2016. Biodiversity
of spiders in agroecosystems: community structure, conservation and roles as
biological control agents. In: Santos, S.A.P. (Ed.), Natural Enemies: Identification,
Protection Strategies and Ecological Impacts. Nova Science Publishers, New York,
USA, pp. 43–110.

Benhadi-Marín, J., Villa, M., Pereira, L.F., Rodrigues, I., Morente, M., Baptista, P.,
Pereira, J.A., 2020. A guild-based protocol to target potential natural enemies
of Philaenus spumarius (Hemiptera: Aphrophoridae), a vector of Xylella fastidiosa
(Xanthomonadaceae): A case study with spiders in the olive grove. Insects 11 (2),
100.

Bento, A.A., 1999. Contribuição para o estabelecimento de um programa de Protecção
Integrada contra a traça da oliveira (Prays oleae Bern) em Trás-os-Montes (Ph.D.
thesis). Vila Real: Universidade de Trás-os-Montes e Alto Douro, Portugal.

Bento, A., Ilideo, J., Campos, M., Torres, L., 1998. Parasitismo associado à traça da
oliveira Prays oleae Bern., em Trás-os-Montes (Nordeste de Portugal). (Parasitism
associated to the olive tree moth Prays oleae Bern., in the Trás-os-Montes region
(Northeast of Portugal). Bol. San. Veg. Plagas 24, 949–954.

Bento, A., Torres, L., CabanaS, J.E., Pereira, J.A., 2007. A traça da oliveira, Prays oleae
(Bernard). pp. 202–209, In: Azevedo J. (Ed) Manual de protecção integrada do
olival. Viseu, Portugal.

Bueno, M., 1981. Factores de regulación de las poblaciones de Prays oleae (Bern.). Bol.
San. Veg. Plagas. 7, 133–140.

CABI, 2021. https://www.cabi.org/isc/datasheet/43913. (Accessed 25 June 2021).
Campos, M., Ramos, P., 1982. Ageniaspis fuscicollis praysincola Silv. (Hym. Encyrtidae)

parásito de Prays oleae Bern. (Lep. Hyponomeutidae) en Granada. (Ageniaspis
fuscicollis praysincola Silv. (Hym. Encyrtidae) parasite of Prays oleae Bern. (Lep.
Hyponomeutidae) in Granada (Spain). Bol. Asoc. Esp. Entomol. 6, 63–71.

Castex, V., Beniston, M., Calanca, P., Fleury, D., Moreau, J., 2018. Pest management
under climate change: The importance of understanding tritrophic relations. Sci.
Total Environ. 616–617, 397–407.

Dainese, M., Scheider, G., Krauss, J., Steffan-Dewenter, I.S., 2017. Complementarity
among natural enemies enhances pest suppression. Sci. Rep. 7 (8172), http://dx.
doi.org/10.1038/s41598-017-08316-z.

DGAV, 2021. https://sifito.dgav.pt/Account/Login?ReturnUrl=%2F. (Accessed: 17-03-
2021).

Herz, A., Hassan, S.A., Hegazi, E., Nasr, F.N., A, A. Youssef, Khafagi, W.E., Agamy, E.,
Ksantini, M., Jardak, J.T., Mazomenos, B.E., Konstantopoulou, M.A., Torres, L.,
Gonçalves, F., Bento, A., Pereira, J.A., 2005. Towards sustainable control of
lepidopterous pests in olive cultivation. Gesunde Pflanz. 57, 117–128.

INE, 2021. http://www.ine.pt. (Accessed: 15-7-2021).
Jervis, M.A., Ellers, J., Harvey, J.A., 2008. Resource acquisition, allocation, and

utilization in parasitoid reproductive strategies. Annu. Rev. Entomol. 53, 361–385.
Jervis, M.A., Kidd, N.A.C., Fitton, M.G., Huddleston, T., Dawah, H.A., 1993.

Flower-visiting by hymenopteran parasitoids. J. Nat. Hist. 27, 67–105.
Marc, P., Canard, A., Ysnel, F., 1999. Spiders (Araneae) useful for pest limitation and
bioindication. Agr. Ecosyst. Environ. 74, 229–273.

http://refhub.elsevier.com/S0304-3800(21)00324-0/sb1
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb1
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb1
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb1
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb1
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb2
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb2
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb2
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb3
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb3
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb3
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb3
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb3
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb3
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb3
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb3
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb3
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb4
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb4
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb4
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb4
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb4
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb4
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb4
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb4
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb4
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb5
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb5
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb5
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb5
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb5
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb6
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb6
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb6
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb6
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb6
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb6
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb6
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb7
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb7
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb7
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb7
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb7
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb8
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb8
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb8
https://www.cabi.org/isc/datasheet/43913
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb10
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb10
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb10
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb10
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb10
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb10
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb10
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb11
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb11
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb11
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb11
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb11
http://dx.doi.org/10.1038/s41598-017-08316-z
http://dx.doi.org/10.1038/s41598-017-08316-z
http://dx.doi.org/10.1038/s41598-017-08316-z
https://sifito.dgav.pt/Account/Login?ReturnUrl=%2F
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb14
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb14
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb14
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb14
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb14
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb14
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb14
http://www.ine.pt
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb16
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb16
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb16
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb17
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb17
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb17
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb18
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb18
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb18


Ecological Modelling 462 (2021) 109776S. Pappalardo et al.

P

P

P

P

R

R

S

V

V

V

V

V

Y

Nyffeler, M., Sunderland, K.D., 2003. Composition, abundance and pest control poten-
tial of spider communities in agroecosystems: a comparison of European and US
studies. Agr. Ecosyst. Environ. 95, 579–612.

Paredes, D., Batuecas, I., Cayuela, L., Campos, M., 2014. Anthocoris nemoralis: a new
ally in the conservation biological control of the anthophagous generation of the
olive pest Prays oleae. Agroecología 9 (1,2), 79–84.

ascual, S., Cobos, G., Seris, E., González-Núñez, M., 2010. Effects of processed kaolin
on pests and non-target arthropods in a spanish olive grove. J. Pest. Sci. 83,
121–133.

erko, L., 2011. Differential Equations and Dynamical Systems. Springer, New York,
USA.

itzer, E.M., Williams, M.T., Vorhees, C.V., 2021. Effects of pyrethroids on brain
development and behavior. Deltamethrin. Neurotoxicol. Teratol. 87, 106983.

ollard, C.P., Griffin, C.T., de Andrade Moral, R., Duffy, C., Chuche, J., Gaffney, M.T.,
Fealy, R.M., Fealy, R., 2020. phenModel: A temperature-dependent phenol-
ogy/voltinism model for a herbivorous insect incorporating facultative diapause
and budburst. Ecol. Model. 416, 108910.

iechert, E.S., Lockley, T., 1984. Spiders as biological control agents. Annu. Rev.
Entomol. 29, 299–320.

iechert, S., Maupin, J., 1997. Spider effects on prey: tests for superfluous killing in
five web-builders. In: Proceedings of the 17th European Colloquium of Arachnology,
Edinburgh, Scotland.
22
Rossini, L., Rosselló, N.B., Speranza, S., Garone, E., 2021. A general ODE-based model to
describe the physiological age structure of ectotherms: Description and application
to Drosophila suzukii. Ecol. Model. 456, 109673.

harma, A., Shukla, A., Attri, K., Kumar, M., Kumar, P., Suttee, A., Sing, G., Barn-
wal, R.P., Singla, N., 2020. Global trends in pesticides: a looming threat and viable
alternative. Ecotox. Environ. Safe. 201, 110812.

illa, M., Marrão, R., Mexia, A., Bento, A., Pereira, J.A., 2016a. Are wild flowers
and insect honeydews potential food resources for adults of the olive moth, Prays
oleae? J. Pest Sci. 90, 185–194. http://dx.doi.org/10.1007/s10340-016-0745-8.

illa, M., Santos, S.A.P., Mexia, A., Bento, A., Pereira, J.A., 2016b. Ground cover
management affects parasitism of Prays oleae (Bernard). Biol. Control 96, 72–77.

illa, M., Santos, S.A.P., Mexia, A., Bento, A., Pereira, J.A., 2017a. Wild flower
resources and insect honeydew are potential food items for Elasmus flabellatus.
Agron. Sustain. Dev. (37), 15.

illa, M., Santos., S.A.P., Pascual, S., Pereira, J.A., 2021. Do non-crop areas and
landscape structure influence dispersal and population densities of male olive
moth? Bull. Entomol. Res. 111 (1), 73–81.

illa, M., Santos, S.A.P., Pereira, J.A., 2017b. Análisis de supervivencia de Ageniaspis
fuscicollis (Dalman), parasitoide de la polilla del olivo. Tech. Rep., X Congreso
Nacional de Entomología Aplicada. Logroño. Spain.

efremova, Z.A., Strakhova, I.S., 2010. A review of the species of the genus Elasmus
Westwood (Hymenoptera, Eulophidae) from Russia and neighboring countries.
Entomol. Rev. 7, 903–926.

http://refhub.elsevier.com/S0304-3800(21)00324-0/sb19
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb19
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb19
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb19
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb19
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb20
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb20
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb20
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb20
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb20
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb21
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb21
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb21
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb21
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb21
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb22
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb22
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb22
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb23
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb23
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb23
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb24
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb24
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb24
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb24
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb24
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb24
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb24
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb25
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb25
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb25
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb27
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb27
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb27
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb27
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb27
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb28
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb28
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb28
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb28
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb28
http://dx.doi.org/10.1007/s10340-016-0745-8
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb30
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb30
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb30
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb31
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb31
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb31
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb31
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb31
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb32
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb32
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb32
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb32
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb32
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb33
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb33
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb33
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb33
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb33
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb34
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb34
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb34
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb34
http://refhub.elsevier.com/S0304-3800(21)00324-0/sb34

	A tritrophic interaction model for an olive tree pest, the olive moth — Prays oleae (Bernard)
	Introduction
	Materials and methods
	Results
	Analysis of the equilibrium points
	Feasibility
	Stability
	Verification and model behavior
	Bifurcations

	Simulation of realistic scenarios
	Parameters assessment
	Possible climatic changes


	Discussion
	The pest-free cases
	The moth persistence scenarios
	P8=(0,0,0,M8)
	P9=(S9,0,0,M9)
	P10=(0,E10,0,M10)
	P11=(S11,E11,0,M11)
	P12=(0,0,A12,M12)
	P13=(S13,0,A13,M13)
	P14=(0,E14,A14,M14)

	Final remarks

	Model limitations
	Conclusion
	Declaration of competing interest
	Acknowledgments
	Appendix A. Equilibria Assessment
	Feasibility
	Stability
	Equilibrium P11
	Equilibrium P12
	Equilibrium P13
	Equilibrium P14
	Equilibrium P15


	Appendix B. Bifurcations
	Bifurcations at P0
	Eigenvalue 1
	Eigenvalue 2
	Eigenvalue 4

	Bifurcations at P1
	Eigenvalue 1
	Eigenvalue 2
	Eigenvalue 4

	Bifurcations at P2
	Eigenvalue 1
	Eigenvalue 2
	Eigenvalue 4

	Bifurcations at P3
	Eigenvalue 2

	Bifurcations at P8
	Eigenvalue 1
	Eigenvalue 2
	Eigenvalue 3
	Eigenvalue 4

	Bifurcations at P9
	Eigenvalue 1
	Eigenvalue 2

	Bifurcations at P10
	Eigenvalue 1
	Eigenvalue 2

	Bifurcations at P11
	Eigenvalue 1

	Bifurcations at P12
	Eigenvalue 1
	Eigenvalue 2

	Bifurcations at P13
	Eigenvalue 1

	Bifurcations at P14
	Eigenvalue 1


	References


