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Previously published work on mortgage component valuation has conce ~rated · ....._0 

on the US market and is inapplicable to some of the mortgage arrangements outside f!>n ~" 
that market. We model UK repayment mortgages with capped Mortgage Insurance~., _..,.. 
Guarantees (which affect both the equilibrium lending rates and the lender ' s residual 
exposure). A contingent claims framework is developed, with an explicit finite 
differences solution. Then the mortgage components are valued, assuming 
arrangement fees but no prepayment penalties, under various scenarios, and also 
under equilibrium conditions: The transformation of the original PDE, and the details 
of the finite difference solution are given, along with graphical sensitivities of the 
mortgage participants (including the options held or written by the borrower, the 
insurer, and the lender) to interest rates and house prices. 

Introduction 

Contingent claims analysis leads to the modelling of many derivative assets as partial 
differential equations (PDEs). A few of these models (usually those which use the 
simplest and strongest assumptions) allow for analytic or "closed-form" solutions. 
However, this is the exception, not the rule. The tendency to model increasingly 
sophisticated assets, and to relax the strongest assumptions in order to reduce the 
distance between models and reality, leads naturally to the development of valuation 
frameworks of enlarged complexity for which no closed-form solutions are available. 

This paper presents a numerical procedure for the solution of a contingent claims 
valuation model aimed at valuing mortgage-related products. The theoretical 
cornerstone underlying this framework is the CIR model (Cox, Ingersoll and Ross, 
198 5 a, b). The CIR ( 1985b) interest rate model is an attempt to overcome the 
strongest limitations of earlier term-structure models (e.g. Vasicek, 1977; Brennan 
and Schwartz, 1982). Under these earlier models, the functional form of the market 
price of risk and the stochastic processes governing the interest rate( s) are consistent 
with a general fmancial markets equilibrium. In contrast, CIR (1985b) is based on the 
comprehensive context of an inter-temporal capital asset pricing model (CIR 1985a). 
Departing from a set of strong assumptions about consumption preferences of the 
economic agents, it is possible to derive endogenously the stochastic process followed 
by the instantaneous risk-free interest rate. The resulting general valuation framework 
allows for the consideration of an arbitrary, but finite number of state-variables, each 
one representing a different source of risk. In their seminal paper, Litterman and 
Scheinkman ( 1991) investigated factors affecting bond yields_ According to their 
results, the three main factors account for level, steepness and curvature. The first of 
these is normally able to explain 80%-90% or more of the variance. Given the 
complexity the numerical intensity associated with interest rate modeling, tractable 
models are obtained by limiting the number of state variables, commonly to one or 
two 

Mortgages are treated here as derivative assets whose prices depend on the evolution 
of the global economy, via the term structure of interest rates and house prices Once 
the house price and the term structure are determined, the value of the mortgage is set 
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through a process of arbitrage inference. All other factors that might exert some 
influence would only be taken into consideration through the market price of risk 
associated with each state variable. The first state variable, house price, is taken as a 
traded asset and so risk adjustment becomes unnecessary. The instantaneous spot 
interest rate is used as the state variable representing the term structure of interest 
rates . 

The valuation procedure developed in this work considers two forms of endogenous 
termination prior to maturity: prepayment by the mortgage borrower and default. As 
the value of the mortgage is affected by the options to prepay and default in the future, 
it is necessary to use a numerical valuation procedure working progressively 
backwards in time, with the value ofthe assets in later periods feeding into the value 
of the same assets in earlier periods. This excludes the use ofbasic Monte Carlo 
valuation forwards in time, leaving tree and fmite difference methods. Binomial (or 
trinomial) trees can be practically attractive for quick implementation for a single 
state variable but for two state variables, numerical solution of a PDE via a fmite 
difference method is preferable. Amongst the alternative fmite difference methods, 
the simplest is the explicit method. This requires care in the selection of parameters, 
making other methods appear more sophisticated and appealing. However, for 
practical purposes, with a financial valuation problem of this degree of complexity, 
we found the extra care needed in parameter selection trivial as a return measured in 
programming effort and speed of solution. 

Although the general techniques of solution via fmite differences are well known, frrst 
the problem must be set up in a suitable form. Despite their superficial similarity to 
problems in the Natural Sciences and Engineering, for which finite difference 
algorithms were originally developed, contingent claim valuation formulae differ in 
detail and the use of algorithms is not straightforward. The behaviour of solutions can 
be completely different and requires the development of specially designed 
adaptations. The solution to a specific problem can then be implemented using a 
convenient high level programming language (in this work we used a Fortran 
compiler supplied by the University ofthe Salford). 

Valuation Framework 

We model the spot interest rate, r(t), as a CIR mean-reverting square root process 
(Cox, Ingersoll and Ross, l985b) and the house price , H(t), as a lognormal diffusion 
process (Merton, 1973). We represent these in equations (1) and (2). Stochastic 
elements are modelled by two standardised Wiener processes, Zr(t) and ZH(t) which are 
correlated as in equation (3). We have immediately dropped the time labels, in 
parentheses. We hope this will make later equations clear, so long as the reader 
remembers that both state variables and the Wiener processes are functions of time. 

dr = K(8- r)dt + cr,/~dz, (1) 

dH H = (!1- cS)dt + vdzH (2) 
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dz r(t) dzH(t)= pdt (3) 

where: 
'K =speed of adjustment in the mean reverting process, 
B =central location or long term mean of the short-term interest rate 

r(t) (steady state spot rate), 
a =instantaneous standard deviation of the (interest rate) disturbance, 
z, = standardised Wiener process, 
J..t = instantaneous average rate of house price appreciation, 
o ="dividend-type" per unit service flow provided by the house, 
v =instantaneous standard deviation of the house price, 
ZH = standardised Wiener process. 
p = instantaneous correlation coefficient between the Wiener 

processes. 

Cox, Ingersoll and Ross (1985a) derived a general methodology for the valuation of 
contingent claims in an equilibrium framework. It is known from standard arguments 
in fmance that the partial differential equation (PDE) for the valuation of any asset 
F(r,H,t), whose value is a function only of interest rate, r, house price, H, and time, t, 
takes the following form, again dropping labels in parentheses, for clarity (Cox, 
Ingersoll and Ross, 1985a,b; Epperson et al., 1985; Kau et al., 1992, 1993a) 

I 2 2 82F 82F 1 2 8
2F 8F aF 8F 

-H v -+pH.Jrvcr--+-ra -+K(S-r)-+(r-o)H-+--rF=O (4) 
2 aH2 a.Har 2 c3r 2 ar aH at 

The PDE has several noteworthy characteristics: 

I . A mixed derivative term 
2. A "free boundary" (the mortgage borrower may terminate prior to maturity) 
3. Variable coefficients 

Components Of The Mortgage Value 

Straightforward "repayment mortgages" are arranged such that the loan is repaid by a 
series equal annual payments on pre-detemiined, equally spaced dates. The monthly 
payments, MP, and the outstanding balance after each payment, O(i), are calculated 
using standard annuity formulae: 

l\1P = (R/12)[I +Ril2JO(O) 
[I+Ril2j-I 

O(i) = ((1 + Rll2t- (1 + Rll2Y p(o) 
(l+Ril2J -I 

where: 
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R = nominal annual interest rate with monthly compounding 
0(0) =amount originally borrowed 
n = the life of the mortgage in months 
1J(i) = the time of the lh month (lh payment date) 

The value of remaining future payments, A(r,t), promised to the lender is a function of 
the term struc;;ture of interest rates. We introduce notation which distinguishes value 
immediately before a payment is made by a negative superscript and value 
immediately afterwards by a positive superscript. At the end of the loan period, the 
value of the payment due, A, is equal to the final payment, :MP, and so the terminal 
condition is: 

A- (r, t) = MP for t = TJ(n) (7) 

The value of A at each of the other payment dates is subject to a similar condition: 

for t = 11(1), ... , TJ(n -1) (8) 

The mortgage value includes the value of A and other components (the borrower's 
options) and differs between borrower and lender in that the lender may also have 
insurance which is of no value to the borrower. We will discuss the mortgage value in 
terms of the negative of its value to the borrower, which we name Va(H,r,t). This 
consists not only of the present value of remaining future payments, A(r,t), promised 
to the lender but also the value of options implicit in the contract. These are the 
borrower's option to prepay, C(H,r,t), eliminating the debt early, and the option to 
default, D(H,r,t), reneging on the debt and turning over the house to the lender: 

VB (H,r, t) = A(r, t)- C(H, r, t)- D(H,r, t) (9) 

For valuation purposes, we assume that both options are legal and that either will be 
exercised, if it becomes financially rational to do so. If the house price exceeds the 
value of the remaining payments, a rational borrower will not default and so, clearly, 
the house price has a direct impact on the value of the default option. The situation is 
different in the case of prepayment, where the decision to pay the loan early would be 
affected by the evolution ofthe term structure of interest rates but not so obviously by 
the value of the underlying asset. However, the exercise ofthe default option 
terminates the loan, which implies automatically that the prepayment option expires 
worthless. Therefore, indirectly, the house price also affects prepayment. As a 
consequence of this interaction between both options to terminate the loan, they 
cannot be considered separately. The decision to default is not, therefore, triggered 
simply ifthe value ofthe remaining payments exceeds the house price but if it 
exceeds the house price plus the value of the joint option to terminate the mortgage: 

A(r, t) > H + C(H, r, t) + D(H, r, t) (10) 
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At termination, the borrower may either pay the required monthly amount, MP, or 
default. The value of the mortgage to the borrower immediately before a payment is 
made is the minimum ofMP and the house value: 

V~(H,r, t) = min(.MP, H] for t = 11(n) (11) 

The default option, at mortgage maturity, will be worthless if the value of the house is 
greater than the fmal payment but otherwise equal to the difference between the two. 

n-(H,r,t)=max[O,(NIP - H)] for t=11(n) (12) 

Prepayment at this stage would have no meaning and the prepayment option value is 
zero : 

c- (H, r, t) = 0 for t = TJ(n) (13) 

At earlier payment dates, the value of the mortgage to the borrower immediately 
before payment is the greater of.MP plus its value afterwards and the house price: 

v;(H,r, t) = min[(v;(H,r, t)+MP }H] 
for t = TJ(l), .. . :rt(n -1) (14) 

We can now write conditions, immediately before payment falls due, for the 
borrower's option to prepay, C(H,r,t) and the option to default, D(H,r,t): 

If V;(H,r, t) = v;(H,r, t)+:MP (no default) 

then n-(H,r, t) = n+ (H,r, t) (15) 

and c- (H, r, t) = c+ (H, r, t) (16) 

If v;(H,r, t) = H (default) 

then n-(H,r, t) =A -(r, t)- H (17) 

and c-(H,r, t) = 0 (18) 

Mortgage Indemnity Guarantees (MIG) 

If the borrower prepays the mortgage, the total debt payment, TD(t), will include an 
early termination penalty. The amount is not standardised across UK mortgages and 
so we model it as a proportion, 11:, of the outstanding balance, O(i), plus accrued 
interest: 

TD(t) ={(I+ n)[1 + R(t- TJCi)))}o(i) 
for 11(i)::; t = 11(i +I) (19) 

The lender may also benefit from a Mortgage Interest Guarantee (MIG). This is an 
insurance policy whose value depends on the mortgage contract and which benefits 
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only the lender. A fmancially rational borrower need not take this into account, hence 
our earlier definition of the mortgage value as (the negative of) the value to the 
borrower. The MIG, which depends on the mortgage, may then be valued in a 
separate step. The insurer agrees to pay a fraction of the total loss suffered by a 
mortgage lender on each loan included in a specific pool of mortgages. The precise 
terms for British MIG contracts varies from case to case but a common format, which 
we will use, is as follows. The insurer agrees to pay a fraction, y, of the total loss, 
TD(t)-H, suffered by the lender but only up to a maximum indemnity, or "cap", ofr 
The loss will be considered to be the difference between the value of the borrower's 
total debt and the value of the house, {TD (t)- H} . 
We assume the cap is .2 times H(O), based on a loan to value mortgage of .95 H(O), 
compared to a "normal" loan to value mortgage of .75 H(O). Also, we assume that 
y=.8 . 

The combination of all these features gives a general terminal condition of the 
following form for the MJG at termination: 

If 

then 

If 

then 

v; (H, r, t) = l.\1P 
f(H,r,t) = 0 

fort= TJ(n) (no default) 

v;(H,r, t)~ H fort= TJ(n) (default) 

r(H,r,t) = min{[y(MP- H)], r} 

On other Payment Dates: 

If v;(H,r, t)= v;(H,r, t)+MP fort= lJ(n) (no default) 

then r(H,r,t) = r(H,r,t) 

If v;(H,r, t) = H fort= l](n) (default) 

then I"(H,r,t) =min{ {y[TD -(t)- H)}, r} 

Coinsurance 

(20) 

(21) 

(22) 

(23) 

Coinsurance describes the potential loss not covered by the l\1IG and includes any loss 
above the cap. Its valuation can be relevant not only to the insurer, but also for the 
lender and for third party insurers eventually interested in selling coverage for this 
type of risk. 

Letting CI(H,r,t) represent the value of coinsurance, the corresponding terminal 
conditions will be given by the following expressions: 

Maturity of the Loan: 

If v;(H,r, t)= MP fort= 11(n) (no default) 

then cr(H,r,t) = o (24) 

If v;(H,r,t)=H fort= 11(n) (default) 
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then CI"(H,r,t) = max{[(1-y)(MP- H)], [(.tvfP- H)- fl} (25) 

On other Payment Dates: 

If v;(H,r,t)==v;(H,r,t)+.tv1P fort=TJ(n) (nodefault) 
then CI"(H,r,t) = CI+(H,r,t) (26) 

If v;(H,r,t)=H fort=TJ(n) (default) 

then CI"(H,r,t) =max{ {(1-y){TD-[TJ(i)]- H} }, { {TDTD(i)]- H}- r} }(27) 

By definition, at any payment date the value of the coinsurance is equal to the 
difference between the value ofthe potential loss and the value of the insurance 
coverage. Therefore, in aggregate: 

Cr(H,r,t) + r(H,r,t) = { CI+(H,r,t) +I +(H,r,t)} (no default) (28) 

Cr(H,r,t) + r(H,r,t)= {TD-(t)- H} (default) (29) 

The No-Arbitrage Condition 

Finally, the terms of the mortgage contract need to be set so as to avoid arbitrage and 
including the various fees and penalties applied to British mortgages. We now adjust 
our notation somewhat, to allow for these as variables. The equilibrium condition for 
the mortgage is: 

VB(H(O), r(O), t(O),R, 1t]- (1-~)L+ I(H(O),r(O), t(O),R, 1t]= 0 (31) 

where: 
R = contract rate; nominal annual interest rate paid by the borrower 
1t = early termination penalty 
~ = arrangement fee as a proportion of the amount lent 
L = amount lent 
I = value of the MIG 

Although the MIG is not part of the contract with the borrower and benefits only the 
lender, it affects the equilibrium contract rate. In order to determine equilibrium for 
Equation (31 ), a contract rate was found using a secant iteration technique, in line 
with those described by Gerald and Wheatley (1994) and by Press et al. (1992). Va, 
incorporates the joint option to terminate and we will consider the method used to 
solve the PDE and value its components in the next section. 

The Finite Difference Methodology 
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The basic method of solution of partial differential equations by fmite difference 
methods is well established and there are excellent textbook introductions in 
mathematics (e.g. Ames, 1992; Lapidus and Pinder, 1982; Morton and Myers, 1994) 
and in finance (e.g. Wilmott et al. 1993; Clew low and Strickland, 1998). The 
underlying asset price, on which option values depend, versus time is approximated 
by a grid in which only small but finite changes in each dimension are considered. 
Terms in the partial differential equation are then approximated by linear slopes 
across the grid. With several underlying variables (in this work: Hand r), this grid 
represents a multi-dimensional "state space" . Knowing terminal conditions (such as 
when it is fmancially optimal to default on a mortgage) it is possible to work 
backwards in time, valuing the options at each point on the grid, until initial values are 
obtained at the start of the grid, at time zero. 

The two most basic approaches to solution ofPDEs via fmite difference are explicit 
and implicit schemes. In an explicit scheme, the value of a single point on the grid is 
calculated from an odd number of points (usually three) with known values in the next 
time step. In implicit schemes, single points with known values are related to sets of 
points (again, usually three) whose values are unknown. The unknown values are 
then calculated by solution of simultaneous equations. Implicit methods have the 
advantage of not being so constrained in the size of time step required for a particular 
size of asset price step in the grid. They can also be improved so as to increase the 
rate at which errors decrease as the grid size is made fmer (the best-known example of 
this is the Crank-Nicolson method where the error decreases with the square of the 
time step size rather than linearly as with plain implicit schemes). 

In the only published work of comparable kind in real estate finance (Kau et al., 1992, 
1993a, 1993b, 1995) an explicit finite difference method was employed. Complex 
problems in finance involving several dimensions can become so intricate and 
difficult to program that it may be considered preferable to use explicit methods. 
Dempster and Hutton ( 1995, 1996) reached this conclusion in two studies of cross
currency valuation functions. In the present work, there is a free boundary from an 
American option, several interconnected valuation functions and a stream of hundreds 
of European options. On balance, we concluded that an explicit finite difference 
approach would be most appropriate for its solution. Free boundaries can be attacked 
by boundary-tracking techniques in the programming (Crank, 1984), but we chose to 
transform the equations so as to convert to a fixed boundary problem, following a 
procedure similar to that proposed by Berger, Ciment and Rogers (1975). We 
demonstrate the transformation in the next section. 

Transformation of the PDE 

The state variables for house price, H, and interest rate, r, must be transformed to 
eliminate infinite boundary conditions which would otherwise be difficult to handle 
numerically. Arbitrage arguments require positive interest rates and, in a house 
market without major inefficiencies or transaction costs, similar arguments require 
positive house prices. Although in any particular practical application each state 
variable will remain finite, in terms of a mathematical solution we are left with the 
infinite domain (O,oo)(O,oo) . However, we can choose convenient transformations to 
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map the infinite area (O,oo )(0, oo) onto the unit square (0, 1 )(0, 1 ). These are shown in 
equations (32) and (33) 

1 
y=--

1 + .'Iff 

1 
x=---

1 + {J)H 
for \V and CD > 0 

(32) 

(33) 

Of course, with such inverse relationships, the values used for the arbitrary factors \V 
and ill considerably affect the density of points on the solution grid and were chosen 
so as to place the value ranges of most concern for the state variables around the 
centre of the grid. For example, giving \V a value of 10 was convenient for interest 
rates around 0.1 (10%) p.a. House prices were normalized to an initial value of 1 and 
so it was convenient to set CD equal to 1. 

Equation (4) is a backward parabolic PDE and we transform it into a forward equation 
(Wilmott et al., 1993) by reversing the temporal dimension, as in equation (34). 

't=T-t (34) 

These transformations convert the original PDE, equation ( 4), for the valuation of any 
derivative asset F(r,H,t), whose value is a function only of interest rate, r, house price, 
H, and time, t, into its equivalent, W[r(y),H(x),t('t)], whose value is a function of the 
new variables. We relegate details of the transformations to an appendix. Equation 
(3 5) shows the transformed PDE. 

We provide details of the finite difference representation and numerical solution in 
another appendix but in the following sections we will try to give some insight into 
the method. We will begin by considering the boundary conditions and then describe 
two-dimensional "slices" of house price versus interest rate moving backwards in time 
from the final, known, outcomes if the mortgage were to reach its full term. 

Boundary Conditions 

10 



... /6--.-,.. 
it' v 
. ~~~~~ ,&l 

1l '.a!·:Jj~A t-

We now have the two state variables, house price, H, and interest rate, r, transformed ·· -:~;l o 
and the third dimension time, t, (or its simple transform, -r), all of which together C:ait 1 l'l ;,) 

be visualised as a three-dimensional lattice within a box. The two variables Hand r ·-·-·"-"' 
may be visualised as a grid moving stepwise along the time axis as the fmite 
difference calculations proceed. 

In order to solve the problem, we need not only the finite difference approximations to 
first and second derivatives within the lattice but also known values or constraints 
within it. These are the boundary conditions. We will next describe the boundary 
conditions in terms of the original state variables, where financial insights are clearer 
but we will refer to the box for easy identification of the regions. The boundary 
conditions can be identified at the faces and edges of the box. We will consider the 
faces in turn, followed by the edges where they meet; for example, when r = 0 (and its 
transform is I) the face is a plane ofH versus time and when H = 0 (hence, its 
transform is 1) the face is a plane of r versus time. 

House price is zero 

When the house price is zero (H=O), the absolute value of the mortgage, owed by the 
borrower, cannot be less than the house price. The borrower's rational behaviour is to 
default. Consequently, the prepayment option is worthless. The value of the 
mortgage is then equal to zero, the house price. At this boundary, therefore, the 
default option is equal to the value of the remaining mortgage payments. These 
conditions are shown in equations (36)-(38). 

C(O,r) = 0 (36) 

(37) 

D(O,r) = A(O,r) (38) 

The values of the mortgage interest guarantee, I, and the coinsurance, CI, are given by 
the degenerate form of equation ( 4), with H=O and either I or CI substituted for the 
general variable F. For convenience, F(r,O,t) is replaced by F: 

1 2 o2F OF OF 
-rcr -+K(8-r)-+--rF=O 
2 Or2 Or Ot 

(39) 

Interest rate is zero 

When the interest rate is zero (r=O), there is no discounting. Given the CIR mean
reverting square root process in equation (1), the value of the interest rate in the next 
time step, s, is certain to be K8s. Thus, the boundary condition for the value of future 
mortgage payments is given by equation ( 40). 

A(O, t) = A(K8s, t + s) (40) 
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Other asset values, I and CI, represented by F(r,H,t) in equation ( 4) are given by 
another degenerate form, equation (41), when the interest rate is zero. For 
convenience, F(O,H,t) is replaced by F. Note that derivative terms in r do not vanish 
unless also multiplied by r (contrast this with Kau et al., 1995). 

1 2 2 8
2 F 8F 8F 8F 

-H v ---H8-+KB-+-=0 
2 81! 2 8H a- Ot 

(41) 

House price becomes very large 

As house price, H, tends to infinity, the value of the default option tends to zero. This 
corresponds to one face ofthe box where the transformed variable, x, is zero. We 
represent this in equation (42). 

lim D(H,r) = 0 (42) 
H-+oo 

The prepayment option value, C, is determined by the same degenerate form of 
equation (4) as used for H=O, this time with F(r,H~oo,t) replaced by F. Since the 
value of the default option tends to zero, the mortgage value at this extreme is given 
by the difference in equation (43). 

lim VB(H,r) = A(r)-lim C(H,r) (43) 
H-+co H--+00 

Since there is no default, the mortgage interest guarantee and the coinsurance have no 
value: 

lim I(H, r) = 0 (44) 
H-+oo 

lim CI(H,r) =0 (45) 
H-+«> 

Interest rate becomes very large 

In the limit of infinite interest rate, any expected future payment is worthless and so 
we can immediately write the following: 

lim A(r) =0 (46) 
r-->co 

lim C(H ,r) =0 (47) 
r-+a:J 

lim D(H,r)=O (48) 
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lim V8 (H,r) =0 (49) 

lim J(H, r) =0 (50) 

lim CI(H,r) =0 (51) 

Both H and r have extreme values 

Next, we consider the edges of the box where extreme values ofH and r occur 
simultaneously; these are zero and infinity or, in transformed co-ordinates, 1 and 0. 
First, we will take r = 0 and consider the two extremes of H. As noted earlier, for an 
interest rate of zero the CIR. model, equation ( 1 ), requires that the value of the interest 
rate in the next time step, s, is certain to be K8s and so we may write:. 

F(O,O, t) = F(O, K8s, t + s) (52) 

lim F(H,O, t) =lim F(H, K8s, t + s) (53) 
H-+«> H--.oo 

Finally, when r tends to infinity (and its transformed co-ordinate is 0), the conditions 
on the rest of face H versus time are maintained, as given in equations ( 46)-( 51). 

The Free Boundary: The Prepayment Region 

Prepayment can take place at any time (it is an "American" style option) and gives 
rise to a free boundary, on one side of which it is fmancially optimal for a borrower to 
exercise the option to prepay and on the other side of which it is not. We obtain a 
boundary condition by observing that at each moment in time the value of the total 
debt, TD, must be at least as high as the value of the mortgage : 

(54) 

Consequently, the prepayment boundary has the "value matching" condition shown in 
equation (55). 

(55) 

It is also necessary to observe a "high-order contact" or "smooth-pasting" condition 
requiring that both functions meet tangentially at the boundary (see Merton, 1973). 
Putting this in a different way, it is required that not only the values of the functions 
Vs and TD, but also their slopes, should match at the boundary. As for a repayment 
mortgage the derivatives involving TO are zero, we may write: 
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avs _oro _
0 ------

OH OH 
(56) 

OVB- OTD -0 ------
Or Or 

(57) 

If prepayment occurs, the default option immediately becomes worthless. This also 
happens for the mortgage insurance products, MIG and coinsurance. At the 
prepayment boundary, slopes of functions must match and so we have the following 
conditions: 

an _ ao _ ai _ ai _ ac1 _ ac1 _ 0 ------------
aH ar aH ar aH ar 

(58) 

An important aspect that it is necessary to mention is related to the interaction 
between the "normal" boundary conditions and the free boundary. Obviously, inside 
the prepayment region the valuation function obeys a different regime. Consequently, 
it is necessary to expand this regime to the boundary in order to assure the smoothness 
of the solution near the boundaries that "touch" the prepayment region. 

Numerical Treatment of the Free Boundary 

Free boundaries are difficult to treat numerically. As mentioned in the previous 
chapter, there are two approaches to deal with such features: boundary tracking 
methods or the use of transformations capable of reducing the original problem to a 
fixed boundary one, from which the free-boundary can be inferred afterwards. The 
solution adopted here is one of the latter type. Drawing on Berger, Cement and 
Rogers (1975) the problem is converted into a non-linear PDE with a fixed boundary. 
The valuation equation originally assumed the form: 

0\T, 
--

8 +LV8 =0 a: 
VB=TD 

if VB<TD 

otherwise 

where L is the second-order linear operator in equation ( 4). 

Noting that when VB= TD: 

c;v, oro 
-

8 +LV8 =-+LTD =(l+rr)RO-rTD a: a 
the valuation equation can be rewritten in the following form: 

8V 
--

9 +LV=O a: 

8V 
-

9 +LV = (I+ rr)RO -rTD a: 

if VB < TD 

if VB = TD 
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Where the problem is now defined for the entire (H,r) space. 

The Default Region 

Default is only rational both outside the prepayment region and on mortgage payment 
dates. Thus, the default boundary is fully specified by equations (12), (15) and (17). 
Next, we will describe the evolution of the mortgage, taking into account these 
boundary conditions. 

Mortgage Terms and Component Values 

Mortgages are not standardized products and their terms vary between lenders, with 
more than one product being offered by any single lender. It must be emphasized that 
the models designed to value US mortgages are inadequate for valuing British 
mortgage products and vice-versa. The reasons for this are twofold. In the first place, 
the amount of the arrangement fee ("points" in the US) differs significantly between 
the two countries. In the second place, the insurance coverage that is associated with 
both products is different. In the American case, authors such as Kau et al 1993 a 
assume the coverage is the lower of the actual loss or a pre-defined percentage of the 
value of the debt. In the British case, the loss coverage is shared between the insurer 
and the lender. A common arrangement is coverage by the insurer of 80% of the 
actual loss, subject to a cap equal to 20% ofthe original house price for a LTV of95% 
(based on the difference between the actual LTV ratio and an arbitrarily defined 
"normal" LTV ratio of75%). Obviously, the values of the two products do not 
coincide: Both features have direct implications for the determination of the 
equilibrium contract rates (see equation 31). Consequently, even for two mortgages 
that coincide in every detail except those two, the contract rates would differ and so 
would the values of all the underlying assets. In addition, many British mortgages 
have early termination penalties that affect the exercise of the options by the borrower 
and consequently the equilibrium contract rates. Furthermore, insurance coverage 
constitutes another crucial factor in the determination of equilibrium combinations. 

In order to present and discuss the numerical results provided by the mortgage 
valuation model presented a basic set of economic parameters was chosen. The 
choice was made mainly on the basis of the standard assumptions in the literature (see 
Buser and Hendershott, 1984; Dunn and McConnell, 198la,b; Kau et al. 1993b, 1995; 
Leung and Sirmans, 1990; Stanton, 1995; Stanton and Wallace, 1995). Table 1 
presents these values. Unless noted otherwise, this set of economic parameters has 
been applied. · 
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Table I _ Base Parameters 

ECONO:MJC 
ENVIRONMENT 
_ Spot interest rate, r(O) 10% 
_ Long .term average of 
interest 10% 

rate 
(steady state), e 

_ Speed of reversion, K. 25% 
_ Interest rate volatility, cr 5% 
_ House service flow, 8 7.5% 
_ House price volatility, v 5% 

_ Correlation coefficient, p 0 

CONTRACT 
_ Maturity, 11 300 months 
_ Value of the house at £ 100,000 
origination, H 

_ Arrangement fee, ~ 1% 
_ Prepayment penalty, 1t 0 

Every parameter exercises a double influence on the value of the different mortgage 
related assets and, consequently, on the value of the mortgage itself Any change in a 
parameter used to characterize the economic environment leads to a change in the 
equilibrium contract rate. Consequently, besides the direct implications that derive 
from the change of the parameters, the value of each of the mortgage-related assets is 
also influenced by the modification that takes place in the contract rate. This 
phenomenon has severe implications for the type of empirical work that can be done 
in the field. Complete repetition of a certain set economic conditions is improbable 
and consequently, we are faced with different equilibrium rates for similar contracts in 
different moments in time. A sound empirical test of the implications of changes in 
the economic environment in terms of the different components of a mortgage 
contract would consist of observing the evolution of the market value of a mortgage 
contract during its economic life. In other words, a study of this kind would imply the 
analysis ofthe resale market for old mortgages (see Kau et al., 1992, 1995). 

Setting The Contract Rate: Arbitrage-Free Conditions At The 
Initiation Of A Mortgage 

When the mortgage is first arranged, it must be structured such that neither the 
borrower nor the lender can make an immediate profit The values of the state 
variables r(O) and H(O) are known and a contract rate, R, meeting the no-arbitrage 
condition must be found by an iterative process (in this work: a secant iteration 
technique set for a margin of error less than £10 for a £100,000 house). The mortgage 
contract clauses which influence the possibility of early termination by the borrower 
and, hence, the value of the mortgage to the lender, are the arrangement fee, 1;, the 
early termination penalty, rr, and the Mortgage Indemnity Guarantee, L 
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Neither the arrangement fee nor the mortgage indemnity guarantee affects the value of 
the other components of the loan (the value of the future payments and the options to 
prepay or default) and can be treated independently. Their effects on equilibrium 
coupon rates differ greatly. Inclusion of an arrangement fee simply adds to the value 
of the lender's position in the contract but the effects of the insurance component are 
more complex. Not only does its value evolve in different ways, according to the 
nature of the underlying contracts, but also it does not always change linearly within 
the same contract for different levels of the coupon rate. 

In the most basic form of the repayment mortgage, without a .MIG, arrangement fee or 
early termination fee, the equilibrium condition for setting up the mortgage becomes: 

VB[H(O),r(O),t(O),R]-L = 0 (62) 

For the contract to be viable, it is necessary that the value of the mortgage to the 
borrower, VB , be equal the amount lent, L. As Kau et a!. (1995) point out, for this to 
happen it is necessary that the prepayment region expands in such a way that (H(O), 
r(O)) becomes situated in the prepayment boundary (free-boundary), and immediate 
prepayment constitutes a possible optimal strategy for the borrower. Figure 1 
illustrates the situation (note that the arrangement fee in Table 1 has been dropped). 

Val 

Figure 1 
Mortgage Value (Mortgage Contract Without Mortgage 

Indemnity Guarantee and Arrangement Fee) 
Repayment Mortgage Without an Early Tennination Penalty 

5000 .,..-------------------, 

0 +---T---T---~--~~.---~--~--~ 

ue- -5000 
L 
(£) -10000 

-15000 

-20000 

-~000 ~--------------------------~ 

7% 8% 9% 10% 11% 12% 13% 14% 15% 

Contract Rate, R 

In this case, the borrower is indifferent between the alternatives of continuation and 
immediate repayment. Any increase in the contract rate that corresponds to this initial 
equilibrium situation generates a peculiar effect. It results in higher present value for 
future payments to be made by the borrower, but at the same time it also increases the 
value of the option of early repayment, C. As these are compensating effects, the 
borrower repays the loan immediately after taking it. Consequently, despite the 
possibility of finding contract rates capable of generating fair deals for both borrower 
and lender, no equilibrium exists, because those contract rates correspond to situations 
in which the mortgage is immediately terminated. The situation is resolved by 
inclusion of one or several of: arrangement fee, early termination penalty and .MIG, 
which results in a single contract rate, as shown in Figure 6 for a prepayment penalty . 
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Val 

Figure 2 
Mortgage Value (Mortgage Contract Without Mortgage 

Indemnity Guarantee and Arrangement Fee) 
Repayment Mortgage With an Early Termination Penalty 

ue -5000 
-L 
(£) -10000 

-15000 

-20000 

-25000 -'-------------------' 

7% 8% 9% 10% 11% 12% 13% 14% 15% 
Contract Rate, R 

Each of the contractual features- arrangement fee, early termination penalty and MIG 
- generates a net benefit to the lender and lowers the equilibrium contract rate. The 
equilibrium combinations constitute a surface in (R,~,1t) space. This is illustrated in 
Table 2 and Figure 3 

Table 2: Trade-Off Between Arrangement Fee, Early Termination Penalty and 
Contract Rate 

Prepayment Arrangement Fee (~ 

Penalty (n) 0,000 0,005 0,010 0,015 

0,00 11,57% 11,16% 10,92% 10,70% 

0,01 11,02% 10,82% 10,64% 10,48% 

0,02 10,75% 10,61% 10,46% 10,33% 

0,05 10,34% 10,25% 10,16% 10,07% 
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Figure 3: Trade-Off Between Arrangement Fee, Early Termination Penalty 
and Contract Rate 

~ 
E Cl.l 
::::J-
·- "' li~ 
::u 

::::J "' CT.._ we 
0 
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12,00% 
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11,00% 
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9,00% 

(Repayment Mortgage) 

0,05 

0,000 0,005 0,010 0,00 
0,015 

Arrangement Fee 

Termination Penalty 
(1t} 

(!;) 

There is another situation in which no equilibrium exists: when the LTV ratio is unity 
so that L = H. A rational borrower is then indifferent between default and 
continuation. However, by delaying default, the borrower would benefit from the 
service flow of the house until the first payment was due and, consequently, there can 
be no equilibrium contract rate. Setting LTV ratios below unity is one way to reach 
equilibrium contract combinations (for a similar argument, see Kau et aL, 1995). 

Illustrative Results 

Figure 4 shows the initial mortgage value, VB, for a twenty five year mortgage 
specified by table 1, with the initial house price normalised to unity. Moving towards 
low levels of house price, default at the next payment date becomes increasingly 
likely, raising the vcd.ue of the default option, D, and lowering the mortgage value. 
Moving towards higher levels, the prepayment option assumes greater significance. 
The values of both remaining future payments, A, and the prepayment option, C, vary 
inversely with interest rate, with opposite effects on VB. Since C cannot be larger 
than A and is generally substantially smaller, the dominant effect on VB is from A, 
reflected in the convex portion of Figure 4. The exception occurs when the house 
price is high and the interest rate is low, where there is a plateau in Figure 4. 
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Figure4 
Mortgage Value !") 

(Repayment Mortgage Without an Early Tenmination Penalty) 

ga 
ge 
Va 
lu 
e 
(V 

Figures 5 and 6 show the values of the default option, D, and the prepayment option, 
C. The default option is valuable throughout most of the state space for which the 
current house price is less than the initial price at which the mortgage was arranged 
and loses value on moving to higher interest rates. Since a mortgage in default cannot 
be prepaid, the prepayment option values in Figure 6 rise steeply on moving from low 
house prices closer to the initial price (unity). 

(0) 

FigureS 
Default Option (D) 

Repayment Mortgage Without an Early Tennination Penalty 

00 55 84 94 38 
o 6 . 6 1 1 oo n st 35 22 

0 4 s ,, 
House Price (H) 1 0 1 
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Figure 6 
Value of Prepayment Option (C) 

(Repayment Mortgage Without an Earty Termination Penalty) 

Interest Rate (r) 

Figures 7 and 8 show the values of the mortgage indemnity guarantee, I, and the 
coinsurance, CI. Their relationship with the default option is apparent; for example, 
at high interest rate levels, house prices must fall greatly before the borrower will 
default, triggering the exercise of insurance. The coverage is capped and so Figure 7 
shows a maximum being reached quite soon as the house price is reduced. 
Coinsurance covers the potential loss not covered by the mortgage interest guarantee, 
above the cap and Figure 8 shows its appearance in regions of(H,r) where I has 
reached the cap. 

Figure 7 
Value of Insurance Coverage (I) 

(Repayment Mortgage Wotllout an Earty Termination Penalty) 
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Figure 8 
Value of Coinsurance (CI) 

(Repayment Mortgage Wrthout an Early Termination Penalty) 
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Note that the lender's exposure reaches a level of around 70% ofthe original house 
price, at the lower scale H=.ll, for a L=.95 H(O) less the MIG cap of around .20 H(O). 
Inside the range of interest rates that can be considered historically common, the 
"delta" of the lender's exposure falls (eventually to -1) after house prices have 
collapsed to below 35% of the original house price ofunity. 

Conclusion 

The theoretical framework developed in this work enables mortgage products to be 
valued which differ from those which can be handled by methods available in the 
literature for US products. Particular features are the early repayment penalties 
included in most UK fixed-rate mortgages, the mortgage indemnity guarantee (MIG) 
for a proportion of a lender's potential loss and the caps recently introduced into UK 
mortgage-related' insurance for lending institutions. It also allows for valuation of 
coinsurance, the potential loss not covered by the :MIG but covered by the lender. 

No closed-form solutions are available for such complex contingent claims based on 
two stochastic factors. Closed-form solutions become less plausible in the presence of 
the special problems created by the free-boundary imposed by the American option to 
prepay the loan, and also by the need to cope with the idiosyncrasies dictated by the 
compound European option to default. As a consequence, the problem was solved 
numerically. 

Our primary contribution is to model all of the mortgage components for the special 
factors of some British Mortgage Indemnity Guarantees using an explicit finite 
difference methodology. We show both equilibrium contract rates (in a "fair" 
environment) and the fair trade-offs between mortgage features such as arrangement 
fees, prepayment penalties and fixed contract rates. Then we show some aspects of 
the "at risk" elements (to interest rates and house prices) for all of the mortgage . 
participants, including the borrower, the insurer and the lender. Extending this 
approach to viewing the full risk of each mortgage participant (to interest rate model 
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parameters, to house price volatility, and to other realistic elements such as non
rational default and prepayment) are matters for future research. 
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APPENDIX A 
Substitutions Needed To Transform The Original PDE 

The transformation of the original PDE, with an infinite domain, into its equivalent in 
a unit square requires a series of substitutions which are given here. The original 
POE, equation (4), for the valuation of any asset F(r,H,t), whose value is a function 
only of interest rate, r, house price, H, and time, t, is converted into its equivalent, 
W[ r(y ),H( x ), t('t)]. 

We begin with straightforward application of the chain rule, first in the r dimension: 

aF aw dy 
----
ar iJy dr 

Then in the H dimension: 

aF aw dx 
-=--
aH ax dH 

The treatment of the time derivative produces the following results: 

aF aw d-e 
----
at a-c dt 

aF aw 
-=--
at a-c 

Application of the chain rule to the mixed derivative leads to an apparently more 
complex expression: 

8
2
F _ a [ aw dx) ------

aHar ar ax dH 
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The state variables r and H are independent of one another and hence the previous 
expression is simplified to: 

Next, we need expressions for the derivatives of new state variables with respect to 
the old ones, first in the r dimension: 

dy -~(-1 J 
dr 8r 1 + \jfr 

Then in the H dimension: 

dx d( 1) 
dH = 8H l+coH 

dx 2 -=-cox 
dH 
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APPENDIX B 
Details Of The Finite Difference Solution 

In this appendix we present a finite difference representation of the transformed POE 
on the lattice. We relate the parameters to positions in a three-dimensional box with 
sides representing house price, interest rate and time. Parameters and derivatives have 
calculated values only at the discrete grid points on the lattice (the "nodes"). 
Following a summary of notation, we begin by considering the interior nodes (the 
majority) and then consider boundary conditions on the sides and corners of the box. 

Notation 

The house price, H, and spot interest rate, r, were transformed into x and y 
respectively (equations 32 and 33). In the lattice, these are represented in the lengths 
of two dimensions of a unit cube, with the third dimension time, -r. The lengths are 
divided into 1 intervals for x, I intervals for y and N intervals for -r. Nodes on the 
lattice are then identified by lower case characters from j = 1 to 1 for x, i = 1, I for y 
and n = 1, N for -r. Clearly, the lattice spacings are 111 for x, III for y and 1/N for -r. It 
will be convenient later to refer to these spacings ash, 1 and s respectively. The 
positions of nodes are represented by Xj, Yi and "tn where: 

J . . 
x. =- =hj 

J 1 

n 
-r =- =sn 

n N 

Following common practice (for example, see Morton and Mayers, 1994), we place 
time as a superscript and the other dimensions as subscripts when representing an 
approximation, U, of a function, W, at a node: 

Finite difference approximations are named forward, backward or central according to 
the direction of the approximation; for example, for derivatives with respect to x, 
increments in x correspond to successive integer values, j, and approximations 
between j and j+ 1 are termed "forward". Thus: 

U" U" aw ,_j+l - , _j 
- :::: . Forward difference ax h 

aw U" .- U" 
- =:; I,J 1,) - 1 Backward difference ax h 
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Central difference 

A Finite Difference Representation Of The PDE 

For the x andy dimensions we use the (more accurate) central difference 
approximations and for the temporal dimension, r, we use a forward scheme in order 
to avoid known difficulties with stability (Wilmott et al., 1993 , page 270). The 
transformed POE can then be approximated in ·the finite difference lattice by making 
the following substitutions: 

aw _ u~.j+l - u~.j-1 --ax 2h 

aw _ u~+l,j - u~-l.j --Oy 21 

aw u~:1 - un. 
-- ~ - ' .:::...•J --·~·J 

8t(t) s 

8
2
W _ u:l.j+l- u:l.j-1- u~-l.j+l + u~-l.j-1 ---axay 4Ih 

The finite difference equation is then: 
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This equation is next rearranged to a form in which the value at a particular discrete 
time in the lattice is a function of its value in the previous time (recall that we work 
backwards in actual time, t, via the time parameter -c) . 

u:~' ~ {I - [H(x)'v'ro'x'( :, ) ] - [r(y)cr
2
1¥

2Y'( 1~)] - r(y )s} u:, 

+ H HCxl'v'ro'x'( :, ) }rw,., + U:j-1) 

+ { {H(x/ v2olx 3 
- [(r(y)- 8 )H(x)wx 

2
]} 

2
sh }(u~.i+t - U;".i-I) 

+ H r(y )cr'l¥ 'y. c~ ) }r u:.,.j + u: ,J 

+ { {r(y)cr
2
\jf

2
y

3
- [K(8- r(y))\Jfy

2
]} ~J(u~+t .j- U;"_,J 

+ pH(x))r(y)vcr\jfwx
2
y

2
( 4;h)u~+t.j+l - u~+l,j-l - u~- l .j+ t + u~-l.H) 

The scheme is not quite finalised; in order to keep errors within bounds, it is 
necessary to guarantee that all the un coefficients are positive (the "maximum 
principle", Morton and Mayers, 1994). There are two ways to achieve this. Either the 
x andy step lengths can be reduced (substantially reducing the viability of the explicit 
finite difference algorithm) or changes must be made in the finite difference 
representation of the first derivatives, which we do in this work. The coefficients of 
the second derivative terms are always positive but this is not so for the first 
derivative terms. In our transformed valuation equation the coefficients are variable 
and the problem is even more acute, since the sign of the coefficients of the first 
derivative terms change across the lattice. This is dealt with by "upwind 
differencing". Central differences are used for second order derivatives but when the 
coefficient of a first derivative is positive, a forward difference approach is used and 
when negative a backward difference approach. This is readily handled in the Fortran 
code. 

The solution involves an American-style option, exercisable at any time (the 
prepayment option) and a series of European-style options exercisable at each 
payment date (the default option). Working backwards, applying boundary 
conditions, involves a series of grids, one for each month. In this work, grids of 66 
time steps per month were used, with I= 50 = J. 
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