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Abstract: Feline mammary carcinoma (FMC) is a common aggressive malignancy with a low survival
rate that lacks viable therapeutic options beyond mastectomy. Recently, increasing efforts have been
made to understand the molecular mechanisms underlying FMC development, using the knowledge
gained from studies on human breast cancer to discover new diagnostic and prognostic biomarkers,
thus reinforcing the utility of the cat as a cancer model. In this article, we review the current
knowledge on FMC pathogenesis, biomarkers, and prognosis factors and offer new insights into
novel therapeutic options for HER2-positive and triple-negative FMC subtypes.

Keywords: feline mammary carcinoma; biomarkers; feline her2 mutations; targeted therapies;
comparative oncology model

1. Introduction

Cats are the most popular companion animals in developed countries, outnumbering
dogs [1]. As they share similar environmental conditions with their owners, as well as
genetic and biological features, cats have been used as models for human ophthalmic dis-
eases, type 2 diabetes and, since the full sequencing of their genome, comparative oncology
studies [2–5]. Cats are also emerging as promising animal models for preclinical testing of
HER2-positive and triple-negative mammary carcinoma therapies [6–11]. Feline mammary
carcinoma (FMC) is the third most common type of cancer in cats, corresponding to 17% of
all tumors in queens, and is usually malignant [12], as is human breast cancer (HBC) [13],
occurring in 90% of the cases due to somatic mutations [14] and showing comparable risk
factors. It is the first cause of death in cats, with short overall survival (OS), and very poor
prognosis, as it tends to be diagnosed at late stages and has limited therapeutic options that
show weak responses [4,15]. FMC has similar anatomical, biological and clinical features
to HBC, although metastatic mechanisms remain poorly understood [4], and is likewise
classified in different molecular subtypes: luminal A, luminal B, epidermal growth factor
receptor 2-positive (HER2-positive) and triple-negative normal-like and basal-like [16,17].

Using the extensive knowledge available on HBC, it is possible to find comparable
diagnostic and prognostic biomarkers, as well as therapeutic targets, like the HER2 protein,
that may improve FMC’s prognosis. These epidermal growth factor receptor (EGFR) family
members are commonly targeted in breast cancer therapies by antibodies and/or small
inhibitors that disrupt different cellular pathways [18–24]. Other emerging agents that have
already proved valuable in FMC in vitro studies [9] include histone deacetylase inhibitors
(HDACi) [25,26], and microtubules inhibitors (MTi) [27–29].

This review summarizes the similarities between FMC and HBC, with special empha-
sis on the progress attained in FMC, in particular towards better understanding of its clinical
hallmarks and molecular and biological features. Furthermore, the antiproliferative effects
of several compounds already approved for HBC therapy are discussed in the context of
FMC cell-based models as future treatments proposed for cats with mammary carcinoma.
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2. Feline Mammary Carcinoma

FMC is a common disease in middle-aged to old queens (10 to 12 years) [30,31],
more frequent in the Siamese and domestic short-hair breeds, with an OS time of around
1 year [16,17,31,32]. It occurs more frequently in unspayed cats, being associated with the
expression of estrogens (ER) and progesterone (PR), and hormonal therapy [33]. Indeed, an
ovariohysterectomy before six months of age is known to be a protective factor, reducing
FMC development in 91% of cases [12,33]. Mammary tumors are usually malignant
(80 to 90%), occurring with higher frequency in the abdominal glands and in 50% to 90%
of the cases leading to metastasis [31], most commonly in the regional lymph nodes and
lungs [12] (Figure 1).
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Figure 1. Mammary carcinoma is the third most common tumor in cats, with a high metastasis rate,
frequently to lymph nodes and lungs [17,31]. The black arrows indicate the most frequent tumor
locations and metastasis pattern.

At the time of diagnosis, identification of multiple masses is common, usually in
the same mammary chain, whereas in women, a single mass is observed in most cases.
The same anatomic classification (in situ vs. infiltrative) and histologic grade [4] are
reported for FMC and HBC. Thus, mammary tumors are defined as simple or complex,
with secretory and ductal cells documented, and identified as inflammatory disease, when
less differentiated cells and lymphatic-dermic obstruction are present.

2.1. Mammary Tumor Diagnosis and Classification

Early-stage mammary tumors present as mobile, palpable, discrete masses. However,
as tumor diagnosis is usually belated, patients tend to present several masses, with ulcera-
tion (25% of the cases) and necrosis. The physical exam may also reveal edema, exudate in
the nipples, and a decrease in the temperature of the pelvic region. For correct diagnosis
and prognosis before surgery, a precise tumor classification is mandatory. Even though
cytology is easy to perform, most of the time, results are inconclusive [12], making biopsy
crucial to confirm tumor stage and malignancy grade [31].
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Although a standardized classification system does not exist, the same parameters
used for HBC are applied (Table 1), with TNM (Tumor, Nodes and Metastasis) being
the most widely used staging system [34,35]. Tumor classification also considers the
malignancy grade, which takes into account tumor size, tissue invasion, ulceration, lym-
phovascular invasion, and lymph node status [35]. Additionally, a histopathological
analysis is advised, with higher frequencies of adenocarcinomas in situ, tubullopapilary,
solid, or cribiform masses reported. Concerning histologic grade, the Elston and Ellis (EE)
Grading System is usually employed, with the majority of tumors defined as moderate to
less differentiated masses [31,36]. Moreover, the molecular characterization in luminal A,
luminal B, HER2-positive and triple-negative subtypes [17], as in women, reveals itself as
an important prognostic factor, and may unveil targets for a directed therapy.

Table 1. Tumor clinical stage and histological grade for feline mammary carcinoma. (Adapted from
the System modified from Owen LN., Classification of tumors in domestic animals, Geneva World
Health Organization, 1980; and Elston & Ellis Grading System, 1998, respectively).

Tumor Classification of Feline Mammary Carcinomas

Tumor Clinical Stage *

Stage Tumor size (T) Lymph node status
(N) Metastasis (M)

1 T1 (<2 cm) N0 M0
2 T2 (2–3 cm) N0 M0

T1 N1 M0
3 T2 N1 M0

T3 (>3 cm) N0/N1 M0
4 Any N0/N1 M1

Histological Grade (EE System)

Histologic feature Score

Sum of the scores
3–5
6–7
8–9

Grade
I
II
III

Tubule formation

>75% 1
10–75% 2
<10% 3

Nuclear pleomorphism

Mild 1
Moderate 2
Marked 3

Mitotic count (per 10 microscopic fields)

0–5 1
6–10 2
>11 3

* 0—indicates absence of the characteristic; 1—indicates presence of the characteristic.

2.2. Feline her2 Mutations Could Be Associated with Tumor Development

Chromosomic instability is a key factor for tumor development. Concerning the
HER2-positive subtype, which presents similar clinicopathological features to HBC [17]
and is one of the most common in the cat (33% to 60% of all cases) [17,37], a deep analysis
of the her2 gene, by comparison to the human counterpart may be considered, as they share
a 90% to 95% homology [4,38].

HER2 is a glycoprotein that contributes to cell proliferation, differentiation, and
survival [39,40]. Interestingly, in women, breast cancer progression may be associated
with HER2 amplification, conditioned by a gain in her2 gene copy numbers, observed by
in situ hybridization [41–43]. By comparison, a different process occurs in the cat, with
an increase in her2 mRNA copy numbers, evaluated by real-time reverse transcriptase
(RT)-qPCR [44–46].
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We know that in breast cancer patients, her2 is mutated in 2 to 3% of primary tu-
mors, the most common mutations occurring in the HER2-negative breast cancer subtype,
which has a reported rate of incidence of 70% in the cat [10,47]. In these species, 90% of
the breast tumors also have acquired somatic mutations [14], mostly occurring in the TK
domain [10,11,14,46], with two single variants (SV) and two haplotypes described [38].
The observed her2 mutations are suggestive of an association with the clinicopathological
features, being correlated with primary tumor size and the number of tumor masses [10,38].
Furthermore, SVs at splicing regions, her2 polymorphisms, or mutations in introns may
be originating different isoforms of the protein, triggering the HER2 activity and tumor
aggressiveness [38] or therapy resistance [48,49], as has already been described in HBC
patients. Considering the her2 gene sequence that encodes for part of the HER2 protein’s ex-
tracellular domain, three non-synonymous genomic variants were reported, predicting an
alteration of the 3D structure of the protein by computational analysis and modelling [14].

2.3. Prognostic Factors for Feline Mammary Carcinoma

To uncover diagnostic and prognostic biomarkers, as well as new therapeutic targets
in cats, the study of the tumor microenvironment, its molecular characterization, and the
analysis of systemic alterations is crucial.

In a macroscopic analysis, tumor size is one of the most important prognostic factors
in FMC, with masses larger than 3 cm presenting a poor prognosis [36], and conditioning
a more aggressive surgical approach [50]. Furthermore, the tumor’s histologic grade,
presence of lymphatic metastasis and/or lymphovascular invasion [12], as well as tumor
stage [51] and subtype [36], have shown to be highly correlated with OS time.

Despite this being a relatively recent field of study, several biomarkers have already
been identified that may be involved in FMC prognosis. Molecular expression of Ki-67, eval-
uated by immunohistochemistry [12], reveals that an index above 14% is associated with
poor prognosis [52]. AKT expression, which is usually associated with PR-/ER-negative
invasive carcinomas, also correlates with malignancy and non-tumor differentiation, low-
ering the disease-free survival (DFS) ratio [53]. In parallel, cats with a triple-negative
subtype present a higher mTOR expression, as has been described in women [54], this
being associated with cancer invasion and metastasis [55]. Moreover, mutations in the
p53 gene involved in cell cycle regulation and tumor suppression have been reported in
18.9% of FMCs [56,57]. Furthermore, overexpression of several molecular biomarkers is
also associated with poor prognosis, e.g., macrophage-stimulating protein receptor (RON),
related to tumor invasion, cyclo-oxygenase (COX)-2, expressed in malignant FMCs, and
topoisomerase IIβ binding protein 1 (TopBP1), which is similar to BRAC2 in HBC [31,58].
Interestingly, the CXCR4/CXCL12 axis, which controls cell survival, migration and prolif-
eration, is also a key factor in feline breast cancer progression and metastasis, as reported
for HBC [59,60], and it’s disruption is associated with lower OS time [60–62]. Additionally,
CXCL12 has been reported as a blood serum marker in the cat, particularly for HER2-
positive tumors [62]. Finally, analysis of the vascular endothelial growth factor (VEGF)
status, shows that this molecule is overexpressed in more aggressive carcinomas [50,63],
playing an important role in tumor-associated angiogenesis.

In parallel, an association is reported between the expression of some of these proteins
in serum and in the tumor microenvironment, suggesting that serum samples may be used
as a non-invasive method for the assessment of checkpoint molecules [64–66]. Interestingly,
in the cat, HER2 serum expression is elevated in malignant lesions, lowering OS [17,31],
a fact that makes it a promising diagnostic tool. In fact, our group has already shown
that a rapid diagnostic kit for the identification of HER2-positive mammary carcinoma
through detection of serum HER2 expression levels can be produced. These preliminary
experiments, using nanoparticles coated with anti-HER2 fluorescent antibodies, showed
that serum HER2 expression levels can be quantified in cats with mammary carcinoma
(Figure 2A), by comparison with a control sample (Figure 2B; data not published). Never-
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theless, more work is needed in order to define cut-off values, sensitivity and specificity of
the test.
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antibody. (A) The nanoparticles were coated with a fluorescent anti-HER2 antibody (CB11), allowing
quantification of serum HER2 expression levels in cats with HER2-positive mammary carcinoma
(3+ score), by comparison with a (B) control serum sample from a healthy animal. This experiment
corresponds to preliminary results from a recent study (data not published; 400× magnification).

It’s widely acknowledged that in women, a chronic inflammatory status, such as that
induced by obesity, can be a trigger for mammary tumor development [67,68]. Interestingly,
cats with mammary carcinoma present a decrease in the serum leptin/leptin receptor
(ObR) ratio [66,69], as has been documented for pre-menopausal women with breast
cancer [70]. Furthermore, in animals with FMC, the higher leptin levels are associated
with a triple-negative tumor subtype, also as reported for HBC [66,71,72]. In parallel,
ObR is associated with an immunosuppressive status [66,73,74], observed in both breast
cancer patients [75,76] and cats with mammary carcinoma, and is additionally correlated
with the overexpression of cytotoxic T-lymphocyte associated protein 4 (CTLA-4), tumor
necrosis factor-α (TNF-α) [64,77], and programmed cell death (PD-1)/programmed death
ligand-1 (PD-L1) [64,78] in the most aggressive tumor subtypes (HER2-positive and triple-
negative) [64,79].

3. Feline Mammary Carcinoma Cell-Based Models for Targeted Therapies

In cats, therapeutic options are scarce, the most common being uni/bilateral radical
mastectomy, alone, or in combination with chemotherapeutic adjuvant protocols when
the Ki-67 index is above 14% [52], which increases the cat’s DFS but not OS, due to the
high metastasis rate [12,31,80]. Moreover, the agents used tend to have limited efficacy
and severe side effects [4,15]. Combination therapy protocols with doxorubicin and cy-
clophosphamide/carboplatin, for example, show poor response in metastasis [31,81], and
tamoxifen shows no significant response [4], as FMC is more commonly ER-negative,
unlike HBC [4,33].

Thus, a deep understanding is needed to unveil alternative therapeutic options aimed
at improving the cat’s clinical outcome. Such studies are limited, however, by a lack
of feline cell lines available for cytotoxicity assays, with only 8 having been reported
so far [82] and a shortage of in vivo models for preclinical trials, although four FMC
xenograft models were recently reported (preliminary report) [83], revealing to be of
extreme importance in order to understand the mammary carcinoma biology, development
and metastization process [84,85], as the use of nude mouse models [84]. Here we review
some therapeutic drugs (Figure 3) approved for HBC therapy that were recently tested in
FMC cell-based models (Table 2; CAT-MT from the European Collection of Authenticated
Cell Culture, England; FMCp and FMCm kindly provided by Prof. Nobuo Sasaki and
Prof. Takayuki Nakagawa, University of Tokyo, Japan). The reported results represent an
initial step towards the development of more effective therapeutic options for cats with



Vet. Sci. 2021, 8, 164 6 of 20

mammary carcinoma and interestingly, all assays reveal promising results and a conserved
mechanism of action [10,11], by comparison to a human HER2-overexpressing cell line
(SKBR-3; American Type Culture Collection [86]).
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results for the treatment of cats with mammary tumors.

Table 2. Classification and molecular characterization of FMC cell lines [10,11].

Cell Line Tumor Classification ER (%) PR (%) Ki-67 (%) Ck5/6 (%) HER2

CAT-M Mammary
Adenocarcinoma 10 80 50.2 <1 2+

FMCp Primary breast tumor 60 Negative 57.4 <1 0
FMCm Metastatic lymph node 2 Negative 68.5 <1 1+

ER—Estrogen Receptor; PR—Progesterone Receptor; Ck5/6 and HER2 [17]; Ki-67 index [52].

More in vitro studies are needed, however, to fully characterize the effect of the antitu-
mor compounds tested, as well as develop proper xenograft models for preclinical studies.

Furthermore, despite the real value of FMC xenograft models, some limitations could
be pointed out, such as the need of induced tumors, absence of a competent immune system,
or comparable pharmacokinetic and pharmacodynamics responses, when compared to
other mammals [87]. Thus, the use of the cat as an in vivo oncology model for HBC reveal
several advantages to take into consideration, representing epidemiologic, clinical and
morphologic similarities with its human counterpart [88].

3.1. Monoclonal Antibodies (mAbs) and Antibody-Drug Conjugates (ADC) Are a Promising Tool
for the Treatment of Feline Mammary Carcinoma

The HER2 protein is a common target for molecular therapy in HBC patients, using
mAbs that interact by shape complementarity [18], thus preventing HER2 dimerization
and activation of its downstream pathways [89]. These compounds are a good alternative
to Tyrosine Kinase inhibitors (TKi), which are toxic for the majority of tissues, showing
severe side effects [90]. Recent studies have revealed a 93% similarity between human and
feline HER2 [6,14] (homo sapiens, UniProt P04626; and felis catus, UniProt H9BB15), which
allowed for testing of humanized-mAbs against FMC (Table 3).
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Table 3. Monoclonal antibodies (pertuzumab and trastuzumab) and antibody-drug conjugate (T-DM1) compound induce cell apoptosis, with promising antiproliferative effects in FMC
in vitro models [11].

mAb Target Mechanism of Action
Breast Cancer

Clinical
Application

References
FMC In Vitro System

Cell Line HER2 Status Concentration (µg/mL) Cytotoxicity
(%)

Pertuzumab HER2
ECD II

Prevents HER2
heterodimerization;

Inhibits EGFR downstream
pathways;

Stimulates ADCC and
apoptosis

HER2-
overexpressing
and metastatic

tumors

Agus et al., 2002 [91]; Scheuer
et al., 2009 [92]; Baselga et al.,
2010 [93]; Metzger-Filho et al.,
2013 [94]; Richard et al., 2016
[22]; and Yamashita-Kashima

et al., 2017 [89]

CAT-M 2+ 10,000
(EC50 = 2837.92 µg/mL ± 1.50) 60.2

FMCp 0 10,000
(EC50 = 928.97 µg/mL ± 1.11) 52.1

FMCm 1+ 10,000
(EC50 = 1205.04 µg/mL ± 1.23) 61.8

Trastuzumab HER2
ECD IV

Prevents HER2
homodimerization;

Block receptor internalization
and degradation;

Prevents HER2 shedding;
Induces ADCC and apoptosis

HER2-
overexpressing

invasive,
metastatic and

early-stage
tumors

Klapper et al., 2000 [95]; Cho
et al., 2003 [18]; J.

Piccart-Gebhart, 2005 [96];
Nahta et al., 2007 [97]; D.

Slamon, 2011 [98]; Menyhart
et al., 2015 [99]; Richard et al.,
2016 [22]; and Kast et al., 2017

[100]

CAT-M 2+ 10,000
(EC50 = 3047.89 µg/mL ± 1.43) 92.6

FMCp 0 10,000
(EC50 = 3243.40 µg/mL ± 2.29) 60.1

FMCm 1+ 10,000
(EC50 = 528.45 µg/mL ± 1.14) 82.7

T-DM1
HER2

ECD II;
CKAP5

Prevents HER2
homodimerization;

Inhibits microtubule assembly;
Induces cell apoptosis

HER2-positive,
advanced, early

stage and
metastatic

tumors

Phillips et al., 2008 [19];
Lambert and Chari, 2014 [101];
Von Minckwitz et al., 2019 [24];
Lacasse et al., 2020 [102]; and

Liu et al., 2020 [103]

CAT-M 2+ 1000
(EC50 = 19.63 µg/mL ± 1.22) 94.0

FMCp 0 1000
(EC50 = 88.72 µg/mL ± 1.29) 74.2

FMCm 1+ 1000
(EC50 = 52.84 µg/mL ± 1.50) 53.8
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In the assays testing both mAbs (pertuzumab and trastuzumab), a dose-dependent
antiproliferative effect, as well as a conserved cell death mechanism by apoptosis, were
demonstrated, even though feline cell lines present lower HER2 expression levels when
compared to the human SkBR-3 cell line [11].

In the pertuzumab assay, the addition of heregulin to the cell medium was sug-
gested, which would allow for mAb-HER2 heterodimerization [104,105], thus improving
cytotoxicity results. Furthermore, an antiproliferative effect was described in the FMCp
HER2-negative cell line [11,53,55]. In fact, pertuzumab has already been suggested for
the treatment of triple-negative HBC expressing HER2-103, a recently described protein
encoded by a circular form of the HER2 gene that is associated with worse overall prog-
nosis for these patients [106]. A pertuzumab-HER3 interaction has also been reported in
human lung cancer [107]. This suggests there may be a real benefit of pertuzumab in the
treatment of HER2-negative FMC. However, more studies are needed. In parallel, testing
of trastuzumab on the same FMCp cell line also revealed a promising antiproliferative
effect. Despite the lower cytotoxic response, due to a lack of HER2 expression, this result
proposes that cats with HER2-negative tumors may benefit from the use of trastuzumab,
as suggested for human triple-negative breast cancer that expresses an activated form of
HER2 (HER2Y877) [108].

Other compounds used for the treatment of breast cancer are the ADCs, e.g., trastuzum
ab-emtansine (T-DM1). This ADC allows a targeted delivery of the cytotoxic agent, DM-1 a
microtubule inhibitor, to HER2-overexpressing tumor cells, decreasing its side effects [101].
Testing of T-DM1 in FMC cell-based models resulted in promising cytotoxic effects, leading
to a conserved cell death mechanism by apoptosis. Interestingly, for the HER2-negative
FMCp cell line a high cytotoxic effect was observed [11], which could be explained by the
interaction of DM1 with the cytoskeleton-associated protein 5 (CKAP5), a microtubule
assembly regulator, as described in human HER2-negative cells [109]. More studies are
needed to evaluate the expression status of the CKAP5 protein in triple-negative FMC
and be in a better position to propose T-DM1 for the treatment of feline HER2-negative
breast cancer.

Despite the good results of these cytotoxicity assays, a 3D cell culture system is needed
for correct prediction of receptor-mAb conformational interactions [110,111], and proper
felinized mAbs should be designed.

3.2. Tyrosine Kinase Inhibitors (TKi) Are Valuable in Feline Mammary Carcinoma Therapy

TKis are small chemical compounds that prevent protein phosphorylation, by inter-
acting with the cytoplasmic catalytic kinase domain [21], for example, of EGFR family
members. These compounds block HER2 signaling for cell proliferation via the RAS-ERK
pathway [112] and for cell death inhibition via the PI3K-AKT-mTOR pathway [113]. Despite
their side effects, they are a suitable alternative for patients that show resistance to anti-
HER2 mAbs, which in women with HER2-positive breast cancer is around 50% [21,114].
TKis (lapatinb and neratinib) have been tested against FMC in in vitro models, with promis-
ing cytotoxic effects obtained (Table 4).
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Table 4. Tyrosine kinase inhibitors (lapatinib and neratinb) presented valuable cytotoxic effects in the FMC in vitro models, suggesting a conserved mechanism of action [10].

TKi Target Mechanism of Action Breast Cancer Clinical
Application

References
FMC In Vitro System

Cell Line HER2
Status Concentration (nM) Cytotoxicity (%)

Lapatinib
HER1
and

HER2

Reversible;
Prevents EGFR family

members phosphorylation

Solid, advanced and
metastatic HER2-positive

tumors;
Valuable in combined

protocols

Frenel et al., 2009 [115];
Opdam et al., 2012 [116]; Shi
et al., 2016 [117]; and Stanley

et al., 2017 [118]

CAT-M 2+ 50,000
(IC50 = 3930 nM ± 49) 100

FMCp 0 50,000
(IC50 = 4870 nM ± 100) 100

FMCm 1+ 100 × 103

(IC50 = 17,470 nM ± 100)
100

Neratinib

HER1;
HER2
and

HER4

Irreversible;
Prevents EGFR family

members phosphorylation;
Surpass lapatinib resistance

Adjuvant treatment of
HER2-positive early-stage

and metastatic breast cancer

Tiwari et al., 2015 [119]; Sun
et al., 2015 [40]; Cocco et al.,

2018 [23]; and Food and Drug
Administration (FDA)

CAT-M 2+ 25 33.5

FMCp 0 250 79.4

FMCm 1+ 1000 31.4
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The lapatinib exposure assay demonstrated a dose-dependent antiproliferative effect
with a conserved mechanism of action, by reducing HER1 (Y1173) and HER2 (Y1221+Y1222)
phosphorylation patterns, and their downstream pathways, AKT (S473) and ERK
1/2 (T202/Y204+T185/Y187), involved in cell cycle progression and apoptosis [10,120,121].
Interestingly, like in the feline HER2-positive cell lines tested (CAT-M and FMCm), the
feline HER2-negative cell line (FMCp) presented a 100% cytotoxic response [10]. These
results suggest an interaction between lapatinib and HER1, which is an EGFR family mem-
ber usually upregulated in women with triple-negative breast tumors [122,123]. Moreover,
lapatinib is described as activating NF-kB in triple-negative HBC, inducing cell apop-
tosis [124,125], a different pathway that should be investigated in cats. This study also
showed that lapatinib induces the accumulation of membrane HER2 [10,125], suggesting
protein stabilization by the inhibition of HER2 phosphorylation and prevention of receptor
ubiquitination [126], as described for human cells.

In parallel, neratinib assay revealed similar antiproliferative effects in all feline cell
lines tested, including the FMCp HER2-negative cell line [10], which may suggest an
interaction with other EGFR family members, such as HER1 [122,123], or HER4 [127,128].
In contrast, a dose-dependent effect was not observed in the FMCm metastatic cell line [10],
suggesting a resistance pattern, as has been documented in humans, e.g., because of
increased activity of the cytochrome P4503A4 [129], or overexpression of NmU, a protein
involved in breast cancer progression and metastasis [130].

At this point, the need for an in vivo system arises to characterize the cats’ systemic
response to these compounds.

3.3. Combination Therapy Shows Synergistic Antiproliferative Effects in Feline Mammary
Carcinoma Cell Lines

Acquired resistance to therapy is a well-documented phenomena in women, and in
order to surpass this and improve patients’ clinical outcome, combined therapies have
become a valuable tool [131]. Different combinations are found in the literature, e.g., of
different mAbs [22,131,132], of mAbs with TKis [133–135], and of TKis with the mTOR
inhibitor (mTORi) rapamycin [136,137]. In this way, we are able to block different cell
proliferation and survival signaling pathways [6,32,40,54] using lower drug concentrations
(Table 5), and this is a strategy that could become important in cats.

It is known that pertuzumab is complementary to trastuzumab in HBC mAb combined
therapy [92], presenting a synergistic antiproliferative effect, and this same effect has been
observed in FMC cell lines [11].

Combination therapy with the mAb pertuzumab and the TKi, lapatinib, also shows
a synergistic effect in FMC cell-based models. This effect is particularly noticeable in the
FMCp cell line [11], as the combined drugs are able to target different EGFR family mem-
bers [106]. This combination was effective in the metastatic FMCm cell line as well [11], a
promising result, as it has already been approved in humans for metastatic tumors [115,116].
Trastuzumab also acts synergistically with lapatinib revealing an additive antiproliferative
effect in FMC cell lines [11]. In fact, this protocol has already proved effective against HBC,
particularly for HER2-positive and metastatic therapy, improving patients DFS [126,138].

In conjugation protocols between TKis and rapamycin it is important to characterize
mTORi effects. The mTOR pathway [139,140] is the target of rapamycin in adjuvant
protocols. This compound presents immunosuppressant anticancer properties, but with
no effective cytotoxic response when used as a single agent [10], as described for human
cancers [54]. Interestingly, in the FMCp HER2-negative cell line, good results were obtained,
which could be explained by mTOR overexpression, something that has been reported in
cats with HER2-negative mammary carcinomas [55] and also breast cancer patients [141].
Its conjugation with lapatinib, however, reveals a synergistic antiproliferative response in
all feline cell lines [10]. Thus, it may be described as a valuable tool in combined protocols,
namely for metastatic breast cancer therapy [10,115,116]. In parallel, conjugation with
neratinib also reveals synergistic antiproliferative effects, particularly noticeable in the
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FMCm and FMCp cell lines [10], being this protocol recommended for human metastatic
HER2-positive and triple-negative breast cancer therapy [142,143].

Table 5. Combined protocols present synergistic antiproliferative effects in FMC cell-based models by blocking different
HER2 pathways [10,11].

Combined Protocol Blocked Pathways
FMC In Vitro Assay

Cell Line HER2 Status Increase in Cell
Cytotoxicity (%) p-Value

mAbs combination

Pertuzumab plus
Trastuzumab

HER2 ECD II and
HER2 ECD IV

CAT-M 2+ 26.4 0.0018
FMCp 0 11.7 0.0184
FMCm 1+ 29.5 <0.001

mAb plus TKi

Pertuzumab plus
Lapatinib

HER2 ECD II;
HER1 and HER2 TK domain

CAT-M 2+ 69.4 <0.001
FMCp 0 47.5 <0.001
FMCm 1+ 41.5 <0.001

Trastuzumab plus
Lapatinib

HER2 ECD IV;
HER1 and HER2 TK domain

CAT-M 2+ 71.9 <0.001
FMCp 0 62.0 <0.001
FMCm 1+ 27.2 0.0017

TKi plus mTORi

Lapatinib plus
Rapamycin

HER1 and HER2 TK domain
and

mTOR complex

CAT-M 2+ 51.9 0.0360
FMCp 0 47.5 <0.001
FMCm 1+ 85.6 <0.001

Neratinib plus
Rapamycin

HER1, HER2 and HER4 TK
domain and

mTOR complex

CAT-M 2+ 47.4 0.0044
FMCp 0 44.1 0.0034
FMCm 1+ 66.7 <0.001

3.4. Novel In Vitro Approaches to Feline Mammary Carcinoma Therapy

Current knowledge on HBC reveals different tumor subtypes, e.g., the triple-negative,
which has no directed therapy [55], as well as development of therapeutic resistance,
which requires different strategies to improve patients clinical outcome. Highlighting the
importance of the cat as a model, and since few studies exist [144,145], the antiproliferative
effects of new compounds, e.g., HDACi [146] and MTi [147], were recently tested in
FMC in vitro models (CAT-M and FMCp), revealing themselves as promising agents for
molecular targeted therapy (Table 6).
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Table 6. Histone deacetylase inhibitors and microtubule inhibitors show promising cytotoxic effects in FMC cell-based models, suggesting a conserved mechanism of action [9].

Class of the Compound Mechanism of Action References Agent FDA Approval
FMC In Vitro Assays

Cell Line IC50 Value

HDACi
(µM)

Inhibits histone
deacetylases leading to

chromatin relaxation and
uncontrolled gene

expression;
Induces cell cytotoxicity
and death by apoptosis

Xu et al., 2007 [148];
Chun, 2015 [149]; and

FDA

CI-994 Experimental CAT-M 16.470 ± 1.904
FMCp 9.616 ± 2.150

Panobinostat Yes; 2015
CAT-M 0.042 ± 0.067
FMCp ND #

SAHA Yes; 2006
CAT-M 4.416 ± 0.453
FMCp 2.571 ± 0.578

SBHA Experimental CAT-M 45.230 ± 4.692
FMCp 33.830 ± 6.454

Scriptaid ND
CAT-M 3.392 ± 0.403
FMCp 3.090 ± 0.691

Trichostatin A Experimental CAT-M 0.263 ± 0.062
FMCp ND #

MTi
(nM)

Inhibits microtubule
polymerization, leading

to cytoskeleton
disruption;

Induces cell cycle arrest
and apoptosis

Risinger et al., 2015 [27];
Zang et al., 2018 [29];
Steinmetz and Prota,
2018 [28]; and FDA

Colchicine
(Destabilizing agent) Yes; 2009

CAT-M 1.472 ± 0.484
FMCp 5.876 ± 0.968

Nocodazol
(Destabilizing agent)

Experimental CAT-M 12.270 ± 3.455
FMCp 30.840 ± 8.499

Vinblastine
(Destabilizing agent) Yes; 2011

CAT-M 0.570 ± 1.080
FMCp 6.563 ± 1.514

Paclitaxel
(Stabilizing agent) Yes; 2002

CAT-M 1.939 ± 1.134
FMCp 8.646 ± 2.337

# ND—Not determined.
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Histone deacetylases are enzymes that control gene expression, and their dysregula-
tion is associated with tumor development [150,151]. Thus, in the past few years, they have
been investigated as potential antitumor agents. In parallel, microtubules are tubulin poly-
mers essentials for cell growth, division and intracellular trafficking [28], and are known to
be valuable targets for tumor therapy in women. Interestingly, several HDACis (CI-994,
panabinostat, SAHA, SBHA, scriptaid and trichostatin A) and MTis (colchicine, nocodazole,
paclitaxel and vinblastine) that have been tested in FMC cell lines show a dose-dependent
antiproliferative effect and conserved cell death mechanism, by apoptosis. Furthermore,
using HDACi it was possible to demonstrate an accumulation of the acetylated form of the
histone H3 (Lys9/Lys14), as described in humans [9,152].

4. Conclusions

The cat is considered a good oncology model [4], namely for HER2-positive and triple-
negative breast cancers [17,55], although more efforts are needed to better understand the
development mechanism and biology of FMC.

FMC tends to be diagnosed belatedly, presenting ulcerated masses, or metastasis [31],
and the therapeutic alternatives available are scarce, being restricted to mastectomy [80]
and adjuvant therapeutic protocols, with, however, limited success [4,31,50]. With this
in mind, research groups are now directing their attention to the in vitro study of drugs
already approved for HBC therapy on FMC cell-based models, demonstrating promis-
ing antiproliferative effects of several compounds. Furthermore, through the analysis of
mammary carcinoma clinical samples, it has been possible to show that the cat does not
present any known mutations thought to lead to resistance to therapy [10,11]. Moreover,
similarities between the feline and human tumor micro- and serological environments
have also been revealed, suggesting equivalent tumor diagnostic and prognostic biomark-
ers, as well as the possible use of adjuvant treatments recommended in breast cancer
therapeutic protocols [64,66,153,154]. This introduces a new research line, e.g., the use of
anti-leptin [153], anti-PD1 [154], or anti-VEGF [155] molecules.

Forthcoming perspectives include a deeper knowledge of FMC, defining proper
diagnostic and prognostic biomarkers that can be used in clinical practice, and improve-
ment of therapeutic options for cats. Additionally, we point out that, in the near future,
a fast diagnostic kit to identify serum protein expression levels in cats with mammary
carcinomas may become available, e.g., in the HER2-positive subtype, one of the most
aggressive tumors [17], which would allow prediction of prognosis and inform the choice
of therapeutic protocol.
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