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Abstract

Keratinases are proteolytic enzymes with a particular ability to cleave peptide bonds in keratin, and in other proteins. Due to
their broad-spectrum of activity, keratinases are considered viable substitutes for chemical and thermal treatments of protein-
rich industrial by-products. Among these protein residues, special attention has been given to keratinous materials (feathers,
hair, horns, etc.), which disposal through harsh conditions methods, such as acid/alkaline hydrolysis or incineration, is not
considered ecologically safe. Microbial keratinolytic enzymes allow for keratin degradation under mild conditions, result-
ing in keratin hydrolysates containing undamaged amino acids and peptides. In this review article, we offer perspectives
on the relevance of these unique biocatalysts and their revolutionary ascent in industries that generate keratin-rich wastes.
Additionally, we share insights for applications of keratinases and protein hydrolysates in agriculture, animal feed, cosmet-
ics, phamaceuticals, detergent additives, leather processing, and others. Due to the scientific importance of keratinases and
their potential use in green technologies, searching for bacterial and fungal species that efficiently produce these enzymes
may contribute to the sustainability of industries.
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Introduction The specific recalcitrance of keratin is a factor that makes
difficult its management and recycling. Conventional meth-
ods, such as incineration, and alkaline or acid hydrolysis,

used for disposal of this biomass, are high cost and not con-

The global growth of meat consumption over the years
has contributed to a considerable increase of meat indus-

try waste, including viscera, skins, meat trimmings, bones,
blood and epidermal attachments (feathers, hair, horns,
teeth, nails and claws) (Meruane and Rojas 2012). The poul-
try industries are particularly problematic due to the amount
of keratinous waste they create. Continuous accumulation of
feathers has resulted in a global problem (Srivastava et al.
2020), that needs to be addressed.
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sidered ecologically safe. This leads the meat industry to
seek for alternative sustainable technologies to treat these
residues (Callegaro et al. 2019). From a biotechnological
perspective there is potential to tranform them into added-
value products, such as biofertilizers. Thus, microbial kerati-
nases have emerged as an alternative to the treatment of
keratin-rich wastes.

This review highlights biotechnological approaches for
the use of microbial keratinolytic enzymes as a way to con-
tribute to the sustainable treatment of keratinous wastes.
Research works needed to expand the range of promising
applications, considering the environmental and economic
importance of this subject are discussed.
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Keratin structure and its production
in the world

Keratins are among the most important structural proteins
found in vertebrates, constituting the intermediate cytoskeletal
filaments of eukaryotic cells and the epidermis and epidermal
appendages (e.g. feathers, horns, claws, nails, wool and hair)
(McLellan et al. 2018; Qiu et al. 2020). Due to the amount of
waste generated annually, particular attention has been given
to feather keratin, with several studies reporting attempts to
recycle and reuse this residue for different applications.

Feathers are the most common by-product of the poultry
industry (Tesfaye et al. 2017), with keratin accounting for
about 90% of their weight (Latshaw et al. 1994). They can
constitute about 5-10% (w/w) of the total chicken weight, and
can provide more than 100 g of feathers per broiler chicken
(Tesfaye et al. 2018; Jagadeesan et al. 2020). The global pro-
duction of poultry meat was expected to exceed 100 million
tonnes in 2020 (Food and Agriculture Organization of the
United Nations (FAO); United States Department of Agri-
culture (USDA)), with highlights to USA, China and Brazil,
which are the global leading producers in this sector (Calle-
garo et al. 2019). In this scenario, a large amount of feathers
keratin can be expected annually.

The specific recalcitrance of keratin is a factor that makes
difficult its management. Keratins are proteins that can be clas-
sified into different groups according to their physicochemi-
cal properties, molecular structure and the resulting ephitelial
cells. Considering the secondary structure, they can be classi-
fied into a-keratin and fB-keratin. While a-keratin is the main
component of wool, hair, hooves, nails, horns and stratum cor-
neum, p-keratin is present in feathers, claws and beaks of birds,
reptilian claws and scales (Feroz et al. 2020).

The high cysteine content in the primary sequence of kerat-
ins differentiates them from other fibrous proteins, such as col-
lagen and elastin. Disulfide bonds between cysteine residues
occuring within and between keratin polypeptides, and hydro-
gen bonds and hydrophobic interactions, contribute to their
compact conformation and high molecular stability (Wang
et al. 2016; Sinkiewicz et al. 2018; Qiu et al. 2020). There-
fore, biodegradation by common proteolytic enzymes, such as
pepsin, trypsin and papain is hampered, being keratinases the
only class of enzymes capable of degrading keratins.

Keratin degradation

The accumulation of keratin-rich waste in landfills has led
to environmental concerns. The uncontrolled anaerobic
degradation of these materials tends to release ammonia
and hydrogen sulfide (Callegaro et al. 2019), which create a
threat to nature and human health.

@ Springer

Commonly keratin residues are improperly disposed,
through harsh methods such as incineration, acid and alka-
line hydrolysis, to degrade keratinous residues, or submitted
to high pressure or temperature treatments and used in the
production of low quality animal feed (Tesfaye et al. 2017;
Sharma and Devi 2018). However, in addition to high energy
consumption (thermal treatments), chemical treatments (e.g.
acid hydrolysis) can damage some amino acids, such as tryp-
tophan (Sinkiewicz et al. 2017; Rajabinejad et al. 2018),
and create additional pollution problems by using acid and
alkaline solutions (Sharma and Devi 2018).

With the research studies in microbial keratinases increas-
ing in terms of identification, production, characterization
and application (Su et al. 2020a), these enzymes represent
an alternative to the use of harsh methods in the treatment
of keratin residues. The enzymatic degradation of these pro-
teins proved to have an environmentally sustainable con-
tribution to a positive economic development (Nnolim and
Nwodo 2021). This can be achieved through microbial culti-
vation in keratin residues or direct hydrolysis using cell free
enzymes. Both approaches dispense with the use of aggres-
sive chemical agents (acids and alkalis) and high energy
consumption (Holkar et al. 2018; Silva, 2018a).

Keratinases belong to the peptidases group (Cilin et al.
2017)—hydrolytic enzymes that cleave peptide bonds in pro-
teins and peptides (Silva et al. 2017)—being responsible for
degradation of keratin, and commonly other proteins. Most
of the reported keratinases are alkaline serine or metallo
enzymes, with a few reports describing aspartyl keratinases
from yeasts (Negi et al. 1984; Lin et al. 1993). In general,
the maximum keratinolytic activity range is between pH 7
and 12.5, and up to 80 °C (Qiu et al. 2020).

To achieve high levels of enzymatic degradation of kera-
tin, keratinases, other auxiliary enzymes (other peptidases
and disulfide reductases) and/or reducing agents, such as
sulfite ions (sulfite, bisulfite and disulfide), are required.
Since disulfide bonds are essential to keratin folding,
breaking these bonds is a crucial step to facilitate keratinase
access to the substrate. The synergy between sulfitolysis and
proteolysis (Lange et al. 2016) favor the complete degrada-
tion of keratin complex structure (Qiu et al. 2020). In this
process, the crystalline and cross-linked structures of keratin
are broken resulting in a hydrolysate mainly composed of
soluble oligopeptides and amino acids (Holkar et al. 2018).

Keratinase production

Keratinolytic microorganisms have the ability to use kerat-
ins as sources of carbon, nitrogen, sulfur and energy for
their growth (Callegaro et al. 2019). Prospecting for new
keratinases, many studies have used keratinous residues
as substrate in fermentative processes, which offer the
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double benefit of, (i) low-cost production of extracellular
keratinases, which can be tested for different applications,
such as leather treatment, detergent formulations, among
others; and (ii) economically viable biomass degradation
products, such as biofertilizers and animal feed additives
from keratin hydrolysates (Nnolim et al. 2020).

So far, challenges in the enzyme yield of scaled-up con-
ventional fermentation processes have led to studies focus-
ing on ways to improve enzyme production (Fang et al.
2019). The heterologous expression of keratinase genes,
either by extraction from microbial cell or metagenomic
approaches, is an alternative frequently used. Metagenome
techniques allow the construction of a gene library directly
from environmental samples. This allows to bypass the
barrier of microbial cultivation to extract the gene of inter-
est and open opportunities to explore new keratinases (Su
et al. 2020a).

To overexpress keratinase and reduce the production
time and cost, different strains, including Escherichia coli
(Jaouadi et al. 2015; Fang et al. 2019; Zhang et al. 2019;
Elhoul et al. 2021), Bacillus subtilis (Cao et al. 2019; Tian
et al. 2019; Gong et al. 2020), and the yeast Pichia pasto-
ris (Li et al. 2007), have been used as heterologous expres-
sion systems (Elhoul et al. 2021). Many keratinase genes,
especially from Bacillus species, which are the most studied
keratinase producers, were successfully expressed. Examples
of native and recombinant keratinases and their application
tests, as well as some different keratin-decomposing micro-
organisms are presented in the Tables 1 and 2.

In addition, recent developments in enzyme technology
have shown that several properties of enzymes can be tar-
geted simultaneously through various genetic engineering
approaches. Methods, such as directed evolution, DNA
shuffling, site-directed mutagenesis, saturation mutagenesis,
fusion and truncation, have been used to improve enzyme
stability and catalytic performance (Sharma et al. 2019).

Considering the advances in enzyme technology, in the
past two decades, an increase in reports mentioning kerati-
nases have been observed. According to the Web of Science
Core Collection, from the reports in the topic “keratinases
or keratinolytic enzymes” in the timespan 2000-2020, more
than 70% of the studies were reported in the last ten years
(2010-2020). This shows the rising interest in the topic and
in technologies that contribute to the development of knowl-
edge regarding these enzymes.

Following these studies, numerous patents and com-
mercial enzymes used to degrade keratin, such as Versa-
zyme® and Valkerase® (BioResource International, Inc),
CIBENZA® DP100 (Novus International, Inc), NATE-0853
and FEED-0001 (Creative Enzymes®), PURE100 KERATI-
NASE (PROTEOS Biotech), Esperase® and Savinase®
(Novozymes A/S), among others, have been described
(Lange et al. 2016; Nnolim and Nwodo 2021).

Biotechnological applications

In addition to the use of keratinolytic enzymes to solve
the environmental problem of keratin disposal, many
other possible applications have been described for these
enzymes (Table 1) and the protein hydrolysates resulting
from their hydrolytic processes (Table 2).

Keratinases for leather treatment
and as a detergent additive

Environmental pollution caused by the large number of
contaminants and toxic products in the wastewaters during
the traditional leather processing, has become a concern.
Keratinases have been recognized as effective enzymes to
address this problem, being suitable for the hair removal
process and presenting an efficient alternative to the harm-
ful chemicals frequently used (Akram et al. 2020).

In the leather making process, excessive collagen
hydrolysis must be avoided to maintain the quality of the
leather, including softness, elasticity and fullness (Su
et al. 2020a). Therefore, an enzyme defined for use as a
depilatory agent must have high hair removal activity but
low or no collagenolytic and elastinolytic activity. Sev-
eral reports have successfully exemplified the application
of keratinases to leather processing. In the research by
Tian et al. (2019), a keratinase from Bacillus sp. LCB12
was expressed in Bacillus subtilis SCK6 and tested as an
alternative to sulfide in the process of hair removal on goat
skin. Moreover, enzymatic and chemical (Na,S and CaO)
dehairing processes for cow leather were compared in a
study by Akhter et al. (2020), with the best results in hair
removal observed using keratinase from Bacillus cereus.
These are some examples of research works developed in
the application of keratinases for hair removal, yet many
additional studies can be found in the literature (Table 1).

There are also resports on the use of keratinases for
toxicity reduction of leather industry wastewater (Jaouadi
et al. 2015; Kalaikumari et al. 2019). Keratinases and
keratinolytic microorganisms can be used for wastewater
treatment (Zahara et al. 2020) and to clear obstructions in
sewage systems (Brandelli et al. 2009).

In the detergent industry, there is a constant search for
new enzymes that improve cleanliness, tissue care and
antimicrobial properties. Suitable detergent proteases must
meet certain requirements, such as their stain removal
efficiency, activity and stability at alkaline pH, and their
tolerance to the surfactants, and oxidizing and bleaching
agents present in the detergents. Research efforts have
been directed towards the discovery and engineering of

@ Springer
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= g proteolytic enzymes that comply with these biochemical
— o £ 8 .
> S g = properties (Paul et al. 2016).
~~ = S . . . . .
3 ) P 5.5 Since keratinases generally have broad specificity
g S = g § & g for soluble and insoluble proteins and are active alka-
: = Q o . . .
5 S = ;) g = 5 3 line enzymes, they are attractive detergent agents. This
= ol 2 é B 33 explains why in the past year, the presence of these
9) 5} [= = o . .
8 235 S & %ﬁ E £ enzymes in commercial detergents have been tested and
& <m = Z N % 5 reported by several researchers (Akram et al. 2020; Duf-
" R, - = =5 feck et al. 2020a, b; Emon et al. 2020; Nnolim et al. 2020).
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g |B< = 3 gefz & S g gg Keratinases for cosmetic, pharmaceutical
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E 2589 €058 S 85 2 g and biomedical applications
= | 2Ec2%E285: 5E SES | 2=
2 a 83 .2 < 5 = '3 502 R4 g k= =
° g A= E Qo= oS OE g O =] = .
A - © A = g “ In cosmetic applications, keratinase have been tested to
E® PP
oD develop cream formulations for removal of hair and treat-
£s b et . . .
" —~~ % 8 ment of skin or hair. It was described that keratinase from
2 Q= s 2 .
g VAV T £ Bacillus subtilis DP1 exhibited compatibility with the
= =] . . . .
% B = E cream formulation, resulting in successful hair removal
T s . .
3 e > — from rabbit ears (Sanghvi et al. 2016). In another cos-
= — = 2o X . . Ly
S ST Zo metic assay, keratinase from Bacillus subtilis AMR was
= SR =< y
SC evaluated for the production of a keratin hydrolysate to be
= g g i d in a shampoo formulation for hair hydration
g g 2 1incorporate p y
g § — (Villa et al. 2013). The potential of keratinases for treat-
S o é ing acne, corn and for callus removal was also suggested
= o} . .
B o = Vidmar and Vodovnik 2018).
= . £ .
g .2 5 Q In pharmaceutical proposals, keratinases have been
IR = . . .
S & 4 g tested for degradation of keratinous material for improve-
g o g 9 g p
LA k=l ment of drug penetration and possibly for application in
gp p y pPp
== o .
§ S the treatment of nail disease (Mohorcic et al. 2007). In
° %E experiments by Rai et al. (2020) using silver nanoparticles
£ 22 (AgNPs) immobilized with pB-keratinase, it was observed
s EED that B-keratinase may enhance the bactericidal activity of
2 g o y
G
£ § § S AgNPs.
E I3 é 2 Proteolytic enzymes, especially those with a broad speci-
§ K = & ficity spectrum, have been tested for biofilm removal. The
= ' ' g E antibiofilm effect and the biofilm dispersal activity have been
= @ .
3 5 2 = > = reported for Stenotrophomonas maltophilia Kb2 keratinase
2 ) £ g2 i _|z3 p P p
23 2 o E 2723 z g E S é % 5 against pathogenic bacteria Staphylococcus aureus MTCC-
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= g b% % A A S8 8 g a0 S 96 and Escherichia coli MTCC-739 (Bhange et al. 2015).
en 2 = = - O O .5 &) 7] . . . .
23| 2z £ o S 2= < E 2 s ; Keratinases can also be applied for extraction of keratin
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Table 2 (continued)

References

Potential applications

Protein hydrolysate production system  Protein source

Microorganism

Zhou et al. (2020)

Animal feed supplementation

Feather meal

Crude enzyme

S

Bacillus amyloliquefaciens 3-2

Forgcacs et al. (2011)

Biogas production (methane)

Chicken feathers

mF

Recombinant Bacillus megaterium
Bacillus sp. C4 (2008)

Patinvoh et al. (2016)
Balint et al. (2005)

Biogas production (methane)

‘White chicken feathers

Feather meal

SmF
N

Biogas production (hydrogen)

mF

Bacillus licheniformis KK1

Biotechnological applications of protein
hydrolysate

Protein hydrolysates are complex mixtures of peptides and
amino acids resulting from the hydrolysis of a protein rich
substrate, and which can then be used for example, as an
additive to animal feed, in biogas production and as biofer-
tilizer (Nafady et al. 2018). A resume of different applica-
tions for protein hydrolysates produced by keratinolytic
enzymes are presented in Table 2.

Animal feed

Keratinases can be used as additives in animal feed for
protein degradation, helping improve the digestibility and
contributing to increase animal weight.

The effects of corn—-soybean diet supplementation with
keratinase at 0.05% (w/w) on weaned piglets, were stud-
ied (Wang et al. 2011). The experiments were carried out
using Cibenza DP100™ keratinase (Novus International,
Shanghai, China) from Bacillus licheniformis PWD-1, an
enzyme with clear afinity for the hydrolysis of soybean
protein. While in keratinase absence only 11.81% of gly-
cinin and 24.20% of p-conglycinin were hydrolyzed, in the
presence of keratinase those values increased to 94.74%
and 88.89%, respectively. The hydrolysates resulting
from keratinase addition to the animal feed contributed
to improve the intestinal morphology and ecology of the
piglets. The improvements observed included reductions
of E. coli and total aerobic counts, and ammonia nitro-
gen concentration and branched-chain volatile fatty acid
content, in the colon and the crypt depth in jejunum and
ileum. Additionally, increases in Lactobacillus spp. and
total anaerobic counts in the colon, the n-butyric acid in
the cecum and the villus height to crypt depth ratio in the
ileum, were detected. The total tract apparent digestibil-
ity of dry matter, energy, crude protein and phosphorus
were improved, leading to an increase in weight gain and
feed conversion. Also, the incidence of diarrhea, one of
the causes of weaned piglets death was positively reduced
(Wang et al. 2011).

Huang et al. (2018) also demonstrated with pigs that the
supplementation of different diets (rice bran, corn dried
grains and cottonseed, rapeseed, peanut and corn-soy-
bean meals) with Cibenza DP100™ keratinase at 0.05%
(w/w), affected crude protein and most of the analyzed
amino acids to apparent and standardized ileal digest-
ibility (AID and SID, respectively). The highest AID and
SID for most amino acids were observed for corn—soy-
bean and peanut meals whereas rice bran and corn dried

@ Springer
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grains diets presented the lowest values for most amino
acids. Although keratinase supplementation contributed
to improve amino acids AID and SID for the six diets
studied, only in the corn—soybean meal its supplementa-
tion significantly improved the crude protein digestibility
(Huang et al. 2018).

There are also reports of Versazyme keratinase (BioRe-
source International), obtained from Bacillus licheniformis
PWD-1, being used as a feed additive to improve animal
digestibility. Chen et al. (2017) reported benefical effects in
protein digestion by pigs due to addition of Versazyme to
sorghum and corn-based diets, with observed increases in
crude protein AID and villus height to crypt depth ratio in
duodenum. For broiler chickens, Versazyme supplementa-
tion improved feed conversion ratio, breast meat yield and
body weight (Wang et al. 2006). Moreover, feed compo-
nents (e.g. starch) digestibility and intestinal development
of chickens were improved in the presence of the enzyme
(Wang et al. 2008).

Recently, an increase of free amino acids and soluble
peptides content was observed in the feather meal treated
with the compound enzymatic hydrolysis (CEH) from B.
amyloliquefaciens 3-2. The protein solubility and in vitro
digestibility also increased 20.75 and 10.27 times, respec-
tively. These results suggest that CEH can be a promising
approach to improve the nutritional value of feather waste
(Zhou et al. 2020).

Biogas production

Anaerobic digestion is a promising biological process
for renewable energy production from a variety of waste
substrates, such as feathers. The anaerobic degradation of
feathers traditionally occurs at thermophilic or mesophilic
conditions, usually with mixtures of different types of waste
(manure, mixed bone fractions and offal). These materials
are hydrolyzed to amino acids, which are then converted
into organic acids, ammonia, carbon dioxide, hydrogen and
minor amounts of sulphur compounds. Among them, acetic
acid, carbon dioxide and hydrogen are essential for meth-
ane production (by methanogenesis) (Vidmar and Vodovnik
2018).

The biological pre-treatment of feathers with the recom-
binant B. megaterium (carrying keratinase gene from B.
licheniformis), followed by anaerobic digestion using an
inoculum from solid waste digester (Boras Energi and Miljo
AB, Sweden), resulted in a methane production of about 0.4
Nm’® CH,/kg volatile solids (VS) which corresponds to 222%
of the methane yield obtained on feathers without biological
treatment (0.18 Nm?/kg-VS) (Forgcécs et al. 2011). Another
similar study showed that chicken feathers pre-treated by
Bacillus sp. C4 (2008), a bacterium capable of producing

@ Springer

a- and pB-keratinases, were successfully used as substrate
for methane production. In comparison to anaerobic diges-
tion of untreated feathers, an improvement in methane yield
was achieved when using feathers hydrolysate as a substrate
in anaerobic culture with sludge or granules of bacteria,
which resulted in increases of 292% and 105%, respectively
(Patinvoh et al. 2016). Beyond methane production, Balint
et al. (2005) provided evidence that hydrogen can also be
obtained by biological degradation of keratin-rich waste.
The bacterium Bacillus licheniformis KK1 was used to con-
vert feathers into a fermentation broth rich in amino acids
and peptides, with further metabolization by Thermococcus
litoralis. The growth of T. litoralis in the keratin hydrolysate
resulted in the production of biohydrogen, a by-product of
the fermentation (Balint et al. 2005).

Biofertilizer

The global demand for food is a boost for the use of syn-
thetic fertilizers, mainly for the supply of nitrogen (N) in the
soil, the main limiting nutrient for plant growth. As alterna-
tive, plant and animal biomass, such as feathers, are great
sources of nitrogen and could be used as biofertilizers in
agriculture to reduce the excessive use of conventional inor-
ganic fertilizers (Silva 2018b).

Although feathers contain almost 15% (w/w) of N, their
recalcitrance leads to a slow degradation and mineralization
of N in the soil, making it difficult to use them directly as a
fertilizer (Jain et al. 2016). However, hydrolysates obtained
from enzymatic or microbial processing of feathers are rich
in peptides, amino acids, and some minerals (P, K, Ca, Fe,
Mn, Zn, Cu) related to feather composition and can be used
as natural plant fertilizers (Kshetri et al. 2019; Nurdiawati
et al. 2017).

Keratin hydrolysates have the benefit of improving soil
microbial activity (Rai and Mukherjee 2015). The protein
hydrolysates may be mineralized by the soil microbiota,
releasing nitrogen that can be absorbed by the plants (Nur-
diawati et al. 2019). Peptides and amino acids can also be
directly absorbed by plant roots and leaves, being translo-
cated to other plant tissues and acting as growth stimulants.
Tryptophan, is a fundamental amino acid for the synthesis
of indolacetic acid (IAA), a hormone with important plant
growth functions (Kshetri et al. 2019).

In a study by Nafady et al. (2018), the bacterium B.
licheniformis was capable of degrading feathers, from which
L-tryptophan was used to produce IAA. Other amino acids
including valine, isoleucine, proline, tryptophan, alanine,
asparagine, serine and glycine were detected during feather
decomposition.

The production of IAA by Thermoactinomyces sp. was
evaluated by Verma et al. (2016). Even in medium without
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L-tryptophan supplementation, it was possible to produce
the phytohormone IAA solely from the tryptophan present
in the feathers hydrolysate. The feathers hydrolysate was
also tested as a soil biofertilizer through evaluation of Cicer
arietinum seed germination, growth and development. In
comparison to the control experiment, earlier germination
of seeds and higher plant growth were observed in soil sup-
plemented with feather culture lysate.

In submerged feather cultures, Jeong et al. (2010) also
observed that the Gram-negative bacterium Stenotropho-
monas maltophilia R13 was capable of degrading feathers
and produce TAA without L-tryptophan supplementation.
It was observed that the keratin hydrolysates stimulated S.
maltophilia R13 growth, exhibiting a zone of clear inhi-
bition to the growth of phytopathogenic fungi, including
Botrytis cinerea KACC40574, Colletotrichum gloeospori-
oides KACC40812, Fusarium oxysporum KACC40038 and
Pythium ultimum KACC41062 (Jeong et al. 2010).

Other reports on the use of keratin hydrolysates as biofer-
tilizers are referred in Table 2.

Other potential applications of keratinases
and keratin hydrolysates

Recent reports have suggested the use of keratinase for
removal of dag from cattle, sheep and goats. Dag are recal-
citrant deposits composed of organic matter, including feces,
hair, soil, urine, feed and straw (Navone and Speight 2020).
Their removal from the animal before slaughter can reduce
microbial meat contamination and leather skin damage. The
use of keratinase can weaken the interactions of dag with
animal hair and contribute to the access of other enzymes
(e.g. cellulase, xylanase, lipase, laccase) to the dag, favoring
its removal by washing (Navone and Speight 2019).

The improvement in vitamin B1, B2 and B12 production
by Saccharomyces cerevisiae ATCC 64712, through culture
medium supplementation with donkey hair hydrolysate, was
reported (Hassan et al. 2020). The hair—keratin hydrolysate
was produced using keratinase from B. thuringiensis M.
strain.

The commercial keratinase Cibenza® IND900 (Novus
International, Inc., St. Charles, MO) was also suggested to
improve the glucocorticoids extraction from chicken feathers
(Gallus gallus domesticus) to be used in analysis of biologi-
cal stress response (Alba et al. 2019). Blecher et al. (2021)
also described the use of this keratinase for the extraction of
reproductive steroid hormones from Temminck’s pangolin
(Smutsia temminckii) scales.

In the textile industry, keratinases can be used for treat-
ment of wool fabrics, improving their hydrophilicity, dye-
ing and shrinkage properties (Gunes et al. 2018; Srivastava

et al. 2020). In another different application, keratinase
was also tested to decolorize melanoidins from molasses
wastewater (Zhang et al. 2019).

Biological activities of feather hydrolysates have also
been described. Kshetri et al. (2020) reported antioxidant
and antityrosinase activities in hydrolysates produced
using a keratinase from a Bacillus sp. strain. Compounds
presenting antityrosinase and antioxidant properties have
wide applicability in the cosmetic, pharmaceutical and
food industries. The hydrolysis of chicken feathers by
Chryseobacterium sp. kp 6 resulted in hydrolysates rich
in peptides with antioxidant and antihypertensive activities
(Fontoura et al. 2014). Feather keratin hydrolysate have
also been described as having the ability to reduce highly
toxic forms of chromium, Cr (IV) to their less toxic form,
Cr (III) (Bhange et al., 2016), and radical-scavenging
activity and ferric reducing power (Laba et al. 2018).

Future perspectives

Microorganisms have been intensively studied and pointed
as valuable sources for production of different enzymes.
The exploitation of microbial diversity has allowed to pro-
cess complex biomass residues, such as lignocellulose,
chitin and keratin, and create added-value products. In
the sustainable technologies horizon, the bioprospecting
of enzymes assumes a prominent position, considering the
microbial species still unexplored. In the scope of kerati-
nase, it is important that new prospective studies continue
to be developed.

The bioprocessing of keratin wastes can contribute to
solve environmental problems related to their disposal,
creating opportunities for the application of keratinases
and protein hydrolysates in agriculture, animal feed, cos-
metics and phamaceuticals, among others. Although sev-
eral studies report the successful production, purification
and application of keratinases on a laboratory scale, it is
still necessary to exploit new strategies to improve pro-
duction yields in order to satisfy the increasing industrial
demands. Therefore, metagenomics, protein engineering
and heterologous gene expression studies are essential to
expand findings on these enzymes and promote their pro-
duction at large scale.
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