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a b s t r a c t

Recent advances in machine vision technologies have provided a multitude of automatic tools for recognition and 
quantitative estimation of grapevine bunch features in 2D images. However, converting them into bunch weight 
(BuW) is still a big challenge. This paper aims to compare the explanatory power of the number of visible berries 
(#vBe) and the bunch area (BuA) in 2D images, in order to predict BuW. A set of 300 bunches from four grapevine 
cultivars were picked at harvest and imaged using a digital RGB camera. Then each bunch was manually assessed 
for several morphological attributes and, from each image, the #vBe was visually assessed while BuA was segmented 
using manual labelling combined with an image processing software. Single and multiple regression analysis between 
BuW and the image-based variables were performed and the obtained regression models were subsequently validated 
with two independent datasets. 
The high goodness of fit obtained for all the linear regression models indicates that either one of the image-
based variables can be used as an accurate proxy of actual bunch weight and that a general model is also suitable.  
The comparison of the explanatory power of the two image-based attributes for predicting bunch weight showed that 
the models based on the predictor #vBe had a slightly lower coefficient of determination (R2) than the models based 
on BuA. The combination of the two image-based explanatory variables in a multiple regression model produced 
predictor models with similar or noticeably higher R2 than those obtained for single-predictor models. However, 
adding a second variable produced a higher and more generalised gain in accuracy for the simple regression models 
based on the predictor #vBe than for the models based on BuA. Our results recommend the use of the models based 
on the two image-based variables, as they were generally more accurate and robust than the single variable models. 
When the gains in accuracy produced by adding a second image-based feature are small, the option of using only a 
single predictor can be chosen; in such a case, our results indicate that BuA would be a more accurate and less cultivar-
dependent option than the #vBe.
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INTRODUCTION 

The benefits that an accurate vineyard yield estimation 
can bring to the entire grape and wine production 
chain are well-known (Clingeleffer et al., 2001; 
Whitty et al., 2017). Among others, the following 
applications of vineyard yield estimation should 
be highlighted: planning cluster thinning needs 
(in order to prevent excessive production and 
consequent poor wine quality); planning and 
organisation of the harvest (labour, equipment, 
others); planning cellar needs (scheduling 
grape intake, allocating tank space, purchasing 
tanks, barrels, oenological products, bottles and 
others); planning purchases and/or grape sales; 
establishment of grape prices and management of 
wine stocks; management of grape and wine market 
and programming investments and development 
of marketing strategies. This multiplicity of 
potential applications and benefits means that 
yield estimation and forecasting play an essential 
role in viticulture and the wine industry.

Of the several methods that can be used to estimate 
vineyard yield, those based on the estimation 
of yield components (e.g., number of berries or 
bunches and bunch weight) are the most widely 
used (Whitty et al., 2017). These methods can 
be used at different phenological stages, from 
bud break to harvest. One of the best examples 
is the method based on the counting of bunches 
in canopy sample segments, combined with 
bunch weight evaluation obtained by destructive 
sampling at onset of veraison (lag phase) 
(Clingeleffer et al., 2001; Martin et al., 2003;  
de la Fuente et al., 2015). Based on historical 
data, bunch weight at harvest can then be obtained 
using a berry growth factor and yield at harvest 
estimated by multiplying the estimated number of 
bunches by the estimated bunch weight at harvest 
(Clingeleffer et al., 2001). However, besides being 
destructive, this practice is manual, and thus very 
labour-intensive, and it can prove inaccurate, as it 
extrapolates for the entire vineyard the assessment 
performed on a small percentage of bunches.

Recent advances in machine vision and machine 
learning technologies have provided a multitude 
of automated tools for recognition and quantitative 
estimation of several yield components, mainly 
bunch and berry traits in 2D images (for a review 
see Seng et al., 2018). The images are taken using 
RGB digital cameras deployed on terrestrial 
vehicles, and they are then processed using machine 
vision technologies in order to differentiate the 
yield components (e.g., shoots, flowers, bunches 
and berries) from other canopy components. 

After an accurate segmentation, multiple traits and 
metrics can automatically be extracted from the 
yield components images, which can then be used 
as proxies for vineyard yield estimation.

Total berry number is also considered a very good 
vineyard yield predictor as it includes variations 
in the number of bunches and in the number of 
berries per bunch (Clingeleffer et al., 2001; 
Whitty et al., 2017). The detection and 
counting of visible grape berries in 2D images 
(#vBe) is nowadays feasible by automated 
non-invasive image analysis and machine 
learning techniques (e.g., Nuske et al., 2014; 
Diago et al., 2015; Rose et al., 2016; 
Aquino et al., 2017; Aquino et al., 2018;  
Pérez-Zavala et al., 2018; Zabawa et al., 2020); 
for example, when using neural network semantic 
segmentation, Zabawa et al. (2020) achieved 
between 85.6 % and 94.0 % accuracy (depending 
on the training system) for non-invasive berry 
detection. However, as only a fraction of the 
berries is visible in an image, estimating actual 
total berry number per bunch (#Be) would 
require hidden berries to be estimated using 
modelling techniques to extract 3D information 
from 2D images (Schöler and Steinhage, 2015; 
Rist et al., 2018; Xin et al., 2020; among others) 
or, alternatively, the use of statistical models based 
on relationships obtained between #vBe and #Be 
(Liu et al., 2020). Once #Be has been estimated, 
yield can be estimated using an equation 
previously obtained from a linear relationship 
between #Be and actual yield (Nuske et al., 2014), 
or by multiplying #Be by an estimation of berry 
mass, which can be obtained using automated 
2D and 3D image post-processing techniques 
(Cubero et al., 2015; Ivorra et al., 2015; 
Rose et al., 2016; Rist et al., 2018; among others).

Regarding the bunches, several studies have 
demonstrated that the 2D image bunch area 
(BuA) - expressed in pixels - is well correlated 
with bunch weight (Dunn and Martin, 
2004; Diago et al., 2012; Font et al., 2015, 
Hacking et al., 2019; Victorino et al., 2020); this 
allows regression models to be obtained that show 
a good fit between estimated and actual yield in 
conditions of no bunch occlusions by the canopy 
and/or other bunches. For example, using RGB 
images and a supervised classifier based on the 
Mahalanobis distance to assess the yield of field-
grown grapevines, Diago et al. (2012) obtained 
a determination coefficient of 0.76 for the 
relationship between the actual yield in the images 
and the corresponding number of pixels.
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Bunch volume is also a feature that has been much 
explored in recent studies using several machine 
vision and modelling techniques to extract 3D 
information from 2D images (Nuske et al., 2014; 
Font et al., 2015; Herrero-Huerta et al., 2015; 
Ivorra et al., 2015; Tello et al., 2016; 
Rist et al., 2018). However, the automatic 
extraction of the volumetric information is a 
much more complex computational task than the 
extraction of the bi-dimensional projection of the 
bunch.

Despite the aforementioned advances in machine 
vision, 3D modelling and other methods for 
the automated estimation of grapevine yield 
components, to obtain a general model to convert 
image-visible bunch attributes into bunch mass 
is still challenging. This is mainly due to the 
naturally large variation that can be found in 
bunch architecture and compactness among cvs. 
(Tello et al., 2015).

The aim of this paper is to assess and compare 
the explanatory power of the two most used 
image-based bunch attributes (#vBe and BuA) 
in order to predict grapevine bunch weight at 
harvest. 2D image-based bunch attributes were 
extracted in laboratory conditions by visual photo-
interpretation (#vBe) and manual segmentation 
(BuA) from 300 images of four grapevine 
cultivars. These variables were then used to find 
accurate predictive models for bunch weight, 
which can also be useful in assisting the algorithms 
used for vineyard yield estimation based on fully 
automated image analysis. 

MATERIALS AND METHODS

1. Site and plant material

The bunches used in this study for the training 
datasets were picked during the 2015 vintage in 
two vineyard plots at Lisbon University’s Instituto 
Superior de Agronomia experimental vineyard, 
located in Lisbon, Portugal, within the Lisbon 
Winegrowing Region (38º 42’ 27.5’’ N, 9º 10’ 
56.3’’ W and 62 m above sea level). The climate 
is of Mediterranean type with Atlantic influence. 
The 2015 growing season was a dryer season 
(136 mm from March to end of September). The 
soil is a clay loam with 1.6 % organic matter 
and a pH of 7.8. On the white vineyard plot (9 
year-old vines), the cultivars ‘Viosinho’ (VI) and 
‘Alvarinho’ (AL) were used; they were cultivated 
side by side and grafted into 1103 Paulsen 
rootstock with a 1.0 m within row spacing and 
2.5 m spacing between north-south oriented rows. 

On the red vineyard plot (16 year-old vines), the 
cultivars ‘Syrah’ (SY) and ‘Touriga Nacional’ 
(TN) were used; they were cultivated side by side, 
grafted onto 140 Ru rootstock and spaced 1.2 and 
2.5 m within and between north-south oriented 
rows, respectively. All the vines were trained on 
a vertical shoot positioning system with two pairs 
of movable wires, and they were spur-pruned on 
a Royat cordon system (unilateral for the white 
cv. plots and bilateral for the red plots). All vines 
were uniformly pruned by keeping 12-14 and 
16-18 nodes per vine on the white and red cvs. 
respectively. As opposed to the red vineyard plot 
(rainfed), the white plot was drip-irrigated with 
undervine irrigation lines consisted of pressure 
compensating 2.5 L/h emitters at 1.0 m spacing 
(one per vine positioned between two adjacent 
vines). Irrigation started at the beginning of June 
(at fruit set) and stopped one week before harvest 
(around mid August). Watering was carried 
out twice a week, thus replacing 50 % of crop 
evapotranspiration. For the remaining vineyard 
practices, similar standard cultural practices 
were applied in both vineyard plots, with canopy 
management practices comprising desuckering, 
shoot positioning and summer trimming to about 
1.2 m above the cordon. 

With the aim of encompassing the maximum 
bunch weight variability, for each cv., all the 
bunches of five representative vines were picked 
individually at commercial maturity, then labelled 
and transported to the laboratory for detailed 
assessments (e.g., Figure 1). Total number of 
bunches per cv. ranged from 75 (AL) to 98 (VI).

2. Laboratory Assessments

 In the laboratory, each bunch was positioned in 
a random position in front of a white background 
and imaged with a corresponding tag, using a 
digital RGB camera located at a constant distance 
from the bunches. Then actual bunch weight 
(BuW) and volume (BuV) were assessed using 
a table scale (KERN FCB v1.4) and the water 
displacement method respectively. The bunches 
were then destemmed by hand and the following 
attributes were assessed per bunch: number of 
berries (#Be), total berry weight (BeW) and rachis 
main axis length (RaL). Average weight per berry 
(avBeW) and a bunch compactness (BuC) index 
were derived (Table 1) from the obtained data. 

The images were manually labelled using 
ImageJ® software and the total area of grapes 
was computed in pixels and converted into 
cm2 of bunch area using the tag dimensions  
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(8.0 x 1.8 cm coloured rectangle) to calculate 
the conversion ratio. Furthermore, the number of 
visible berries in each image (including partially 
hidden ones) was visually assessed and manually 
labelled and counted.

For model validation, two independent bunch 
datasets were used; one from the white cv. 
‘Viosinho’ collected in the 2014 season  
(VI14; n = 100) and the other from the red cv. 
‘Cabernet-Sauvignon’ collected in the 2015 season 
(CS15; n = 109). Both validation datasets were 
collected in the same vineyard plots and subjected 
to similar cultural practices to those described for 
the training datasets.

3. Data analysis

As total number of bunches varied among all cvs., 
in order to obtain a dataset with an equal number 
of bunches, the lowest number of bunches (75, cv. 
‘Alvarinho’) was used and a randomised selection 
applied to the other three datasets. A database was 
built by adding some calculated variables derived 
from measured variables. Table 1 shows the final 
set of variables divided into two groups. 

A correlation analysis was carried out to assess 
the relationships between all pairs of variables. In 
order to obtain regression models to estimate BuW, 
single and multiple regression analyses between 
BuW (response variable) and the image-based 
variables (predictor variables) were taken into 

account. As there was a slight curvilinearity in the 
relationships and the constant variance assumption 
required for linear regressions was violated, a 
logarithmic transformation of both variables was 
applied (Keene, 1995). The regression models 
were fitted to the pooled dataset of the four cvs. 
and subsequently validated with two independent 
datasets. Simple linear regressions with either  
log-number of visible berries or log-bunch area 
were fitted, as was a multiple linear regression 
with both these predictors. Standard t-tests 
(p < 0.05) were carried out for coefficients 
significantly different from zero in the multiple 
linear regressions of log-transformed variables 
to assess whether adding the second predictor 
was significant in each case. This is equivalent 
to carrying out a partial F test comparing the R2 
values in the two-predictor model and in each 
simple linear regression. 

Partial F tests were carried out to compare the 
pooled models with ANCOVA-type models using 
cv. as an additional factor (which produces the 
same fitted equations as models using only the 
data for each cv.). However, as the goal was to 
produce a robust model for general use with any 
cv., rather than a cultivar-specific model, only the 
pooled models were validated.

Despite the fact that log-transformations of the 
variables were used to fit the models, goodness of 
fit was assessed by comparing the values predicted 
by the pooled models (Pi) to the observed 

FIGURE 1. Examples of three bunches of different sizes (small, medium and large) of each of the five 
cultivars used in this work, showing the bunch morphological diversity of each cultivar. Actual tag 
dimensions: 8.0 x 1.8 cm.



OENO One 2021, 4, 209-226 213© 2021 International Viticulture and Enology Society - IVES

data (Oi), in the original units of measurement  
of bunch weight (g) or number of berries, as this 
is the scale which would be of interest to a user. 

The following deviance measures were used 
(Schaeffer, 1980; Loague and Green, 1991), with 

The following deviance measures were used (Schaeffer, 1980; Loague and Green, 1991), with 𝑃𝑃 and 𝑂𝑂 
denoting the mean values of predicted and observed bunch weights:  

● (Equation 1) mean absolute error:  MAE=!
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Modelling efficiency is a dimensionless indicator, 
with values close to the maximum value 1 
indicating good quality fits. All the statistical 
analysis were performed using the R statistical 
software (R Core Team, 2020).

RESULTS

1. Variability and correlations of bunch 
attributes

The boxplots with descriptive statistics of the 
actual and image-based bunch attributes for 
the four cvs. show considerable variability in 
all the assessed bunch attributes in all training 
datasets (Figure 2). Regarding BuW, the VI 
dataset had the highest median value, while TN 
showed the lowest (Figure 2A). #Be was very 
similar among cultivars with medians ranging 
from 79 for TN to 94 for VI (Figure 2B). 

The avBeW variable was found to have much 
higher variability among cvs., with the highest 
median value found for VI, closely followed 
by SY, and the lowest for TN (Figure 2C). The 
highest BuV median was also found for the cvs. 
VI and SY and the lowest for TN (Figure 2D). The 
highest RaL median was found for cv. SY, closely 
followed by VI and TN, and the lowest for AL 
(Figure 2E). The highest median for number of 
berries per rachis length - an objective measure of 
bunch compactness (Hed et al., 2009; Tello and 
Ibáñez, 2014) - was found for cv. AL, while the 
other three cvs. (Figure 2F). Of the actual bunch 
attributes, BuW, #Be and BuV showed the highest 
variability, with the SY and AL datasets having the 
highest coefficient of variation (CV) (from 42.5 % 
to 46.6 %), and VI the lowest (from 35.1 to 37.8 %). 
The avBeW had the lowest variability, with the 
highest CV being found for TN (16.8 %) and the 
lowest for AL (8.5 %). CV was intermediate for 
the variables RaL and BuC.

Regarding the image-based attributes, the relative 
differences among cvs. for the variables #vBe 
and BuA mirrored those described for #Be and 
BuW respectively (Figures 2G and 2H). The cv. 
SY showed the highest median for the derived 
variable percentage of visible berries (%vBe), 
closely followed by TN, while VI had the lowest 
median and AL an intermediate value (Figure 2I).

Regarding the CV, #vBe and BuA had the 
highest variability, with the SY dataset 
having the highest CV (~ 38 %) and the 
other three cultivars showing a CV of similar 
magnitude (ranging from 30.1 to 32.9 % ).

TABLE 1. Set of accessed variables with corresponding groups, abbreviations, formulas and units. Actual 
bunch attributes: assessed manually on bunches or derived; image-based variables: assessed on the 2D 
images.

Group Variable name Abbreviation Formula Units
Actual bunch weight BuW - g

bunch attributes total berry weight BeW - g
Number of berries/bunch #Be - -

average berry weight avBeW BeW/#Be g
bunch volume BuV - mL

rachis central axis length RaL - cm
bunch compactness index BuC #Be/RaL #/cm

Image-based and 
derived variables

Bunch area BuA - cm2

number of visible 
 berries per bunch #vBe - -

percentage of visible berries %vBe (#vBe/#Be)*100 %

(3)



© 2021 International Viticulture and Enology Society - IVES214 OENO One 2021, 4, 209-226

Carlos M. Lopes and Jorge Cadima

The %vBe variable had the lowest variability,  
with SY having the highest CV (19.0 %) and VI 
the lowest (12.3 %).

Table 2 shows the correlation matrix (for original 
and log-transformed data) for a selected set of 
variables that encompasses actual bunch attributes 
and image-based features extracted from the 2D 
images for the pooled dataset of 300 bunches from 

the four cultivars. The variables representing actual 
bunch attributes were all significantly (p < 0.001) 
and positively correlated with BuW, with BuV 
having the highest correlation coefficient (r), 
followed by #Be. The avBeW variable was the 
least correlated with BuW, while the r value was 
intermediate but significant and positive for the 
calculated variable BuC. 

FIGURE 2. Box plots showing descriptive statistics of the actual and image-based bunch attributes 
for each of the four cultivars used for the training dataset (n = 75). VI = ‘Viosinho’, AL = ‘Alvarinho’,  
SY = ‘Syrah, and TN = ‘Touriga Nacional’.
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In terms of the correlations between the variables 
extracted from the 2D images (BuA and #vBe) 
and BuW, very high, positive and significant 
(p < 0.001) r values were found. The correlation 
between the derived variable %vBe and BuW 
showed a lower and negative r value (Table 2).

Besides the correlations with BuW, it is worth 
highlighting some other relationships, mainly 
those between the variables extracted from 2D 
images. There were very strong, positive and 
significant (p < 0.001) correlations between the 
variable BuA and the variables #Be, BuV, RaL 
and #vBe. Very high, positive and significant 
correlations were also found between the variable 
#vBe and the variables #Be, BuV and RaL. 
Furthermore, significant (p < 0.01) but negative 
correlations were found between %vBe and all the 
other assessed variables (Table 2A). 

The correlation coefficients between the log-
transformed variables (Table 2B) were in general 
of higher magnitude than between the original 
pairs of corresponding variables, indicating 

stronger linearity in the relationships within the 
log-transformed data; this is a result that will be 
subsequently used. 

In general, the correlation analyses performed 
separately per cv. (n = 75) yielded results that 
mirror those reported in Table 2 for the pooled 
data. However some differences among cvs. 
were observed in terms of the magnitude and 
significance of the correlation coefficients linked 
to BuW (Figure 3A). Regarding actual bunch 
attributes, the r value was much lower (0.17) and 
non-significant when correlating avBeW with 
BuW in the SY dataset compared to the other three 
cv. datasets, in which higher and significant r (p < 
0.001) was obtained for the same variables. The 
opposite result was obtained for RaL in correlation 
with BuW: the SY dataset showed the highest r 
value and VI the lowest. Regarding the correlation 
of image-based variables with BuW, the r value 
was very high and significant (p < 0.001) for all 
four cv. datasets, with the highest r (0.95) for BuA 
in cv. AL and the lowest (0.82) for #vBe in cv. TN 
(Figure 3A).

TABLE 2. Correlograms showing Pearson correlation coefficients between pairs of a selected set of 
variables for the pooled dataset of the four cvs. [original (A) and log-transformed data (B); n = 300]. The set 
of variables include actual bunch attributes [BuW = bunch weight (g), #Be = number of berries per bunch, 
avBeW = average berry weight (g), BuV = bunch volume (mL), RaL = rachis length (cm), BuC = bunch 
compactness] and bunch attributes extracted from 2D images [BuA = bunch area (cm2), #vBe = number of 
visible berries] or derived (%vBe = #vBe/#Be x 100). All correlation coefficients of magnitude greater than 
|0.11| are significantly different from zero (p < 0.05). Correlations of similar magnitude have comparable 
colours (according to the colour code shown at the bottom).
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2. Testing the use of visible berries on the 
image as a proxy of actual number of berries 

The average values regarding the proportion of 
visible berries on the 2D images were similar for 
VI and AL (49.0 and 50.5 % respectively), but 
they were lower than those obtained in the TN and 
SY datasets (55.8 and 57.5 % respectively).

When creating the scatterplot fitted with linear 
regressions of the #Be (response variable) over 
#vBe (predictor variable), a linear relationship 
between both variables appeared acceptable for 
all datasets, despite there being a slight curvature. 
However, the constant variance assumption 

underlying the regression analysis was violated. 
The logarithmic transformation of both variables 
stabilised the variance and improved the linearity 
in the four datasets (Figure 3B). Table 3 shows the 
fitted regression models of the log-transformed 
data, with very high and significant coefficients of 
determination (R2) in all cases. 

3. Using image-based variables to estimate 
bunch weight

3.1. Number of visible berries on the 2D image

Figure 4A shows a scatterplot of the variables 
BuW and #vBe for all training datasets, showing 
an increase in the scatterpoint dispersion as 

FIGURE 3. (A) Pearson correlation coefficients between bunch weight and all other bunch assessed 
attributes of the four cvs. With the exception of the correlation between avBeW and BuW in cv. ‘Syrah’, all 
coefficients are significant (p < 0.01). VI = ‘Viosinho’ (green), AL = ‘Alvarinho’ (blue), SY = ‘Syrah’ (red), 
TN = ‘Touriga Nacional’ (purple). For variable legend see Table 2. (B) Scatter plot showing the fitted 
linear relationship of logarithm of actual number of berries per bunch [ln(#Be)] versus the logarithm of the 
number of visible berries on the image [ln(#vBe)], for each cv. (thin coloured lines) and for pooled data 
(thick black line). n = 75 per cv.

TABLE 3. Fitted power law models (in the original, non-logarithmic scales) resulting from the fitted linear 
regressions of the logarithm of actual number of berries per bunch (#Be) over the logarithm of the number 
of visible berries on the 2D image (#vBe), for each of the four cvs. (n = 75) and for the pooled data 
(n = 300). Values of the coefficient of determination (R2) are relative to the linear regression in the log-scale 
and are always significant (p < 0.001).

Dataset Fitted model (Eq. nº) R2

‘Viosinho’ #Be = 1.162 * #vBe1.152     (6) 0.91
‘Alvarinho’ #Be = 0.727 * #vBe1.27      (7) 0.91

‘Syrah’ #Be = 0.792 * #vBe1.215     (8) 0.92
‘Touriga Nacional’ #Be = 0.715 * vBe1.254        (9) 0.92

Pooled #Be = 0.809 * #vBe1.230     (10) 0.90
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the values of both variables increase, as well 
as a slightly curvilinear trend. The violation of 
the constant variance assumption was noticed 
for all datasets, and therefore the logarithmic 
transformations of both variables were adopted 
to stabilise variances and improve linearity 
(Figure 4B). The fitted regression models (Table 
4) show that the highest R2 was obtained for the 
AL model and the lowest for the TN and pooled 
models. Standard t-tests on the ANCOVA model, 
which allows each cultivar to have its own linear 
regression between ln(BuW) and ln(#vBe), 
indicate that the differences between the cultivar-
specific slope (exponent in Table 4) for cv. AL 
and the remaining cvs. are slightly significant  
(0.02 < p < 0.10), but they are not significant for 
the other cvs.

3.2. Bunch area in the 2D image

Figure 5A shows the scatter plot of BuW and 
BuA for all training datasets. Visually, there is 
an increase in the scatterpoint dispersion as the 
value of both variables increases and also a slight 
curvilinear trend. Indeed, the constant variance 
assumption of the linear regression model relating 
BuW (response variable) and BuA (predictor 
variable) appears unrealistic, as was also observed 
with #vBe relationships, in particular for the VI 
and SY datasets. In order to improve linearity and 
stabilise variances, the logarithmic transformation 
of both variables was used in all cases, thus 
ensuring comparable models for all four datasets 
and for the pooled data (Figure 5B).

FIGURE 4. Scatter plots showing (A) the fitted power relationship of bunch weight (BuW) versus the 
number of visible berries on the 2D image (#vBe), and (B) the fitted linear relationship of logarithm of 
bunch weight [ln(BuW)] versus the logarithm of the number of visible berries on the image ([ln(#vBe)], 
for each cv. (thin coloured lines) and for pooled data (thick black line). Colour codes: green = ‘Viosinho’,  
blue = ‘Alvarinho ‘, red = ‘Syrah’, and purple = ‘Touriga Nacional’. n = 75 per cv.

TABLE 4. Fitted power law models (in the original, non-logarithmic, scales) resulting from the fitted 
linear regressions of the logarithm of bunch weight (BuW; g) over the logarithm of the number of visible 
berries on the 2D image (#vBe), for each of the four cvs. (n = 75) and for the pooled data (n = 300). Values 
of the coefficient of determination (R2) are relative to the linear regression in the log-scale and are always 
significant (p < 0.001).

Dataset Fitted model (Eq. nº) R2

‘Viosinho’ BuW = 1.513 * #vBe1.232          (11) 0.85
‘Alvarinho’ BuW = 0.659 * #vBe1.403          (12) 0.87

‘Syrah’ BuW = 1.410 * #vBe1.210        (13) 0.86
‘Touriga Nacional’ BuW = 1.183 * #vBe1.201          (14) 0.79

Pooled BuW = 1.077 * #vBe1.276          (15) 0.80
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Table 5 shows the R2 values for the linear 
regressions of ln(BuW) on ln(BuA), as well as 
the fitted power relationships that result from 
converting back to the original (non-logarithmic) 
scales for both variables. In all four datasets, R2 

was very high and significant. The ANCOVA 
model allowing each cv. to have its own 
relationship indicates that the slopes (exponents in 
Table 5) for the cvs. AL and VI are significantly 
different (p = 0.0025), with less or non significant 
differences among other pairs of cvs.

The comparison of the R2 values between the two 
single-predictor regressions (Table 4 vs Table  5) 
shows that, for three cvs., the best individual 
predictor of ln(BuW) is ln(BuA), the exception 
being VI.

3.3. Combining image-based explanatory 
variables

Based on the high performance of the two 
variables extracted from the 2D images (BuA and 
#vBe) a multiple linear regression model was used 
to estimate ln(BuW), with both log-transformed 
variables as predictors. As shown in Table 6, 
in general the R2 values of the two-predictor 
regressions were significantly higher than those 
for the best single-predictor regressions, except 
in the case of the predictor ln(BuA) for SY and 
TN, which showed an R2 of similar magnitude. 
While these improvements in the R2 coefficient 
were significant, they were often modest and more 
pronounced for the models based on the predictor 
#vBe (gains ranging from 0.02 for VI to 0.10 for TN) 
than for the models based on BuA, (gains of 

FIGURE 5. Scatter plots showing: (A) the fitted power relationship of bunch weight (BuW) versus the 
bunch area on the 2D image (BuA), and (B) the fitted linear relationship of logarithm of bunch weight 
[ln(BuW)] versus the logarithm of bunch area on the 2D image [ln(BuA)], for each cv. (thin colored lines) 
and for pooled data (thick black line). Colour codes: green = ‘Viosinho’, blue = ‘Alvarinho ‘, red = ‘Syrah’, 
and purple = ‘Touriga Nacional’. n = 75 per cv.

TABLE 5. Fitted power law models (in the original, non-logarithmic, scales) resulting from the fitted linear 
regressions of the logarithm of bunch weight (BuW; g); over the logarithm of bunch area (BuA; cm2), for 
each of the four cvs. (n = 75) and for the pooled data (n = 300). Values of the coefficient of determination 
(R2) are relative to the linear regression in the log-scale and are always significant (p < 0.001).

Dataset Fitted model (Eq. nº) R2

‘Viosinho’ BuW = 1.085 * BuA1.119       (16) 0.83

‘Alvarinho’ BuW = 0.454 * BuA1.357        (17) 0.91

‘Syrah’ BuW = 0.574 * BuA1.258       (18) 0.92

‘Touriga Nacional’ BuW = 0.497 * BuA1.288        (19) 0.89

Pooled BuW = 0.653 * BuA1.238       (20) 0.88
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0.04, 0.02 and 0.01 in VI, AL and pooled models 
respectively, or near-zero for SY and TN). 

3.4. Model Validation

In order to test the potential of the above fitted 
pooled models by applying different conditions 
and cultivars than those used during the fitting 
process, a validation was performed using two 
independent datasets (VI14 and CS15). Figure 6 
shows the scatter plots of the observed vs fitted 
values (on the original scale) of #Be (Figure 6A) 
and BuW (Figures 6B, 6C and 6D) using the fitted 
models for the pooled data (Equations 10, 15, 
20 and 25 respectively). It can be observed that 
overall there is a good agreement between the 
observed and fitted values for the two datasets, 
as well as some variability that increases with an 
increase in magnitude of the observed values.

Regarding the model that estimates #Be using 
#vBe as a predictor (Figure 6A), the scatter points 
are very close to the 1/1 line, indicating a very 
good overall fit for both datasets. However, a 
closer look reveals an underestimation of #Be in 
the VI14 dataset and an overestimation in CS15 
(less pronounced). The statistical measures of 
validation confirmed this visual appraisal showing 
higher values of MAE (12.7 vs 7.8), NMAE (0.13 
vs 0.09), RMSE (17.5 vs 10.0) and Pbias (-8.8 vs 
4.4) and a lower EF (0.89 vs 0.94) for VI14 when 
compared to CS15.

The scatterplot related to the model that estimates 
BuW based on the predictor #vBe (Figure 
6B, Equation 15) clearly indicates a different 
kind of model bias for each validation dataset, 
with an underestimation of BuW in VI14 and 
an overestimation in CS15. In the other two 

scatterplots involving the estimation of BuW 
(Figures 6C and 6D), the dispersion of points in 
relation to the 1/1 line, seems to show that the 
model based on both predictors produces the best 
fit for both cvs.

The linear regression between observed (dependent 
variable) and estimated (independent variable) 
values obtained for each of the four pooled models 
(Equations 10, 15, 20 and 25) also shows very high 
and significant R2 and an intercept and slope very 
close to 0 and 1 respectively (data not shown).

The results shown in the scatterplots with the 
fitted values from the models for BuW prediction 
are corroborated by the statistical validation 
measures, which generally indicate a fairly good 
fit (Table 7). When comparing the validation 
performance of the two single predictor models, it 
can be observed that, for the combined validation 
dataset (both cultivars), the model based on #vBe 
(Equation 15) has a higher MAE and NMAE, a 
similar RMSE and EF and a smaller Pbias, than 
the model based on BuA. When comparing the 
same single predictor models with each validation 
dataset, it can be observed that for VI14 the model 
based on the predictor #vBe showed smaller errors 
(MAE, NMAE and RMSE), an almost similar 
Pbias and a higher EF than the model based on 
the predictor BuA. For the CS15 dataset a better 
performance of the model based on the predictor 
BuA was observed in all the statistical measures 
of validation. It also becomes apparent that the 
much smaller Pbias of the combined validation 
dataset using predictor #vBe masks strong biases 
of opposite signs for each cultivar. Regarding the 
validation performance of the model based on the 
two explanatory variables (Equation 25), smaller 

TABLE 6. Fitted power law models resulting from the multiple linear regression of the logarithm of bunch 
weight (BuW, g) over two predictors: the logarithm of bunch area (BuA; cm2) and the logarithm of the 
number of visible berries on the image (#vBe). Models are shown for each of the four cvs. (n = 75) and for 
the pooled data (n = 300). Values of the coefficient of determination (R2) are relative to the linear regression 
in the log-scale. Values of the adjusted R2 differ by, at most, 0.01. The exponent of predictor BuA is in all 
cases significantly different from zero (p < 0.001). The p-values in the standard t-tests for the exponents of 
#vBe are shown in the right column and are not significantly different from zero for ‘Syrah’ and ‘Touriga 
Nacional’.

Dataset Fitted model (Eq. nº) R2 p-value for the coefficient 
of the predictor ln(#vBe)

‘Viosinho’ BuW = 1.105 * BuA0.501 * #vBe0.725     (21) 0.87 < 0.001
‘Alvarinho’ BuW = 0.420 * BuA0.873 * #vBe0.557   (22) 0.93 < 0.001

‘Syrah’ BuW = 0.605 * BuA1.134 * #vBe0.129   (23) 0.92 0.392
‘Touriga Nacional’ BuW = 0.501 * BuA1.257 * #vBe 0.032    (24) 0.89 0.834

Pooled BuW = 0.611 * BuA0.939 * #vBe0.358   (25) 0.89 < 0.001



© 2021 International Viticulture and Enology Society - IVES220 OENO One 2021, 4, 209-226

Carlos M. Lopes and Jorge Cadima

FIGURE 6. Relationship between observed and estimated (A) berry number per bunch (#Be) and  
(B, C, D) bunch weight (BuW) for two independent datasets: ‘Viosinho’, 2014 (n = 100, green circles) and  
‘Cabernet-Sauvignon’, 2015 (n = 109, red squares) using the pooled models represented in equations 10 (A), 
15 (B), 20 (C) and 25 (D). The dotted black lines represent the 1:1 lines.

TABLE 7. Statistical indicators of goodness of fit of the predicted pooled models for bunch weight (BuW) 
estimation of the two independent datasets: CS15 (‘Cabernet-Sauvignon’, 2015; n = 109) and VI14 
(‘Viosinho’, 2014; n = 100). BuA = bunch area (cm2), #vBe = number of visible berries on the 2D image, 
MAE = mean absolute error (g), NMAE = normalised mean absolute error; RMSE = root mean square error 
(g), Pbias = percent bias and EF = modelling efficiency.

Fitted model (Eq. nº) Dataset MAE (g) NMAE RMSE (g) Pbia (%) EF

BuW =1.077 * #vBe1.276       (15)

CS15 27.44 0.24 33.73 22.81 0.67

VI14 32.78 0.19 44.90 -16.36 0.79

combined 30.00 0.21 39.47 -0.04 0.79

BuW = 0.652 * BuA1.238       (20)

CS15 16.92 0.15 23.65 10.22 0.84

VI14 39.94 0.23 52.70 14.97 0.71

combined 27.94 0.19 40.26 12.99 0.78

BuW = 0.611 * BuA0.939 * #vBe0.358       (25)

CS15 17.95 0.16 25.45 14.01 0.81

VI14 28.52 0.16 39.56 7.25 0.84

combined 23.01 0.16 32.96 10.07 0.85
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errors (MAE, NMAE and RMSE) and higher EF 
were observed in the combined validation dataset 
compared to the two single predictor models. 
When individual cultivars were considered, in 
the CS15 dataset the single-predictor BuA model 
performed slightly better than the model with both 
predictors, but there were clear advantages on all 
indicators in the VI14 dataset (Table 7).

DISCUSSION

1. Variability and correlations between bunch 
attributes

Bunch weight was one of the bunch attributes 
with the largest variability in all the four 
training datasets (Figure 2), which is due to the 
natural variability of bunch morphology among 
genotypes (Tello and Ibáñez, 2014 ; Tello and 
Ibáñez, 2018) combined with the inter and intra-
vine variability within each cv. in a given vineyard 
(Rey-Caramés et al., 2015).

In general, the averaged assessed bunch attributes 
compare well to the descriptions found in cultivar 
catalogues (IVV, 2011), where VI, AL and TN 
are described as having short bunches (code OIV 
nº 202; OIV, 2007) with a medium compactness 
(code OIV nº 204), while SY bunches are 
described as being medium-sized with a loose to 
medium compactness. For bunch size, the average 
rachis length obtained in the training samples 
corroborate this general description, but a larger 
BuC was recorded for AL compared to the other 
cvs.; these are differences that may be due to the 
methods used to describe BuC. Indeed, while the 
OIV code for bunch compactness is based on 
a visual assessment of the way that berries are 
arranged in the bunch and to the amount of free 
space they leave (OIV, 2007), BuC was quantified 
as the number of berries per cm of main rachis, as 
proposed by Hed et al. (2009). This is considered 
a more objective criterion, as it avoids the 
subjectivity linked to the OIV visual assessment 
(Tello and Ibáñez, 2014).

The high and significant positive correlation 
coefficients between BuW and most of the 
assessed bunch attributes highlight their potential 
for use as proxies of actual BuW. Among the actual 
bunch attributes, BuV was the trait that correlated 
the best with BuW and was therefore the bunch 
feature with the highest explanatory power for 
BuW variability, as has also been reported by 
other authors for other grapevine cvs., sites and 
seasons (Nuske et al., 2014; Font et al., 2015; 
Hacking et al., 2019). This suggests that if 

machine vision and modelling techniques are able 
to accurately extract 3D information from 2D 
images, BuV could play a key role in automatic 
vineyard yield estimation. However, BuV is not 
easy to measure by automated image analysis, 
particularly in field conditions. So far, the 
novel automated methods for BuV estimation, 
besides being computationally complex, are 
mainly based on the 3D modelling of an entire 
bunch (Nuske et al., 2014; Font et al., 2015; 
Herrero-Huerta et al., 2015; Ivorra et al., 2015; 
Tello et al., 2016; Rist et al., 2018, among others), 
which is not very common in field conditions. 
Indeed, in most cases of field-grown grapevines, 
only a fraction of the bunches can be detected by 
image sensors. Besides the difficulties related to 
the natural irregularity of bunch architecture, 3D 
bunch modelling produces an apparent 3D volume 
corresponding to the morphological volume 
which, in general, overestimates the actual bunch 
volume, as it does not take into account the empty 
space between berries (Tello and Ibáñez, 2018).

The bunch compactness index used in this work - 
one of the most widely used quantitative indices 
describing bunch density (Hed et al., 2009; 
Sabbatini and Howell, 2010; Pallioti et al., 2012; 
Lopes et al., 2020) - also had high and significant 
positive correlation coefficients with BuW, 
indicating that it too is a bunch feature that can play 
an important role in vineyard yield estimation. For 
example, it can be used as an auxiliary variable to 
improve the accuracy of the models used to convert 
the #vBe on the 2D images into actual number of 
berries. This is supported by our results, namely 
by the negative correlation observed between 
BuC and %vBe (Table 2), which indicates that the 
higher the BuC, the lower the fraction of visible 
berries. However, like BuV, BuC is a 3D feature 
which is not as easy to estimate via image analysis 
as are 2D features. Nevertheless, recent advances 
in imaging methods and 3D modelling techniques 
(Cubero et al., 2015; Ivorra et al., 2015, 
Tello et al., 2016; Chen et al., 2018) makes 
them very promising tools for automating the 
assessment of BuC.

2. Comparing image-based predictors 

2.1. Number of visible berries

Actual number of berries, #Be, is a very 
important yield component for explaining 
seasonal yield variability at vineyard level 
(Clingeleffer et al., 2001; Whitty et al., 2017). 
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In our investigation, among the bunch assessed 
attributes, #Be showed the second best correlation 
with BuW (Table 2), confirming the importance 
of this yield component as a proxy of BuW. 
Therefore, an accurate automated estimation of 
this bunch trait will be an important contribution 
to vineyard yield estimation methods. Despite 
several image analysis methods having recently 
been developed for automating the detection and 
counting of visible berries in 2D images (e.g., 
Aquino et al., 2017; Zabawa et al., 2020), the 
estimation of #Be using image analysis is still a 
difficult and complex task, mostly due to berries 
being partially hidden by other berries. To solve this 
problem, several modelling techniques have been 
used to extract 3D information from 2D images 
(Sholer and Steinhage, 2015; Rist et al., 2018; 
Pérez-Zavala et al., 2018; Xin et al., 2020; 
Liu et al., 2020). However, these methods have 
the drawback of needing complex devices and 
being computationally demanding. 

In the present study, a simpler approach was tested 
to estimate #Be, involving the use of statistical 
models based on relationships between #vBe and 
#Be. Our results showed that a very high percentage 
of #Be variability can be explained by the models 
that are based on the log-transformation of #vBe 
(Table 3), indicating a high goodness of fit for all 
single cv. datasets. The similar high goodness of 
fit showed by the model based on the pooled data 
of the four training datasets, seems to indicate that 
this model has the potential to become a general 
model for other cvs. Furthermore, when tested 
against the combined validation dataset, this pooled 
model showed very low error and bias and a very 
high modelling efficiency, indicating a very good 
fit (Mayer and Butler, 1993). However, it should 
be underlined that this high model performance is 
not likely to be achieved when using automated 
methods for berry detection in field conditions. 
While in this study the predictor variable (#vBe) 
was obtained manually in laboratory conditions 
and by the visual assessment of each 2D image 
of an entire bunch - and hence with almost no 
error - when using automated methods to detect 
and count visible grape berries in field 2D images, 
higher errors can be expected. Indeed, with manual 
detection it is possible to count all visible berries, 
even those that are very small or only partially 
visible; however, automated methods are much 
more prone to errors. These errors can result from 
several sources, like the conditions in which the 
images are acquired (view angle and illumination), 
the visible bunch fraction imaged, the algorithms 
used for berry counting and detection, and berry 

features, such as colour, diameter, circularity, 
density and homogeneity of distribution within 
the bunch (Diago et al., 2015; Aquino et al., 2017; 
Buayai et al., 2021; Pérez-Zavala et al., 2018). 

Considering the strong correlation between #Be 
and BuW (Table 2), accurate estimates of #Be, 
once obtained, can be used to predict BuW from 
a previously obtained linear relationship between 
the two variables (Nuske et al., 2014).

Regarding the direct use of #vBe to estimate 
BuW, the very high and significant determination 
coefficients obtained in all four single cv. regression 
models (Table 4; Equation 11 to 14), shows that the 
logarithm of #vBe explains a very high percentage 
of bunch log-weight variability. These results are 
in line with other reports (Nuske et al., 2014; 
Diago et al., 2015; Aquino et al., 2017; 
Aquino et al., 2018), confirming that the #vBe 
is a good predictor of bunch mass. The high R2 

values also obtained by the model based on the 
pooled data (Equation 15) indicate an almost 
similar goodness of fit as those for each single cv. 
models, suggesting that the former model has high 
potential for use with other cvs. However, as well 
as the significant differences detected in the slopes 
of the regression lines for individual cv. training 
datasets, the validation test also showed the pooled 
model to have a different performance for the two 
independent datasets (Table 7). This is likely due 
to the variability of bunch attributes, either among 
the cvs. (e.g., BuC = 9.7 in VI14 vs 7.3 in CS15) 
or among seasons for the same cv. (e.g., VI: BuC 
= 9.7 in 2014 vs 8.4 in 2015). Therefore, it seems 
that, despite the high goodness of fit and the good 
validation performance of the predicted model 
based on the pooled #vBe, its use as a generalised 
model across different cultivars and seasons could 
bring some uncertainty. 

2.2. Bunch area

Among the two image-based variables, BuA 
had the strongest correlations with BuW, both 
for each cv. dataset (except for VI) and for 
the pooled data (Figure 3A and Table 2). The 
very high and significant R2 of all the single cv. 
regression models (Table 5) indicates that ln(BuA) 
accounts for a very high proportion of bunch log-
weight variability, confirming that this variable 
is a robust image-based explanatory variable of 
BuW. The good performance of BuA as yield 
predictor has also been observed in several 
studies at different sites and with other cvs., in 
vineyards where the canopy was manipulated 
to promote bunch exposure to the cameras 
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(Dunn and Martin, 2004; Diago et al., 2012; 
Font et al., 2015; Hacking et al., 2019). 
The model based on the pooled data of the four 
training datasets (Equation 20) showed a similar 
goodness of fit to the single cv. regression models, 
indicating that it might work well across different 
cvs. Nevertheless, as would be expected of any 
generalist models, improvements could be made 
by recalibrating the models for individual cvs. The 
validation with two additional datasets performed 
better on all the statistical measures of validation 
for CS15 compared to VI14 (Table 7).

2.3. Combining the two image-based variables

As mentioned above, both single-predictor models 
for BuW evidenced strong goodness of fit (Tables 
4 and 5). However, the higher R2 of almost all 
the models based on the predictor BuA indicate 
that, with the exception of cv. VI, BuA is a 
better predictor than #vBe. When the two image-
based explanatory variables are combined in a 
multiple regression model for BuW estimation, 
R2 values cannot be lower than those obtained 
in the submodels based on single predictors 
(Table 6). However, the increase in R2 was not 
noticeable in all cases. While for models with the 
single predictor #vBe, adding the second variable 
increased the value of R2 for all single cv. models, 
starting with the simple linear regressions based 
on the predictor BuA, only slightly increased R2 
(to two decimal places) in the case of the VI, AL 
and pooled models. This indicates that there was 
only a slight gain in accuracy when combining 
the two explanatory variables, and only with the 
single cv. models for VI and AL at the expense of 
a less parsimonious model. For SY and TN, there 
was no significant gain in using the two predictors 
over the single predictor BuA. Such contrasting 
results were also observed in the validation of the 
three BuW pooled predictive models, in which 
the model based on the two explanatory variables 
(Equation 25) performed better than each of the 
two single predictor models (Equations 15 and 20) 
in the VI14 dataset, but not in CS15. In CS15 the 
model based on BuA showed the best statistical 
measures of validation, while the model based 
on #vBe produced the least accurate predictions. 
These contrasting results underline the difficulties 
in choosing a single explanatory variable for 
all cultivars and seasons; nevertheless, when 
combining the two validation datasets, the 
multiple regression pooled model gave better 
validation results (except for Pbias) than the 
single variable pooled models. This improvement 
in model accuracy and greater robustness seem to 

indicate that the two image-based variables, when 
used together, can better integrate the variation in 
the bunch features related to number of berries 
and berry weight, the two yield components that 
determine bunch weight. However, it should 
be underlined that the gains in accuracy of the 
multiple regression model might not compensate 
the additional costs and work load that are 
required to measure the second bunch feature; i.e., 
either BuA or #vBe. Furthermore, in this study the 
models were obtained using manual detection and 
segmentation, thus an increase in errors is to be 
expected when using fully automated methods of 
measurement. It is likely that this increase will be 
higher for the multiple regression model than for 
the single variable models, as each segmentation 
process produces its own errors.

CONCLUSIONS

To obtain accurate predictive models for automated 
vineyard yield estimation, this paper compared the 
explanatory power of the two most used image-
based bunch attributes (number of visible berries 
and bunch area in 2D images) for predicting bunch 
weight. The models were fitted with data from 
four grapevine cultivars. The high goodness of fit 
of all the simple linear regression models indicates 
that either one of the image-based variables can 
be used as an accurate proxy of actual bunch 
weight. The goodness of fit showed by the models 
based on the pooled data indicates that a general 
model is also suitable. However, its application 
across different cultivars and seasons should be 
approached with caution, as indicated by some 
observed differences in the statistical measures of 
validation among the two independent datasets. 
Furthermore, the significant differences found 
when comparing the pooled models using cultivar 
as an additional factor indicate that cultivar-
specific models can improve predictions. 

The comparison of the explanatory power of the 
two image-based bunch attributes for predicting 
bunch weight showed that the models based on 
the predictor #vBe had a slightly lower R2 than 
the models based on BuA, whether for each single 
cultivar (except for Viosinho) or for the pooled 
dataset. The combination of the two image-based 
explanatory variables in a multiple regression 
model produced predicted models with similar 
or noticeably higher R2 than that obtained for 
single-predictor models. However, adding a 
second variable to the regression produced a 
higher and more generalised gain in accuracy 
for the simple regression models based on the 
predictor #vBe than for the models based on BuA.  



© 2021 International Viticulture and Enology Society - IVES224 OENO One 2021, 4, 209-226

Carlos M. Lopes and Jorge Cadima

Despite the aforementioned differences and some 
contrasting results obtained in the validation tests 
of the three BuW pooled predictive models, based 
on our results it is possible to recommend using 
models based on the two image-based variables 
because they were generally more accurate and 
robust than the single variable models. When the 
gains in accuracy produced by adding a second 
image-based feature are small, a single predictor 
should be used. In such a case, our results indicate 
that BuA would be a more accurate and less 
cultivar dependent option than the #vBe. Further 
work is needed in order to test these models in 
field conditions at earlier phenological phases and 
with datasets from other cultivars and seasons.
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