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Behavior of beam web panel under opposite patch loading
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Elastic buckling is studied for a panel with various boundary conditions including simple supports, fixed 
supports and elastic restraints. The panel is subjected to opposite patch loading. Following a review of existing 
work on the effects of localized compression, also known as patch loading, a study is conducted to take into 
account the restraints provided by the flanges of the I beam in a realistic manner. This study is based on a finite 
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Fig 1. Distribution of internal forces in beam-to-column joint.

Fig. 2. A simply supported plate subjected to opposite patch loading.
compression ismore or less restrained by the beam flanges surrounding
it. In large size joints, connecting elements of welded plate girders, this
zone of web, generally with a high aspect ratio, may develop elastic
or elastic–plastic instabilities under compression. This zone can be
modeled as a perfect plate that is subject to boundary conditions and
loading that represent the joint in a realistic way.

To assess the analytical formulae available in the literature and
determine their domain of validity a numerical model is developed by
using the finite element software CAST3M [1]. These numerical models
are built first for “idealized” plates with an available analytical solution.
Then, the models are extended to the case of a steel I beam with the
web loaded in its plane. It should be noted that the boundary conditions
created by the flanges in the real joint are described by elastic restraints
on the web plate edges. Thus, the study is concerned with the elastic
instabilities of plates and web panels of steel I beams. It can be consid-
ered as afirst step covering the case of joint panelswith high slenderness
that have a dominant behavior in elastic buckling. Actually, in the
approaches of EN1993-1-5 [16], whether dominated by a plastic yield
mechanism or local elastic buckling the strength of the web panel
with orwithout stiffeners is governed by the dimensionless slenderness
ratio λ that takes as an input parameter the elastic critical load. The
present work provides the elastic critical load for panels under elastic
restraints, with or without stiffeners. Thus, the determination of the
critical elastic load can be considered as a preliminary to the plastic
analysis.

2. Web panel under opposite patch loading

Several studies proposed analytical models to calculate the elastic
critical load of compressed panels with various boundary conditions
and loadings. This concerns theweb panels of beams or columns loaded
in transverse compressionwhere the panel can generally be assimilated
to a perfect plate (Fig. 2). Among the available models, those based on
the theoretical studies of Sommerfield [2] and Timoshenko [3] are com-
mon. They employ an energy approach to determine the elastic critical
load of a plate loaded in double compression by two concentrated forces
applied in themiddle of two opposite edges. Timoshenko and Gere con-
sidered two boundary conditions: simple supports on the four edges or
two clamped at the loaded edges and the other two simply supported.

The elastic buckling force Fcr of a rectangular plate was proposed
by Timoshenko and Gere [4] under the general form of Eq. (1).

Fcr ¼ kcr
π2Et3W

12 1−v2
� �

hw
: ð1Þ

In this general equation, kcr represents the elastic buckling coeffi-
cient of the plate. It includes the geometrical parameters, the restraint
boundary conditions and the load conditions. The parameters hw, tw,
E and ν are the height and the thickness of the plate, the modulus of
elasticity and the Poisson's ratio of the material, respectively. Given
the influence of the geometrical characteristics and the boundary
conditions on the elastic buckling coefficient kcr and as a consequence
on the critical load Fcr, this study is concernedwith the coefficient kcr to
determine the critical load of a perfect plate. According to Timoshenko,
for a rectangular plate (a>>hw) loaded in double compression by two
equal concentrated forces applied at the middle of two opposite sides,
the buckling coefficient kcr is equal to 4/π for the case of a plate that is
simply supported on its four edges and 8/π for the plate with the two
loaded opposite sides clamped and the two others simply supported.

Other investigations, performedmainly by Legget [5], showed that
the solution given by Timoshenko [3] may lead to considerable errors
in certain cases. Thus, he proposed another approach based on the
representation of the concentrated load by a Fourier series. This led to
values of buckling coefficients with reasonable accuracy. Yamaki [6]
developed this energetic method to obtain solutions of buckling coeffi-
cients with improved accuracy.

Leissa and Ayoub [7] and Deolasi and Datta [8] used the finite ele-
ment method to model a simply supported plate and calculate its buck-
ling critical load for various aspect ratios. Deolasi andDatta established a
comparison between buckling critical loads which were obtained by
using the finite element model and those given by Yamaki.

Khan andWalker [9] studied the configuration of a simply supported
plate studied by Timoshenko but considering a distributed load applied
over a finite length (Fig. 2). They proposed a diagram to calculate the
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buckling critical loads for various aspect ratios a/hw and loading length
ratios ss/hw. Furthermore, Protte [10] used an energy approach to deter-
mine the buckling critical load for different values of a/hw and ss/hw,
showing an agreement with the results presented by Khan andWalker
and Legget. Finally, the same problem was approached by Lagerqvist
[11] using a numerical model. He established a series of results for
the buckling coefficient considering different ratios ss/hw ranging from
0 to 0.6 and with a/hw=1, 2 and 4, tw=4 mm and hw=1000 mm.

To highlight the rotational restraint made by the flanges on the
web panel of the beam, Alfutov [12] and Khan and Johns [13] studied
the buckling behavior of a plate with elastic rotational restraint and a
local load on one edge by using energy methods. They considered that
the applied load is balanced by a parabolic tangential stress distribution
in the edges of the plate perpendicular to the direction of loading. By
using the same stress distribution and a displacement field of sinusoidal
type, Robert and Shahabian [14] presented solutions for the buckling
coefficient of the beam web panel based on a Galerkin discretization
method. Finally, Lagerqvist [11] and Ren and Tong [15] studied the
case of a beam web panel under patch loading to obtain the critical
load by using finite element modeling.

Furthermore, Lagerqvist [11] studied the influence of the flanges on
the critical load of the web panel which is subject to opposite patch
loading (Fig. 3). In the model, the load was applied along a length ss in
the plane of the web and the loaded nodes were free to move only in
the direction of the applied load, labeled 2 in Fig. 3. At the end sections
of the beam, in both the flanges and the web, the displacements in
the direction of the load (direction 2) and in the out of plane direction
(direction 1) and the rotation around the longitudinal axis (6th degree
of freedom) were restrained. A parametric study was performed with
respect to three parameters: β, a/hw and ss/hw. The coefficient β (β=
bf tf3/hw tw3 ) represented the restraint on the web panel edges due to
the rotational stiffness of the flanges. It is interpreted as the ratio be-
tween the torsion stiffness of the flanges and the bending stiffness of
the web panel. The parameters a/hw and ss/hw represent the aspect
ratio and the load length factor. The analysis was performed by varying
the three parameters in the following intervals: β=1 to 128, a/hw=1
to 4 and ss/hw=0 to 1. Thus, the loading cases covered the range
from a concentrated force to a uniformly distributed load along the
whole length of the panel. The numerical results led to Eq. (2) for the
buckling coefficient:

kcr ¼ 1þ ss=2hwð Þð Þ 3:4þ 1:8 hw=að Þ2 þ 0:1
ffiffiffiffi
β4

p� �
: ð2Þ
Fig. 3. Model adopted by Lagerqvist (web with flanges).
It may be noted that Eq. (2) proposed by Lagerqvist was adopted
in Eurocode 3, part 1.5 [16] in a simplified form. The simplification
considers that the influence of the flanges is constant and neglects
the influence of the loading length, yielding Eq. (3):

kcr ¼ 3:5þ 2 hw=að Þ2: ð3Þ

When β is small, meaning that the rotational restraint due to the
flanges is low, the web panel behaves as a simply supported plate.
On the contrary, when β becomes high, the web panel behaves as a
plate with fully restrained supports. However, Eq. (2) already gives
high values of buckling coefficient kcr when β is small, which does
not correspond to the behavior of a simply supported plate. Similarly,
when β increases to infinity, Eq. (2) leads to infinite values which do
not reflect the behavior of the plates with fully restrained edges. This
observation led us to rely on a numerical model to examine the behav-
ior of aweb panel which is subject to opposite patch loading, taking into
account the restraint provided by the flanges in a more realistic way.
This model will be the reference to assess Eqs. (2) and (3) proposed
by Lagerqvist and by the Eurocode 3.

3. Influence of the longitudinal stiffening

In this part, the web panel that was subject to opposite patch loading
and was analyzed previously is considered with reinforcement by longi-
tudinal stiffeners (Fig. 4). The addition of a stiffener increases thebuckling
critical load of the panel for a minor extra cost, through its contribution
to the bending deformation in the buckling mode of the stiffened web.
This type of stiffener is generally of an open section (plate, L type, …)
or a closed section (U or trapeze,…). The study is limited to the case
of a stiffener with an open asymmetric section.

The stiffeners are characterized by the following two dimensionless
factors:

▪ The relative bending stiffness: γs=E Ist / (hw D), and
▪ The relative torsional stiffness:Φs=G Kst /(hw D),where D=E tw3 /
(12 (1−ν2)) is the bending stiffness of the web panel.
Fig. 4. Longitudinal stiffened web with flanges and the effective cross-section of longitu-
dinal stiffeners according to EN1993-1-5 [14].
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Fig. 6. Elastic buckling coefficient kcrs of a simply supported plate for different aspect
ratios. Effect of the (ss/hw) ratio.
According to the EN1993-1-5 (6.4) [16], Ist is the moment of inertia,
around the y-axis parallel to theweb panel, of a combined section of the
stiffener and a part of the web having a width equal to 30 times the
thickness of the plate (Fig. 4).

Several studies have been conducted on the case of a web panel that
was stiffened longitudinally and was subjected to patch loading but, to
our knowledge, no studies have treated the case of opposite patch load-
ing. The former include Graves Smith and Gierlinski [17], Skaloud
[18] and Graciano [19]. These authors were primarily concerned with
determining the optimal relative rigidity γt of the stiffener, which is
the value, beyond which the stiffener no longer contributes to the
panel resistance. In this limit case, the resistance of the panel is con-
trolled by the sub-panels, separated by the stiffener, which behave
independently.

Furthermore, they studied the optimum position of the stiffener
for which the panel resistance is maximum. The charts of Klöppel,
Scheer and Möller [20,21] were established to determine γt for various
configurations of loading but not including the case of opposite patch
loading. The recommendations of the ECCS [22] do not provide equa-
tions for γt for the case of opposite patch loading. In the present study,
a finite element model is developed to calculate the buckling coefficient
of a web panel that was stiffened longitudinally and was subjected to
opposite patch loading. This model also enables us to calculate the opti-
mum stiffness and position of the stiffener for this case.
4. Numerical modeling of panel buckling

A numerical model is developed to study the behavior of a simply
supported or clamped plate and a web panel which is subject to
opposite patch loading. The loading is applied over a limited length
along two opposed sides of the plate or the two flanges of the beam
in the case of the web panel. The influence of the parameters used by
Lagerqvist [11] on the buckling coefficient of the panels is analyzed.
These parameters are a/hw, ss/hw and β. The latter, used for the web
panels with flanges, accounts for the rotational restraints due to the
flanges. These three parameters are varied in the following intervals:
β=1 to 128, a/hw=1 to 4 and ss/hw=0 to 0.5.

The numerical approach is based on the calculation of the eigen-
modes of elastic instability of the plates by using a finite element soft-
ware (CAST3M). It makes it possible to obtain directly the buckling
critical load of the plates loaded in the opposite patch loading with
various boundary conditions (simply supported or clamped andpartially
restrained due to the beam flanges). In these models, elastic behavior is
assumed,with Young'smodulus E=210 GPa and Poisson's ratioν=0.3.
Panels are meshed by using triangular thin shell elements (DKT). Each
node has six degrees of freedom (numbered 1 to 6) (Fig. 5), and the
mesh density is chosen to achieve the convergence of the solution
with sufficient accuracy.
Fig. 5. Finite element mesh u
4.1. Plate simply supported on four edges

In the present paper, the numbers 1, 2, 3 and 4, 5, 6 refer to the
degrees of freedom in translation in the x, y and z directions and the
rotations around the x, y and z axes, respectively (Fig. 3).

To validate the model, its results are compared with the existing
solutions taken from the literature. For this case, the degree of freedom
1 of the horizontal edges (the loaded ones) is fixed. The degrees of free-
dom 1, 2 and 6 are fixed in the vertical edges (unloaded) of the plate.

Various calculations are made on rectangular plates having vari-
ous aspect ratios: a/hw=1 to 4 and ss/hw=0 to 0.5. Fig. 6 shows the
evolution of the buckling coefficient kcrs, which was obtained from the
results of the numerical model, with respect to the aspect ratio a/hw
for various values of the coefficient ss/hw. It can be observed that, for a
given loading length, the buckling coefficient decreases for aspect ratios
below 2.5, then it exhibits aminor increase that is maximumnear 3 and
then stabilizes above an aspect ratio of 3.5. For the same aspect ratio
a/hw, an increase in the loading length gives higher values of the buck-
ling coefficient. The buckling coefficient remains nearly constant for
aspect ratios higher than 2.5.

Table 1 displays the values of the buckling coefficient kcrs which
were obtained from the numerical model developed in the present
study and those determined by Legget, Khan, Protte and Lagerqvist. It
can be observed that the results of the numerical model are very close
to those given by the solutions of these authors. Given that the model
sed for plates and girder.
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Table 1
Buckling coefficient kcrs for a simply supported plate.

ss/hw 0 0.2 0.4

a/hw 1 2 4 1 2 4 1 2 4

Numerical model 2.61 1.52 1.49 2.74 1.54 1.49 2.98 1.61 1.55
Legget [5] 2.46 1.51 1.46 – – – – – –

Khan and Walker [9] 2.56 – – 2.72 – – 2.88 – –

Protte [10] 2.56 1.50 – 2.64 – – 2.88 – –

Lagerqvist [11] 2.47 1.51 1.46 2.55 – – 2.78 – –
is coherent with the results obtained by these existing formulae, it is
used as a basis to establish an equation for the buckling coefficient kcrs
of a simply supported plate which is subjected to opposite patch load-
ing. For that purpose, a parametric study is performed for a/hw=1 to
4 and ss/hw=0 to 0.5. By applying a linear regression to the results of
48 cases, Eq. (4) is obtained.

kcrs ¼ 1:22þ 1:33 hw=að Þ2 þ 0:79 ss=hwð Þ2: ð4Þ

This equation estimates kcrswith an error less than 5% in comparison
with the results of the numerical model. This constitutes an improve-
ment with respect to the existing equations.

4.2. Plate with clamped edges

Boundary conditions with elastic rotational stiffness on the edges
of the plate allow the representation of the restraint on the web due
to the beam flanges. For an I beam with thick flanges, the rotational
stiffness at the web edges is high. This gives a condition of clamped
edge to the web-flange connection. However, the vertical edges (the
unloaded ones) of the web panel remain simply supported. In the
present paper, a plate with these boundary conditions is called
clamped plate.

To model these boundary conditions, the degrees of freedom 1
and 6 are blocked for the horizontal edges and 1 and 2 are blocked
for the vertical edges of the plate.

The evolution of the buckling coefficient kcrf, given by the numerical
model, is shown in Fig. 7 for the studied values of the aspect ratio a/hw
Fig. 7. Elastic buckling coefficient kcrf of a clamped plate for different aspect ratios.
Effect of the (ss/hw) ratio.
and the loading length ratio ss/hw. As in the case of a simply supported
plate, the buckling coefficient increases with the loading length. For a
given loading length the buckling coefficient decreases for the low
aspect ratios to reach a minimum at the aspect ratios between 1.6 and
1.8 and then it increases to stabilize above an aspect ratio of 3. For all
combinations of parameters a/hw and ss/hw the buckling coefficient is
found to be larger, as expected, for the clampedplate than for the simply
supported plate.

For the clamped plate, there is no equation in the literature for
the calculation of the buckling coefficient kcrf. By applying a linear re-
gression to the results of 48 cases, (Eq. (5)) is derived for the buckling
coefficient of a clamped plate which is subjected to opposite patch
loading.

kcrf ¼ 3:96þ 0:66 hw=að Þ2 þ 2:13 ss=hwð Þ2: ð5Þ

The error between the values given by Eq. (5) and the numerical
model does not exceed 2%.

4.3. Web panel of I beam

This section concerns the behavior of a web panel that is subjected
to opposite patch loading and taking into account the elastic restraint
due to theflanges. Afinite elementmodel is built, similar to Lagerqvist's,
except that the displacements and the rotations at the loaded nodes
(Fig. 3) are released. The purpose of this change in boundary conditions
is to allow finite values of the rotational stiffness due to the flanges.
The load is applied to a subset of nodes corresponding to a length ss
of the web-flange intersections. The degrees of freedom 1, 2 and 6 of
the nodes on the left and the right edges of the flanges and the web
are restrained.

4.3.1. Parametric study
To analyze and evaluate the influence of various parameters, the

evolution of the buckling coefficient kcr is determined from the results
of the numerical model and Eqs. (2) and (3) proposed by Lagerqvist
and the Eurocode 3 part 1.5, respectively. In a preliminary step of the
study, the load length factor β is varied from 1 to 128 with the values
of a/hw and ss/hw fixed (Fig. 8).

According to these evolutions, with low values ofβ, Eq. (2) proposed
by Lagerqvist gives higher, i.e., less conservative, values of the buckling
coefficient kcr than those given by the numerical model. For high values
of kcr the equation of Lagerqvist is closer to the numerical values but
remains non conservative all over the domain of variation of the coeffi-
cient β. As for Eq. (3) proposed by the Eurocode 3, it does not take into
account the influence of β on the value of kcr.

It can be observed (Fig. 8) that, as β increases, the buckling coeffi-
cient becomes higher than that of the simply supported plate and con-
verges towards the case of a plate with clamped edges. The conditions
of clamped supports are reached with the flange thickness higher
than four times that of the web panel (tf≥4tw).

Fig. 9 shows the evolutions of the buckling coefficient kcr with
respect to the aspect ratio a/hw for fixed values of β and ss/hw,
which were obtained from the numerical model of the web panel and
Eqs. (2) and (3). It can be observed that the values given by the analytical
formulae are systematically higher than those given by the numerical
model which confirms their non conservative character.

Fig. 10 shows the evolutions of the buckling coefficient kcr with
respect to the factors ss/hw for fixed values of β and hw/a. Over the
domain of variation of ss/hw and for a low value of β (case b) Eqs. (2)
and (3) are generally non conservative in comparison with the numer-
ical model. For high values of β (case a), these equations produce closer
results in comparison with the numerical model.

This parametric study relative to the dominant parameters β, a/hw

et ss/hw influencing the buckling coefficient kcr shows that Eq. (2)
proposed by Lagerqvist is non conservative in comparison with the
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(a) : ss/hw = 0.2 and a/hw = 2 (b) : ss/hw = 0.2 and a/hw = 4

Fig. 8. Buckling coefficient kcr versus the coefficient β0.05.
numerical results taken as a reference. Finally, the Eurocode 3 does not
involve the parameters β and ss/hw despite their significant influence.
This led to the idea of using the results of the numerical model to
establish a more realistic analytical equation for the buckling coeffi-
cient kcr.

4.3.2. New equations for the buckling coefficient kcr
A parametric study is conducted to determine the influence of the

parameters β, a/hw and ss/hw. An analytical equation is then derived by
regression analysis to calculate the buckling coefficient of a web panel
which is subjected to opposite patch loading, considering the real con-
ditions at the panel edges.

Two formulae are proposed (Eqs. (6.a) and (6.b)) for the calculation
of the buckling critical coefficient depending on the aspect ratio of the
web panel. It can be observed that when β is close to zero, the web
panel behaves as a simply supported panel and when β is high it does
(a) β = 1 and ss/hw = 0.5

Fig. 9. Buckling coefficient kcr ve
as a plate with clamped edges. As for the influence of the loading length
factor ss/hw it was already considered in the calculation of the buckling
coefficients kcrs and kcrf defined by Eqs. (4) and (5), respectively. Finally,
it remains to account for the influence of the aspect ratio a/hw to calcu-
late the buckling coefficient kcr of the web panel:

▪ For 1.0≤a/hw≤1.1

kcr ¼ kcrs þ kcrfλβð Þ= 1þ βð Þ ð6:aÞ

with

λ ¼ 0:178 a=hwð Þ2–1:139 a=hwð Þ þ 2:541 1 ≤ β ≤ 1:34

λ ¼ 0:148 a=hwð Þ2–0:950 a=hwð Þ þ 2:118 1:34 b β ≤ 128
(b) β = 1 and ss/hw = 0.1

rsus the aspect ratios a/hw.
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(a) β = 3.91 and a/hw = 1 (b) β = 1 and a/hw = 1

Fig. 10. Buckling coefficient kcr versus the coefficient ss/hw.
▪ For 1.1ba/hw≤4.0

kcr ¼ kcrs þ kcrfψβð Þ= 1þ ψβð Þ ð6:bÞ

and

ψ ¼ 0:086 a=hwð Þ2–0:550 a=hwð Þ þ 1:225 1 ≤ β ≤ 3:91

ψ ¼ 0:380 a=hwð Þ2–2:437 a=hwð Þ þ 5:436 3:91 b β ≤ 128:

The factors λ and ψ represent the influence of the aspect ratio of
the web panel on the buckling coefficient kcr. The parameter kcrs is
the buckling coefficient for a simply supported plate with opposite
Table 2
Comparison between the buckling coefficients obtained using FEM and the equations of th

hw=1000
tw=4,
bf=250

FEM (CAST3M) Eqs. (6.a) and (6.b) Deviation (%)

(kFEMa−k6)/k6b

FEM and Eqs. (6.a

ss β a/hw a/hw a/hw

1 2 4 1 2 4 1 2

0.0 1 4.83 2.57 2.11 4.92 2.37 2.07 1.95 −7.61
3.91 5.33 3.55 2.91 5.36 3.22 2.95 0.60 −9.37

16.00 5.55 4.13 3.83 5.87 4.05 3.91 5.84 −1.94
54 5.71 4.33 4.24 6.02 4.10 3.97 5.39 −5.26

128 5.84 4.41 4.39 6.05 4.12 3.99 3.67 −6.68
0.2 6.35 4.96 2.60 2.13 5.01 2.42 2.12 0.96 −6.80

10.00 5.45 3.58 2.94 5.46 3.28 3.01 0.14 −8.28
16.00 5.66 4.17 3.86 5.98 4.13 3.99 5.68 −0.87
24.00 5.79 4.36 4.27 6.13 4.19 4.06 5.84 −3.97
32.00 5.91 4.43 4.42 6.17 4.20 4.07 4.33 −5.18

0.5 6.35 5.65 2.73 2.21 5.44 2.68 2.37 −3.65 −1.86
10.00 6.20 3.79 3.07 5.96 3.63 3.35 −3.87 −4.18
16.00 6.41 4.42 4.07 6.55 4.57 4.43 2.11 3.46
24.00 6.51 4.61 4.52 6.71 4.63 4.50 3.06 0.47
32.00 6.60 4.68 4.66 6.75 4.65 4.52 2.29 −0.71

a Obtained from finite element model.
b Eqs. (6.a) and (6.b).
c Equation of Lagerqvist.
d Equation of Eurocode 3 part 1–5.
patch loading which is calculated according to Eq. (4). The parameter
kcrf is the buckling coefficient of a panel with clamped supports at the
loaded edges and simple supports at the two other edges. This coeffi-
cient is given by Eq. (5).

The buckling coefficients of a web panel which were obtained for
various values of (a/hw), ss and β by means of the numerical model
and Eqs. (6.a) and (6.b) are given in Table 2. In this Table, the difference
(error) between the results of the numerical model and those of
Eqs. (2), (3) and (6.a) and (6.b) is also reported. It can be noted that
Eq. (2), proposed by Lagerqvist, and Eq. (3) proposed in the Eurocode
3 estimate kcr with differences of 51% and 42%, respectively. However,
Eqs. (6.a) and (6.b) estimate kcr with an error of 10% only, which reflects
a reasonable accuracy considering the simplicity of the equation with
regard to the complexity of the problem.
e other authors.

(kFEM−klager)/klagerc (kFEM−kEC3)/kEC3d

) and (6.b) FEM and model of Lagerqvist FEM and model of EC3

a/hw a/hw

4 1 2 4 1 2 4

−1.73 −8.87 −34.94 −41.59 −12.18 −35.75 −41.79
1.29 −0.20 −11.04 −20.34 −3.09 −11.25 −19.72
2.07 2.78 1.98 3.16 0.91 3.25 5.66

−6.29 4.37 5.07 12.06 3.82 8.25 16.97
−9.12 5.49 5.34 14.06 6.18 10.25 21.10
−0.45 −14.92 −40.16 −46.40 −9.82 −35.00 −41.24

2.45 −7.23 −18.44 −26.84 −0.91 −10.50 −18.90
3.44 −4.72 −6.40 −5.48 2.91 4.25 6.48

−4.96 −3.79 −3.82 2.60 5.27 9.00 17.79
−7.82 −2.95 −3.80 4.40 7.45 10.75 21.93

7.09 −14.71 −44.71 −51.06 2.73 −31.75 −39.03
9.10 −7.13 −24.02 −32.77 12.73 −5.25 −15.31
8.86 −5.04 −12.69 −12.30 16.55 10.50 12.28

−0.39 −4.81 −10.51 −4.43 18.36 15.25 24.69
−2.99 −4.63 −10.57 −3.14 20.00 17.00 28.55



Fig. 11. Influence of the relative flexural rigidity γs of the stiffener on kf for girder.
4.4. Case of longitudinally stiffened web panel

In this part, the influence of a longitudinal stiffener on the buckling
coefficient kf is analyzed for a web panel that is subjected to opposite
patch loading. Theweb panel is stiffened by anasymmetric open section
stiffener (Fig. 4).

4.4.1. Parametric study
Theweb panel numerical model, described in the preceding sections,

is considered nowwith the sameboundary conditions anda longitudinal
stiffener added. The stiffener is modeled according to the geometry
presented in Fig. 4 with dimensions hw=1000 mm, a=1000, 2000
and 4000 mm and tw=4 mm.

The degrees of freedom 1, 5 and 6 are fixed at the end cross sections
of the stiffener. The evolution of the buckling coefficient kf as a function
Fig. 12. Evolution of the inst
of the bending stiffness of the stiffener γs is shown in Fig. 11 for fixed
values of b1/hw=0.2, ss/hw=0.3, a/hw=1 and β=2. The dimension
b1 is the height of the upper sub-panel (Fig. 4). It can be seen that the
buckling coefficient kf increases with γs and reaches a plateau corre-
sponding to the limit buckling mode with double waves along the
height of the web, due to the prevention of out of plane displacements
at the stiffener position (Fig. 12).

The torsional rigidity of open section stiffeners is being generally
negligible and the study will be restricted to the influence of their
relative bending stiffness.

Fig. 13 shows the variations of the buckling coefficient kf versus
the parameter b1/hw for a/hw=1, 2 and 4, ss/hw=0, 0.3 and 0.5 and
β=2. It is noted that among all the considered parameter combina-
tions, the maximum buckling coefficient is reached when the stiffener
is placed at mid-height of the panel (i.e., b1=hw/2).

The evolution of the buckling coefficient kf versus the relative
bending stiffness γs is presented in Fig. 14 for a/hw=1, 2 and 4, for
b1/hw=0.5, ss/hw=0.3 and β=2. It shows that the buckling coeffi-
cient increases quickly and then stabilizes from a certain value defined
as the optimal flexural rigidity γt. It is also noted from the plots that this
optimal flexural stiffness increases with the web panel length.

In Fig. 15, the evolution of kf versus γs is shown for the two aspect
ratios a/hw=1 and 4 of the panel, the loading lengths: ss/hw=0, 0.3
and 0.5, β=2, and b1/hw=0.5. These results show that, for a fixed as-
pect ratio, the loading length has no influence on the optimal flexural
stiffness γt.

Finally, the evolution of kf versus γs is presented in Fig. 16 for dif-
ferent positions of the stiffener (0.3≤b1/hw≤0.5) and two values of
the aspect ratio (a/hw=1 and 4). It can be seen that for a/hw=1
and b1 between 0.3 hw and 0.5 hw the optimal stiffness γt can be
clearly identified. However, this value is difficult to identify when
a/hw=4 because the smoothness of the curve and the decrease
of b1/hw after a maximum is reached. Therefore, a bilinear model is
chosen to approximate the evolution of the buckling coefficient kf
ability mode versus γs.
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(a) : ss/hw = 0.0 (b) : ss/hw = 0.3

(c) : ss/hw = 0.5

Fig. 13. Buckling coefficient kf versus b1/hw for various aspect ratios. Effect of the (ss/hw) ratio.
(Fig. 16). The first line increases quickly for γs≤γt and the second line
describes the slow increase when γs>γt. The optimal rigidity γt is
then determined from the intersection of the two lines (Fig. 17).
The values of the optimal rigidity are given in Table 3 for different
values of the aspect ratio.

From this study an empirical model is obtained. Table 3 shows that
the optimal rigidity is mainly influenced by the aspect ratio of the
loaded panel (b1/hw). A parametric study is conducted with a/hw=
1 to 4 and b1/hw=0.3 to 0.5. Finally, by applying a linear regression
to the results of 30 cases, Eq. (7) is proposed to calculate the optimal
rigidity of the stiffener.

γt ¼ 3:37 a=hwð Þ2:08 þ 0:4 b1=að Þ−1:92
: ð7Þ
Fig. 14. Buckling coefficient kf versus γs for various aspect ratios.
4.4.2. Analytical value of the buckling coefficient kf
The addition of a longitudinal stiffener creates a higher order

mode and therefore an increase in the panel resistance. The simple
Eq. (8) is proposed to evaluate the buckling coefficient kf of the longi-
tudinally stiffened web panel, which is subjected to opposite patch
loading.

kf ¼ kcr þ kst: ð8Þ

Here, kcr is the buckling coefficient of an unstiffened web panel,
resulting from Eqs. (6.a) and (6.b). The parameter kst represents the
contribution of the longitudinal stiffener to the buckling resistance
of the panel additive.

From the study of longitudinally stiffened web panel, it follows
that the buckling coefficient kst depends on the relative flexural stiff-
ness γs of the longitudinal stiffener and the aspect ratio of the loaded
panel (b1/a). A parametric study is therefore established to assess the
influence of the parameters γs, a/hw and b1/a on kst. The analysis, car-
ried out for the following intervals: γs=0.19 to 461, a/hw=1 to 4 and
b1/a=0.075 to 0.5, led to the empirical model (Eqs. (9-a) and (9-b))
for calculating the buckling coefficient kst.

▪ For 0≤γs≤γt

kst ¼ γs=20ð Þ þ 2:45 b1=að Þ þ γs=50ð Þ b1=að Þ−0:06 ð9� aÞ

▪ For γs>γt

kst ¼ γs=250ð Þ þ 0:29 b1=að Þ− γs=125ð Þ b1=að Þ þ 1:391: ð9� bÞ

Table 4 reports the deviation between the values of the buckling
coefficient kf which was calculated by using the numerical model
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(a) : a/hw = 1 (b) : a/hw = 4

Fig. 15. Buckling coefficient kf versus γs for various ss/hw ratios.

(a) : a/hw = 1 (b) :a/hw = 4

Fig. 16. Buckling coefficient kf versus γs for various b1/hw ratios.
and the analytical model (Eq. (8)). It shows that the coefficient kf is
analytically with a maximum error of 14% in comparison with the
numerical model. This error can be considered as acceptable for an
Fig. 17. Determination of transition rigidities γt.
analytical model that is general enough to account for the complex
phenomena of buckling while covering a wide range of cases.

5. Conclusion

The present study addresses the buckling of the I beamweb panels
which are subjected to opposite patch loading considering the
restraints due to the flanges in a more realistic way than proposed by
the European codes. A numerical model is developed and its results
are exploited to derive an empirical analytical equation for the buckling
Table 3
Transition rigidity γt for various values of the relative position of the stiffener.

a/hw b1/hw γt

1 0.3 8
0.4 6
0.5 5

2 0.3 34
0.4 21
0.5 19

4 0.3 113
0.4 98
0.5 80
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Table 4
Comparison of buckling coefficient kFEM obtained from the FEM and Eq. (8).

a/hw γs b1/hw

0.3 0.4 0.5

(kFEM−k8b)/kFEMa (%)

1 γs≤γt 0.19 7 9 10
1.01 9 11 10
1.85 9 10 9
5.17 7 7 5

γs>γt 10.33 1 3 4
24.62 1 4 6
40.17 1 4 7
60.70 1 4 7
86.75 2 4 7

157.25 3 4 8
255.22 5 3 9
460.88 9 1 10

2 γs≤γt 0.19 0 3 6
1.01 3 3 1
1.85 5 7 6
5.17 8 14 14

10.33 8 11 13
24.62 1 13 14

γs>γt 40.17 6 13 14
60.70 7 12 13
86.75 6 10 13

157.25 3 11 12
255.22 2 10 11
460.88 11 1 9

4 γs≤γt 0.19 8 10 12
1.01 7 8 9
1.85 7 6 7
5.17 7 4 4

10.33 10 6 4
24.62 14 13 9
60.70 12 13 14
86.75 13 13 12

γs>γt 157.25 11 5 11
255.22 12 2 12
460.88 12 8 0

a Obtained from finite element model.
b Eq. (8).
critical coefficient of the beamweb panel. The rotational rigidity provid-
ed by the flanges on web panel edges is accurately accounted for in this
new equation. The approach is extended to the case of a web panel
which was reinforced with a longitudinal stiffener and was subjected
to opposite patch loading. By using the results of the numerical model,
the optimal position and rigidity of the stiffener are identified. The
contribution of the stiffener to the buckling resistance of the panel is
determined and a general analytical model is proposed to estimate
the buckling critical coefficient kf of a stiffened web panel which is
subjected to opposite patch loading.
In a future work, this study is to be extended by performing elastic–
plastic finite element analyses and carrying out validation experiments
on web panels that would be subjected to opposite patch loading with
and without stiffeners.
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